Dr. Christof Holzer

  • Wolfgang-Gaede-Str. 1
    76131 Karlsruhe

Publications


2024
  1. Non-linear light–matter interactions from the Bethe–Salpeter equation
    Rauwolf, N.; Klopper, W.; Holzer, C.
    2024. The Journal of Chemical Physics, 160 (6), Art.-NR.: 061101. doi:10.1063/5.0191499
  2. Paramagnetic Nuclear Magnetic Resonance Shifts for Triplet Systems and Beyond with Modern Relativistic Density Functional Methods
    Franzke, Y. J.; Bruder, F.; Gillhuber, S.; Holzer, C.; Weigend, F.
    2024. The Journal of Physical Chemistry A, 128 (3), 670–686. doi:10.1021/acs.jpca.3c07093
  3. A Digital Twin for a Chiral Sensing Platform
    Nyman, M.; Garcia-Santiago, X.; Krstić, M.; Materne, L.; Fernandez-Corbaton, I.; Holzer, C.; Scott, P.; Wegener, M.; Klopper, W.; Rockstuhl, C.
    2024. Laser & Photonics Reviews. doi:10.1002/lpor.202300967
  4. A Multi‐Scale Approach to Simulate the Nonlinear Optical Response of Molecular Nanomaterials
    Zerulla, B.; Beutel, D.; Holzer, C.; Fernandez-Corbaton, I.; Rockstuhl, C.; Krstić, M.
    2024. Advanced Materials, 36 (8), Art.-Nr.: 2311405. doi:10.1002/adma.202311405
2023
  1. Hot luminescence from single-molecule chromophores electrically and mechanically self-decoupled by tripodal scaffolds
    Rai, V.; Balzer, N.; Derenbach, G.; Holzer, C.; Mayor, M.; Wulfhekel, W.; Gerhard, L.; Valášek, M.
    2023. Nature Communications, 14 (1), Art.-Nr.: 8253. doi:10.1038/s41467-023-43948-y
  2. Zero-field splitting parameters within exact two-component theory and modern density functional theory using seminumerical integration
    Bruder, F.; Franzke, Y. J.; Holzer, C.; Weigend, F.
    2023. The Journal of Chemical Physics, 159 (19), Art.-Nr.: 194117. doi:10.1063/5.0175758
  3. Exact two-component theory becoming an efficient tool for NMR shieldings and shifts with spin–orbit coupling
    Franzke, Y. J.; Holzer, C.
    2023. The Journal of Chemical Physics, 159 (18), Art.-Nr.: 184102. doi:10.1063/5.0171509
  4. Robust relativistic many-body Green’s function based approaches for assessing core ionized and excited states
    Kehry, M.; Klopper, W.; Holzer, C.
    2023. The Journal of Chemical Physics, 159 (4), Art.-Nr.: 044116. doi:10.1063/5.0160265
  5. Practical Post-Kohn–Sham Methods for Time-Reversal Symmetry Breaking References
    Holzer, C.
    2023. Journal of Chemical Theory and Computation, 19 (11), 3131–3145. doi:10.1021/acs.jctc.3c00156
  6. Natural virtual orbitals for the GW method in the random-phase approximation and beyond
    Monzel, L.; Holzer, C.; Klopper, W.
    2023. The Journal of Chemical Physics, 158 (14), Artkl.Nr.: 144102. doi:10.1063/5.0144469
  7. How can (TD-)DFT improve multi-scale optical simulations of novel nano-materials and devices?
    Krstic, M.; Holzer, C.; Zerulla, B.; Beutel, D.; Li, C.; Heinke, L.; Woll, C.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2023. CLEO: Science and Innovations : part of Conference on Lasers & Electro-Optics 2023, Optica Publishing Group (OSA)
  8. TURBOMOLE: Today and Tomorrow
    Franzke, Y. J.; Holzer, C. H.; Andersen, J. H.; Begušić, T.; Bruder, F.; Coriani, S.; Della Sala, F.; Fabiano, E.; Fedotov, D. A.; Fürst, S.; Gillhuber, S.; Grotjahn, R.; Kaupp, M.; Kehry, M.; Krstić, M.; Mack, F.; Majumdar, S.; Nguyen, B. D.; Parker, S. M.; Pauly, F.; Pausch, A.; Perlt, E.; Phun, G. S.; Rajabi, A.; Rappoport, D.; Samal, B.; Schrader, T.; Sharma, M.; Tapavicza, E.; Treß, R. S.; Voora, V.; Wodyński, A.; Yu, J. M.; Zerulla, B.; Furche, F.; Hättig, C.; Sierka, M.; Tew, D. P.; Weigend, F.
    2023. Journal of Chemical Theory and Computation, 19 (20), 6859–6890. doi:10.1021/acs.jctc.3c00347
  9. Exploring Functional Photonic Devices made from a Chiral Metal–Organic Framework Material by a Multiscale Computational Method
    Zerulla, B.; Li, C.; Beutel, D.; Oßwald, S.; Holzer, C.; Bürck, J.; Bräse, S.; Wöll, C.; Fernandez-Corbaton, I.; Heinke, L.; Rockstuhl, C.; Krstić, M.
    2023. Advanced Functional Materials. doi:10.1002/adfm.202301093
  10. Activating Electroluminescence of Charged Naphthalene Diimide Complexes Directly Adsorbed on a Metal Substrate
    Rai, V.; Gerhard, L.; Balzer, N.; Valášek, M.; Holzer, C.; Yang, L.; Wegener, M.; Rockstuhl, C.; Mayor, M.; Wulfhekel, W.
    2023. Physical Review Letters, 130, Art.-Nr.: 036201. doi:10.1103/PhysRevLett.130.036201
2022
  1. Current density functional framework for spin–orbit coupling
    Holzer, C.; Franzke, Y. J.; Pausch, A.
    2022. The Journal of Chemical Physics, 157 (20), Art.-Nr.: 204102. doi:10.1063/5.0122394
  2. A local hybrid exchange functional approximation from first principles
    Holzer, C.; Franzke, Y. J.
    2022. The Journal of Chemical Physics, 157 (3), Art.Nr. 034108. doi:10.1063/5.0100439
  3. Impact of the current density on paramagnetic NMR properties
    Franzke, Y. J.; Holzer, C.
    2022. The Journal of Chemical Physics, 157 (3), Art.Nr. 031102. doi:10.1063/5.0103898
  4. Multiscale Modeling of Broadband Perfect Absorbers Based on Gold Metallic Molecules
    Perdana, N.; Holzer, C.; Rockstuhl, C.
    2022. ACS Omega, 7 (23), 19337–19346. doi:10.1021/acsomega.2c00911
  5. Efficient Calculation of Magnetic Circular Dichroism Spectra Using Spin-Noncollinear Linear-Response Time-Dependent Density Functional Theory in Finite Magnetic Fields
    Pausch, A.; Holzer, C.; Klopper, W.
    2022. Journal of Chemical Theory and Computation, 18 (6), 3747–3758. doi:10.1021/acs.jctc.2c00232
  6. Linear Response of Current-Dependent Density Functional Approximations in Magnetic Fields
    Pausch, A.; Holzer, C.
    2022. The Journal of Physical Chemistry Letters, 13 (19), 4335–4341. doi:10.1021/acs.jpclett.2c01082
  7. NMR Coupling Constants Based on the Bethe-Salpeter Equation in the GW Approximation
    Franzke, Y. J.; Holzer, C.; Mack, F.
    2022. Journal of Chemical Theory and Computation, 18 (2), 1030–1045. doi:10.1021/acs.jctc.1c00999
  8. A T‐Matrix Based Approach to Homogenize Artificial Materials
    Zerulla, B.; Venkitakrishnan, R.; Beutel, D.; Krstić, M.; Holzer, C.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2022. doi:10.48550/arXiv.2207.12228
  9. A T‐Matrix Based Approach to Homogenize Artificial Materials
    Zerulla, B.; Venkitakrishnan, R.; Beutel, D.; Krstić, M.; Holzer, C.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2022. Advanced Optical Materials, 11 (3), Art.-Nr.: 2201564. doi:10.1002/adom.202201564
  10. A Multi-Scale Approach for Modeling the Optical Response of Molecular Materials Inside Cavities
    Zerulla, B.; Krstić, M.; Beutel, D.; Holzer, C.; Wöll, C.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2022. Advanced Materials, 34 (21), Art.Nr. 2200350. doi:10.1002/adma.202200350
  11. Modeling and measuring plasmonic excitations in hollow spherical gold nanoparticles
    Müller, M. M.; Perdana, N.; Rockstuhl, C.; Holzer, C.
    2022. Journal of Chemical Physics, 156 (9), Art.-Nr.: 094103. doi:10.1063/5.0078230
2021
  1. The GW/BSE Method in Magnetic Fields
    Holzer, C.; Pausch, A.; Klopper, W.
    2021. Frontiers in Chemistry, 9, 746162. doi:10.3389/fchem.2021.746162
  2. 18-Crown-6 Coordinated Metal Halides with Bright Luminescence and Nonlinear Optical Effects
    Merzlyakova, E.; Wolf, S.; Lebedkin, S.; Bayarjargal, L.; Neumeier, B. L.; Bartenbach, D.; Holzer, C.; Klopper, W.; Winkler, B.; Kappes, M.; Feldmann, C.
    2021. Journal of the American Chemical Society, 143 (2), 798–804. doi:10.1021/jacs.0c09454
  3. Assessing the Accuracy of Local Hybrid Density Functional Approximations for Molecular Response Properties
    Holzer, C.; Franzke, Y. J.; Kehry, M.
    2021. Journal of Chemical Theory and Computation, 17 (5), 2928–2947. doi:10.1021/acs.jctc.1c00203
2020
  1. Synthesis of New Donor‐Substituted Biphenyls: Pre‐ligands for Highly Luminescent (C^C^D) Gold(III) Pincer Complexes
    Feuerstein, W.; Holzer, C.; Gui, X.; Neumeier, L.; Klopper, W.; Breher, F.
    2020. Chemistry - a European journal, 26 (71), 17156–17164. doi:10.1002/chem.202003271
  2. Boosting Light Emission from Single Hydrogen Phthalocyanine Molecules by Charging
    Rai, V.; Gerhard, L.; Sun, Q.; Holzer, C.; Repän, T.; Krstić, M.; Yang, L.; Wegener, M.; Rockstuhl, C.; Wulfhekel, W.
    2020. Nano letters, 20 (10), 7600–7605. doi:10.1021/acs.nanolett.0c03121
  3. The first microsolvation step for furans: New experiments and benchmarking strategies
    Gottschalk, H. C.; Poblotzki, A.; Fatima, M.; Obenchain, D. A.; Pérez, C.; Antony, J.; Auer, A. A.; Baptista, L.; Benoit, D. M.; Bistoni, G.; Bohle, F.; Dahmani, R.; Firaha, D.; Grimme, S.; Hansen, A.; Harding, M. E.; Hochlaf, M.; Holzer, C.; Jansen, G.; Klopper, W.; Kopp, W. A.; Krasowska, M.; Kröger, L. C.; Leonhard, K.; Mogren Al-Mogren, M.; Mouhib, H.; Neese, F.; Pereira, M. N.; Prakash, M.; Ulusoy, I. S.; Mata, R. A.; Suhm, M. A.; Schnell, M.
    2020. The journal of chemical physics, 152 (16), Art.Nr.: 164303. doi:10.1063/5.0004465
  4. An improved seminumerical Coulomb and exchange algorithm for properties and excited states in modern density functional theory
    Holzer, C.
    2020. The journal of chemical physics, 153, Art.-Nr.: 184115. doi:10.1063/5.0022755
  5. Quasirelativistic two-component core excitations and polarisabilities from a damped-response formulation of the Bethe–Salpeter equation
    Kehry, M.; Franzke, Y. J.; Holzer, C.; Klopper, W.
    2020. Molecular physics, 118 (21-22), Art.Nr. e1755064. doi:10.1080/00268976.2020.1755064
  6. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
    Balasubramani, S. G.; Chen, G. P.; Coriani, S.; Diedenhofen, M.; Frank, M. S.; Franzke, Y. J.; Furche, F.; Grotjahn, R.; Harding, M. E.; Hättig, C.; Hellweg, A.; Helmich-Paris, B.; Holzer, C.; Huniar, U.; Kaupp, M.; Marefat Khah, A.; Karbalaei Khani, S.; Müller, T.; Mack, F.; Nguyen, B. D.; Parker, S. M.; Perlt, E.; Rappoport, D.; Reiter, K.; Roy, S.; Rückert, M.; Schmitz, G.; Sierka, M.; Tapavicza, E.; Tew, D. P.; Wüllen, C. van; Voora, V. K.; Weigend, F.; Wodyński, A.; Yu, J. M.
    2020. The journal of chemical physics, 152 (18), Article: 184107. doi:10.1063/5.0004635
2019
  1. Erratum: “GW quasiparticle energies of atoms in strong magnetic fields” [J. Chem. Phys. 150, 214112 (2019)]
    Holzer, C.; Teale, A. M.; Hampe, F.; Stopkowicz, S.; Helgaker, T.; Klopper, W.
    2019. The journal of chemical physics, 151 (6), 069902. doi:10.1063/1.5120100
  2. Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory
    Kodrycka, M.; Holzer, C.; Klopper, W.; Patkowski, K.
    2019. Journal of chemical theory and computation, 15 (11), 5965–5986. doi:10.1021/acs.jctc.9b00547
  3. GW quasiparticle energies of atoms in strong magnetic fields
    Holzer, C.; Teale, A. M.; Hampe, F.; Stopkowicz, S.; Helgaker, T.; Klopper, W.
    2019. The journal of chemical physics, 150 (21), Art. Nr.: 214112. doi:10.1063/1.5093396
  4. Ionized, electron-attached, and excited states of molecular systems with spin-orbit coupling: Two-component GW and Bethe-Salpeter implementations
    Holzer, C.; Klopper, W.
    2019. The journal of chemical physics, 150 (20), 204116. doi:10.1063/1.5094244
  5. Die GW-Methode und Bethe-Salpeter-Gleichung in der Quantenchemie: Theorie und Anwendung. Dissertation
    Holzer, C.
    2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000095752