Dr. Christof Holzer

  • Wolfgang-Gaede-Str. 1
    76131 Karlsruhe


  1. Multiscale Modeling of Broadband Perfect Absorbers Based on Gold Metallic Molecules
    Perdana, N.; Holzer, C.; Rockstuhl, C.
    2022. ACS Omega, 7 (23), 19337–19346. doi:10.1021/acsomega.2c00911
  2. Efficient Calculation of Magnetic Circular Dichroism Spectra Using Spin-Noncollinear Linear-Response Time-Dependent Density Functional Theory in Finite Magnetic Fields
    Pausch, A.; Holzer, C.; Klopper, W.
    2022. Journal of Chemical Theory and Computation, 18 (6), 3747–3758. doi:10.1021/acs.jctc.2c00232
  3. Linear Response of Current-Dependent Density Functional Approximations in Magnetic Fields
    Pausch, A.; Holzer, C.
    2022. The Journal of Physical Chemistry Letters, 13 (19), 4335–4341. doi:10.1021/acs.jpclett.2c01082
  4. NMR Coupling Constants Based on the Bethe-Salpeter Equation in the GW Approximation
    Franzke, Y. J.; Holzer, C.; Mack, F.
    2022. Journal of Chemical Theory and Computation, 18 (2), 1030–1045. doi:10.1021/acs.jctc.1c00999
  5. A Multi-Scale Approach for Modeling the Optical Response of Molecular Materials Inside Cavities
    Zerulla, B.; Krstić, M.; Beutel, D.; Holzer, C.; Wöll, C.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2022. Advanced Materials, Art.Nr. 2200350. doi:10.1002/adma.202200350
  6. Modeling and measuring plasmonic excitations in hollow spherical gold nanoparticles
    Müller, M. M.; Perdana, N.; Rockstuhl, C.; Holzer, C.
    2022. Journal of Chemical Physics, 156 (9), Art.-Nr.: 094103. doi:10.1063/5.0078230
  1. The GW/BSE Method in Magnetic Fields
    Holzer, C.; Pausch, A.; Klopper, W.
    2021. Frontiers in Chemistry, 9, 746162. doi:10.3389/fchem.2021.746162
  2. 18-Crown-6 Coordinated Metal Halides with Bright Luminescence and Nonlinear Optical Effects
    Merzlyakova, E.; Wolf, S.; Lebedkin, S.; Bayarjargal, L.; Neumeier, B. L.; Bartenbach, D.; Holzer, C.; Klopper, W.; Winkler, B.; Kappes, M.; Feldmann, C.
    2021. Journal of the American Chemical Society, 143 (2), 798–804. doi:10.1021/jacs.0c09454
  3. Assessing the Accuracy of Local Hybrid Density Functional Approximations for Molecular Response Properties
    Holzer, C.; Franzke, Y. J.; Kehry, M.
    2021. Journal of Chemical Theory and Computation, 17 (5), 2928–2947. doi:10.1021/acs.jctc.1c00203
  1. Synthesis of New Donor‐Substituted Biphenyls: Pre‐ligands for Highly Luminescent (C^C^D) Gold(III) Pincer Complexes
    Feuerstein, W.; Holzer, C.; Gui, X.; Neumeier, L.; Klopper, W.; Breher, F.
    2020. Chemistry - a European journal, 26 (71), 17156–17164. doi:10.1002/chem.202003271
  2. Boosting Light Emission from Single Hydrogen Phthalocyanine Molecules by Charging
    Rai, V.; Gerhard, L.; Sun, Q.; Holzer, C.; Repän, T.; Krstić, M.; Yang, L.; Wegener, M.; Rockstuhl, C.; Wulfhekel, W.
    2020. Nano letters, 20 (10), 7600–7605. doi:10.1021/acs.nanolett.0c03121
  3. The first microsolvation step for furans: New experiments and benchmarking strategies
    Gottschalk, H. C.; Poblotzki, A.; Fatima, M.; Obenchain, D. A.; Pérez, C.; Antony, J.; Auer, A. A.; Baptista, L.; Benoit, D. M.; Bistoni, G.; Bohle, F.; Dahmani, R.; Firaha, D.; Grimme, S.; Hansen, A.; Harding, M. E.; Hochlaf, M.; Holzer, C.; Jansen, G.; Klopper, W.; Kopp, W. A.; Krasowska, M.; Kröger, L. C.; Leonhard, K.; Mogren Al-Mogren, M.; Mouhib, H.; Neese, F.; Pereira, M. N.; Prakash, M.; Ulusoy, I. S.; Mata, R. A.; Suhm, M. A.; Schnell, M.
    2020. The journal of chemical physics, 152 (16), Art.Nr.: 164303. doi:10.1063/5.0004465
  4. An improved seminumerical Coulomb and exchange algorithm for properties and excited states in modern density functional theory
    Holzer, C.
    2020. The journal of chemical physics, 153, Art.-Nr.: 184115. doi:10.1063/5.0022755
  5. Quasirelativistic two-component core excitations and polarisabilities from a damped-response formulation of the Bethe–Salpeter equation
    Kehry, M.; Franzke, Y. J.; Holzer, C.; Klopper, W.
    2020. Molecular physics, 118 (21-22), Art.Nr. e1755064. doi:10.1080/00268976.2020.1755064
  6. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
    Balasubramani, S. G.; Chen, G. P.; Coriani, S.; Diedenhofen, M.; Frank, M. S.; Franzke, Y. J.; Furche, F.; Grotjahn, R.; Harding, M. E.; Hättig, C.; Hellweg, A.; Helmich-Paris, B.; Holzer, C.; Huniar, U.; Kaupp, M.; Marefat Khah, A.; Karbalaei Khani, S.; Müller, T.; Mack, F.; Nguyen, B. D.; Parker, S. M.; Perlt, E.; Rappoport, D.; Reiter, K.; Roy, S.; Rückert, M.; Schmitz, G.; Sierka, M.; Tapavicza, E.; Tew, D. P.; Wüllen, C. van; Voora, V. K.; Weigend, F.; Wodyński, A.; Yu, J. M.
    2020. The journal of chemical physics, 152 (18), Article: 184107. doi:10.1063/5.0004635
  1. Erratum: “GW quasiparticle energies of atoms in strong magnetic fields” [J. Chem. Phys. 150, 214112 (2019)]
    Holzer, C.; Teale, A. M.; Hampe, F.; Stopkowicz, S.; Helgaker, T.; Klopper, W.
    2019. The journal of chemical physics, 151 (6), 069902. doi:10.1063/1.5120100
  2. Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory
    Kodrycka, M.; Holzer, C.; Klopper, W.; Patkowski, K.
    2019. Journal of chemical theory and computation, 15 (11), 5965–5986. doi:10.1021/acs.jctc.9b00547
  3. GW quasiparticle energies of atoms in strong magnetic fields
    Holzer, C.; Teale, A. M.; Hampe, F.; Stopkowicz, S.; Helgaker, T.; Klopper, W.
    2019. The journal of chemical physics, 150 (21), Art. Nr.: 214112. doi:10.1063/1.5093396
  4. Ionized, electron-attached, and excited states of molecular systems with spin-orbit coupling: Two-component GW and Bethe-Salpeter implementations
    Holzer, C.; Klopper, W.
    2019. The journal of chemical physics, 150 (20), 204116. doi:10.1063/1.5094244
  5. Die GW-Methode und Bethe-Salpeter-Gleichung in der Quantenchemie: Theorie und Anwendung. PhD dissertation
    Holzer, C.
    2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000095752