Aristeidis Lamprianidis

  • Wolfgang-Gaede-Str. 1
    76131 Karlsruhe

Publications


2024
  1. Generalized transition matrix methods for the analysis of linear nanophotonic systems. Dissertation
    Lamprianidis, A. G.
    2024, Juni 10. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000171446
  2. Two-step homogenization of spatiotemporal metasurfaces using an eigenmode-based approach
    Garg, P.; Lamprianidis, A. G.; Rahman, S.; Stefanou, N.; Almpanis, E.; Papanikolaou, N.; Verfürth, B.; Rockstuhl, C.
    2024. Optical Materials Express, 14 (2), 549–563. doi:10.1364/OME.509897
2023
  1. Identifying regions of minimal backscattering by a relativistically moving sphere
    Whittam, M. R.; Lamprianidis, A. G.; Augenstein, Y.; Rockstuhl, C.
    2023. Physical Review A, 108 (4), Art.-Nr.: 043510. doi:10.1103/PhysRevA.108.043510
  2. Unleashing Infinitely Wide Momentum Bandgaps in Photonic Time Crystals
    Wang, X.; Garg, P.; Lamprianidis, A. G.; Mirmoosa, M. S.; Asadchy, V.; Rockstuhl, C.
    2023. 2023 17th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), X-423–X-426, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/Metamaterials58257.2023.10289138
  3. Identifying regions of minimal back-scattering by a relativistically-moving sphere
    Whittam, M. R.; Lamprianidis, A. G.; Augenstein, Y.; Rockstuhl, C.
    2023. arxiv. doi:10.48550/arXiv.2304.05319
  4. Floquet–Mie Theory for Time‐Varying Dispersive Spheres
    Ptitcyn, G.; Lamprianidis, A.; Karamanos, T.; Asadchy, V.; Alaee, R.; Müller, M.; Albooyeh, M.; Mirmoosa, M. S.; Fan, S.; Tretyakov, S.; Rockstuhl, C.
    2023. Laser and Photonics Reviews, 17 (3), Art.-Nr.: 2100683. doi:10.1002/lpor.202100683
  5. Transcending the Rayleigh Hypothesis with multipolar sources distributed across the topological skeleton of a scatterer
    Lamprianidis, A. G.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2023. Journal of Quantitative Spectroscopy and Radiative Transfer, 296, 108455. doi:10.1016/j.jqsrt.2022.108455
  6. Unleashing infinite momentum bandgap using resonant material systems
    Wang, X.; Garg, P.; Mirmoosa, M. S.; Lamprianidis, A. G.; Rockstuhl, C.; Asadchy, V. S.
    2023. arxiv. doi:10.48550/arXiv.2310.02786
  7. Two-step homogenization of spatiotemporal metasurfaces using an eigenmode-based approach
    Garg, P.; Lamprianidis, A.; Rahman, S.; Stefanou, N.; Papanikolaou, N.; Almpanis, E.; Verfürth, B.; Rockstuhl, C.
    2023. Optica Publishing Group (OSA). doi:10.1364/opticaopen.24449380
2022
  1. Modeling four-dimensional metamaterials: a T-matrix approach to describe time-varying metasurfaces
    Garg, P.; Lamprianidis, A. G.; Beutel, D.; Karamanos, T.; Verfürth, B.; Rockstuhl, C.
    2022. Optics Express, 30 (25), 45832. doi:10.1364/OE.476035
  2. Parametric Mie Resonances and Directional Amplification in Time-Modulated Scatterers
    Asadchy, V.; Lamprianidis, A. G.; Ptitcyn, G.; Albooyeh, M.; Rituraj; Karamanos, T.; Alaee, R.; Tretyakov, S. A.; Rockstuhl, C.; Fan, S.
    2022. Physical Review Applied, 18 (5), Art.-Nr.: 054065. doi:10.1103/PhysRevApplied.18.054065
  3. Modeling four-dimensional metamaterials: A T-matrix approach to describe time-varying metasurfaces
    Garg, P.; Lamprianidis, A. G.; Beutel, D.; Karamanos, T.; Verfürth, B.; Rockstuhl, C.
    2022. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000151358
  4. Parametric Mie resonances and directional amplification in time-modulated scatterers
    Asadchy, V.; Lamprianidis, A. G.; Ptitcyn, G.; Albooyeh, M.; Karamanos, T.; Alaee, R.; Tretyakov, S. A.; Rockstuhl, C.; Fan, S.
    2022. doi:10.48550/arXiv.2202.11138
  5. A Comprehensive Multipolar Theory for Periodic Metasurfaces
    Rahimzadegan, A.; Karamanos, T. D.; Alaee, R.; Lamprianidis, A. G.; Beutel, D.; Boyd, R. W.; Rockstuhl, C.
    2022. Advanced Optical Materials, 10 (10), Art.Nr.: 2102059. doi:10.1002/adom.202102059
  6. Directional Coupling of Emitters into Waveguides: A Symmetry Perspective
    Lamprianidis, A. G.; Zambrana-Puyalto, X.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2022. Laser and Photonics Reviews, 16 (1), Art.NR: 2000516. doi:10.1002/lpor.202000516
2021
  1. Scattering of light by spheres made from a time-modulated and dispersive material
    Ptitcyn, G.; Lamprianidis, A.; Karamanos, T.; Muller, M.; Alaee, R.; Asadchy, V. S.; Mirmoosa, M. S.; Albooyeh, M.; Fan, S.; Rockstuhl, C.; Tretyakov, S. A.
    2021
  2. Scattering of light by spheres made from a time-modulated and dispersive material
    Ptitcyn, G.; Lamprianidis, A.; Karamanos, T.; Muller, M.; Alaee, R.; Asadchy, V. S.; Mirmoosa, M. S.; Albooyeh, M.; Fan, S.; Rockstuhl, C.; Tretyakov, S. A.
    2021. 2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials): 20-25 September 2021, online, 347–349, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/Metamaterials52332.2021.9577064
  3. Scattering from spheres made of time-varying and dispersive materials
    Ptitcyn, G.; Lamprianidis, A. G.; Karamanos, T.; Asadchy, V. S.; Alaee, R.; Müller, M.; Albooyeh, M.; Mirmoosa, M. S.; Fan, S.; Tretyakov, S. A.; Rockstuhl, C.
    2021
2020
  1. Corrugated plane wave scattering by a sphere
    Chrissoulidis, D.; Richalot, E.; Lamprianidis, A.
    2020. Journal of quantitative spectroscopy & radiative transfer, 250, Art. Nr.: 107058. doi:10.1016/j.jqsrt.2020.107058