Home | Impressum | Datenschutz | Sitemap | KIT

Publications


2018
Journal Articles
  1. Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source [in press].
    Vetter, A.; Kirner, R.; Opalevs, D.; Scholz, M.; Leisching, P.; Scharf, T.; Noell, W.; Rockstuhl, C.; Voelkel, R.
    2018. Optics express, 26 (17), 22218-22233. doi:10.1364/OE.26.022218
  2. Formation of nanocrystalline graphene on germanium.
    Yekani, R.; Rusak, E.; Riaz, A.; Felten, A.; Breitung, B.; Dehm, S.; Perera, D.; Rohrer, J.; Rockstuhl, C.; Krupke, R.
    2018. Nanoscale, 10 (25), 12156-12162. doi:10.1039/c8nr01261j
  3. Beyond local effective material properties for metamaterials.
    Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.
    2018. Physical review / B, 97 (7), Art. Nr.: 075439. doi:10.1103/PhysRevB.97.075439
  4. Normalization approach for scattering modes in classical and quantum electrodynamics.
    Oppermann, J.; Straubel, J.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2018. Physical review / A, 97 (5), 052131. doi:10.1103/PhysRevA.97.052131
  5. Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry.
    Rahimzadegan, A.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2018. Physical review applied, 9 (5), 054051. doi:10.1103/PhysRevApplied.9.054051
  6. Fabrication of Nearly-Hyperuniform Substrates by Tailored Disorder for Photonic Applications.
    Piechulla, P. M.; Muehlenbein, L.; Wehrspohn, R. B.; Nanz, S.; Abass, A.; Rockstuhl, C.; Sprafke, A.
    2018. Advanced optical materials, 6 (7), Art. Nr.: 1701272. doi:10.1002/adom.201701272
  7. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity.
    Münzberg, J.; Vetter, A.; Beutel, F.; Hartmann, W.; Ferrari, S.; Pernice, W. H. P.; Rockstuhl, C.
    2018. Optica, 5 (5), 658-665. doi:10.1364/OPTICA.5.000658
  8. Using a pseudo-thermal light source to teach spatial coherence.
    Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.
    2018. European journal of physics, 39 (4), 045303. doi:10.1088/1361-6404/aaba03
  9. Quantum Optical Realization of Arbitrary Linear Transformations Allowing for Loss and Gain.
    Tischler, N.; Rockstuhl, C.; Słowik, K.
    2018. Physical review / X, 8 (2), 021017. doi:10.1103/PhysRevX.8.021017
  10. Correction: Computing the T-matrix of a scattering object with multiple plane wave illuminations.
    Fruhnert, M.; Fernandez-Corbaton, I.; Yannopapas, V.; Rockstuhl, C.
    2018. Beilstein journal of nanotechnology, 9, 953. doi:10.3762/bjnano.9.88
  11. Shape design of a reflecting surface using Bayesian Optimization.
    Garcia-Santiago, X.; Schneider, P. I.; Rockstuhl, C.; Burger, S.
    2018. Journal of physics / Conference Series, 963 (1), Art.Nr. 012003. doi:10.1088/1742-6596/963/1/012003
  12. Predicting Observable Quantities of Self-Assembled Metamaterials from the T-Matrix of Its Constituting Meta-Atom.
    Suryadharma, R.; Rockstuhl, C.
    2018. Materials, 11 (2), Art.Nr. 213. doi:10.3390/ma11020213
  13. Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm.
    Kirner, R.; Vetter, A.; Opalevs, D.; Gilfert, C.; Scholz, M.; Leisching, P.; Scharf, T.; Noell, W.; Rockstuhl, C.; Voelkel, R.
    2018. Optics express, 26 (2), 730-743. doi:10.1364/OE.26.000730
  14. Quantum Description of Radiative Decay in Optical Cavities.
    Oppermann, J.; Straubel, J.; Słowik, K.; Rockstuhl, C.
    2018. Physical review / A, 97 (1), Art.Nr. 013809. doi:10.1103/PhysRevA.97.013809
  15. Strategy for tailoring the size distribution of nanospheres to optimize rough backreflectors of solar cells.
    Nanz, S.; Abass, A.; Piechulla, P. M.; Sprafke, A.; Wehrspohn, R. B.; Rockstuhl, C.
    2018. Optics express, 26 (2), A111-A123. doi:10.1364/OE.26.00A111
  16. An electromagnetic multipole expansion beyond the long-wavelength approximation.
    Alaee, R.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2018. Optics communications, 407, 17-21. doi:10.1016/j.optcom.2017.08.064
2017
Journal Articles
  1. Theory of metasurface based perfect absorbers.
    Alaee, R.; Albooyeh, M.; Rockstuhl, C.
    2017. Journal of physics / D, 50 (50), Art.Nr.: 503002. doi:10.1088/1361-6463/aa94a8
  2. Enhanced Directional Emission from Monolayer WSe₂ Integrated onto a Multiresonant Silicon-Based Photonic Structure.
    Chen, H.; Nanz, S.; Abass, A.; Yan, J.; Gao, T.; Choi, D.-Y.; Kivshar, Y. S.; Rockstuhl, C.; Neshev, D. N.
    2017. ACS photonics, 4 (12), 3031-3038. doi:10.1021/acsphotonics.7b00550
  3. A Green’s function based analytical method for forward and inverse modeling of quasi-periodic nanostructured surfaces.
    Abass, A.; Zilk, M.; Nanz, S.; Fasold, S.; Ehrhardt, S.; Pertsch, T.; Rockstuhl, C.
    2017. Journal of applied physics, 122 (18), Art.Nr.: 183103. doi:10.1063/1.4998541
  4. Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres.
    Ismail Abdelrahman, M.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2017. Scientific reports, 7 (1), Art.Nr. 14762. doi:10.1038/s41598-017-15192-0
  5. Measuring the electromagnetic chirality of 2D arrays under normal illumination.
    Garcia-Santiago, X.; Burger, S.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2017. Optics letters, 42 (20), 4075-4078. doi:10.1364/OL.42.004075
  6. Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors.
    Lee, J.-S.; Huynh, T.; Lee, S.-Y.; Lee, K.-G.; Lee, J.; Tame, M.; Rockstuhl, C.; Lee, C.
    2017. Physical review / A, 96 (3), Art.Nr.: 033833. doi:10.1103/PhysRevA.96.033833
  7. On the dynamic toroidal multipoles from localized electric current distributions.
    Fernandez-Corbaton, I.; Nanz, S.; Rockstuhl, C.
    2017. Scientific reports, 7 (1), Art. Nr.: 7527. doi:10.1038/s41598-017-07474-4
  8. Studying plasmonic resonance modes of hierarchical self-assembled meta-atoms based on their transfer matrix.
    Suryadharma, R. N. S.; Fruhnert, M.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2017. Physical review / B, 96 (4), Art. Nr. 045406. doi:10.1103/PhysRevB.96.045406
  9. Dual-SNOM investigations of multimode interference in plasmonic strip waveguides.
    Klein, A. E.; Janunts, N.; Schmidt, S.; Bin Hasan, S.; Etrich, C.; Fasold, S.; Kaiser, T.; Rockstuhl, C.; Pertsch, T.
    2017. Nanoscale, 9 (20), 6695-6702. doi:10.1039/c6nr06561a
  10. Hybridizing whispering gallery modes and plasmonic resonances in a photonic metadevice for biosensing applications.
    Klusmann, C.; Suryadharma, R. N. S.; Oppermann, J.; Rockstuhl, C.; Kalt, H.
    2017. Journal of the Optical Society of America / B, 34 (7), D46-D55. doi:10.1364/JOSAB.34.000D46
  11. Subwavelength Focusing of Bloch Surface Waves.
    Kim, M.-S.; Vosoughi Lahijani, B.; Descharmes, N.; Straubel, J.; Negredo, F.; Rockstuhl, C.; Häyrinen, M.; Kuittinen, M.; Roussey, M.; Herzig, H. P.
    2017. ACS photonics, 4 (6), 1477-1483. doi:10.1021/acsphotonics.7b00245
  12. Entangled light from bimodal optical nanoantennas.
    Straubel, J.; Sarniak, R.; Rockstuhl, C.; Słowik, K.
    2017. Physical review / B, 95 (8), Art. Nr.: 085421. doi:10.1103/PhysRevB.95.085421
  13. Unified theory to describe and engineer conservation laws in light-matter interactions.
    Fernandez-Corbaton, I.; Rockstuhl, C.
    2017. Physical review / A, 95 (5), Art. Nr. 053829. doi:10.1103/PhysRevA.95.053829
  14. Singular-value decomposition for electromagnetic-scattering analysis.
    Suryadharma, R. N. S.; Fruhnert, M.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2017. Physical review / A, 95 (5), Art. Nr. 053834. doi:10.1103/PhysRevA.95.053834
  15. Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors.
    Ferrari, S.; Kovalyuk, V.; Hartmann, W.; Vetter, A.; Kahl, O.; Lee, C.; Korneev, A.; Rockstuhl, C.; Gol’tsman, G.; Pernice, W.
    2017. Optics express, 25 (8), 8739-8750. doi:10.1364/OE.25.008739
  16. Computing the T-matrix of a scattering object with multiple plane wave illuminations.
    Fruhnert, M.; Fernandez-Corbaton, I.; Yannopapas, V.; Rockstuhl, C.
    2017. Beilstein journal of nanotechnology, 8 (1), 614-626. doi:10.3762/bjnano.8.66
  17. Optical alignment of oval graphene flakes.
    Mobini, E.; Rahimzadegan, A.; Alaee, R.; Rockstuhl, C.
    2017. Optics letters, 42 (6), 1039-1042. doi:10.1364/OL.42.001039
  18. Fundamental limits of optical force and torque.
    Rahimzadegan, A.; Alaee, R.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2017. Physical review / B, 95 (3), 035106. doi:10.1103/PhysRevB.95.035106
  19. A simple DPSS laser setup and experiments for undergraduates.
    Bergmann, A.; Kircher, S.; Setzler, D.; Gerharz, M.; Rockstuhl, C.
    2017. European journal of physics, 38 (1), Art. Nr.: 014004. doi:10.1088/0143-0807/38/1/014004
2016
Journal Articles
  1. Purely bianisotropic scatterers.
    Albooyeh, M.; Asadchy, V. S.; Alaee, R.; Hashemi, S. M.; Yazdi, M.; Mirmoosa, M. S.; Rockstuhl, C.; Simovski, C. R.; Tretyakov, S. A.
    2016. Physical review / B, 94 (24), Art. Nr.: 245428. doi:10.1103/PhysRevB.94.245428
  2. Sub-Poisson-binomial light.
    Lee, C.; Ferrari, S.; Pernice, W. H. P.; Rockstuhl, C.
    2016. Physical review / A, 94 (5), 053844. doi:10.1103/PhysRevA.94.053844
  3. Transverse multipolar light-matter couplings in evanescent waves.
    Fernandez-Corbaton, I.; Zambrana-Puyalto, X.; Bonod, N.; Rockstuhl, C.
    2016. Physical review / A, 94 (5), 053822. doi:10.1103/PhysRevA.94.053822
  4. Cavity-Enhanced and Ultrafast Superconducting Single-Photon Detectors.
    Vetter, A.; Ferrari, S.; Rath, P.; Alaee, R.; Kahl, O.; Kovalyuk, V.; Diewald, S.; Goltsman, G. N.; Korneev, A.; Rockstuhl, C.; Pernice, W. H. P.
    2016. Nano letters, 16 (11), 7085-7092. doi:10.1021/acs.nanolett.6b03344
  5. Surface phonon–polaritons: To scatter or not to scatter.
    Staude, I.; Rockstuhl, C.
    2016. Nature materials, 15 (8), 821–822. doi:10.1038/nmat4713
  6. Bottom-Up Fabrication of Hybrid Plasmonic Sensors: Gold-Capped Hydrogel Microspheres Embedded in Periodic Metal Hole Arrays.
    Weiler, M.; Menzel, C.; Pertsch, T.; Alaee, R.; Rockstuhl, C.; Pacholski, C.
    2016. ACS applied materials & interfaces, 8 (39), 26392-26399. doi:10.1021/acsami.6b08636
  7. Optically assisted trapping with high-permittivity dielectric rings: Towards optical aerosol filtration.
    Alaee, R.; Kadic, M.; Rockstuhl, C.; Passian, A.
    2016. Applied physics letters, 109 (14), 141102. doi:10.1063/1.4963862
  8. Phase-change material-based nanoantennas with tunable radiation patterns.
    Alaee, R.; Albooyeh, M.; Tretyakov, S.; Rockstuhl, C.
    2016. Optics letters, 41 (17), 4099-4102. doi:10.1364/OL.41.004099
  9. Fully integrated quantum photonic circuit with an electrically driven light source.
    Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol'tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
    2016. Nature photonics. doi:10.1038/nphoton.2016.178
  10. Optical force and torque on dipolar dual chiral particles.
    Rahimzadegan, A.; Fruhnert, M.; Alaee, R.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2016. Physical review / B, 94 (12), Art. Nr.: 125123. doi:10.1103/PhysRevB.94.125123
  11. Broadband Anti-Reflective Coating Based on Plasmonic Nanocomposite.
    Hedayati, M. K.; Abdelaziz, M.; Etrich, C.; Homaeigohar, S.; Rockstuhl, C.; Elbahri, M.
    2016. Materials, 9 (8), Art.Nr.:636. doi:10.3390/ma9080636
  12. Insights into directional scattering : from coupled dipoles to asymmetric dimer nanoantennas.
    Abass, A.; Gutsche, P.; Maes, B.; Rockstuhl, C.; Martins, E. R.
    2016. Optics express, 24 (17), 19638-19650. doi:10.1364/OE.24.019638
  13. Objects of Maximum Electromagnetic Chirality.
    Fernandez-Corbaton, I.; Fruhnert, M.; Rockstuhl, C.
    2016. Physical review / X, 6 (3), Art.Nr.:031013. doi:10.1103/PhysRevX.6.031013
  14. Efficient mode conversion in an optical nanoantenna mediated by quantum emitters.
    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.
    2016. Optics letters, 41 (10), 2294-2297. doi:10.1364/OL.41.002294
  15. Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible.
    Fruhnert, M.; Monti, A.; Fernandez-Corbaton, I.; Alù, A.; Toscano, A.; Bilotti, F.; Rockstuhl, C.
    2016. Physical Review B, 93 (24), 245127. doi:10.1103/PhysRevB.93.245127
  16. Quantum Plasmonic Sensing: Beyond the Shot-Noise and Diffraction Limit.
    Lee, C.; Dieleman, F.; Lee, J.; Rockstuhl, C.; Maier, S. A.; Tame, M.
    2016. ACS Photonics, 3 (6), 992–999. doi:10.1021/acsphotonics.6b00082
  17. Experimental realisation of all-dielectric bianisotropic metasurfaces.
    Odit, M. A.; Kapitanova, P. V.; Belov, P. A.; Alaee, R.; Rockstuhl, C.; Kivshar, Y. S.
    2016. Applied Physics Letters, 108 (22), Art.Nr.:221903. doi:10.1063/1.4953023
  18. Plasmonic nanoantenna based triggered single-photon source.
    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.
    2016. Physical review / B, 93 (19), Art.Nr.: 195412. doi:10.1103/PhysRevB.93.195412
  19. Enhancement of second-harmonic generation in nonlinear nanolaminate metamaterials by nanophotonic resonances.
    Hsiao, H. H.; Abass, A.; Fischer, J.; Alaee, R.; Wickberg, A.; Wegener, M.; Rockstuhl, C.
    2016. Optics Express, 24 (9), 9651-9659. doi:10.1364/OE.24.009651
  20. Refraction limit of miniaturized optical systems: A ball-lens example.
    Kim, M.-S.; Scharf, T.; Mühlig, S.; Fruhnert, M.; Rockstuhl, C.; Bitterli, R.; Noell, W.; Voelkel, R.; Herzig, H. P.
    2016. Optics Express, 24 (7), 6996-7005. doi:10.1364/OE.24.006996
  21. Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy.
    Kaiser, T.; Falkner, M.; Qi, J.; Klein, A.; Steinert, M.; Menzel, C.; Rockstuhl, C.; Pertsch, T.
    2016. Applied Physics B: Lasers and Optics, 122 (3), 53. doi:10.1007/s00340-015-6312-9
  22. Multipolar Coupling in Hybrid Metal-Dielectric Metasurfaces.
    Guo, R.; Rusak, E.; Staude, I.; Dominguez, J.; Decker, M.; Rockstuhl, C.; Brener, I.; Neshev, D. N.; Kivshar, Y. S.
    2016. ACS Photonics, 3 (3), 349-353. doi:10.1021/acsphotonics.6b00012
  23. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy.
    Schmidt, S.; Klein, A. E.; Paul, T.; Gross, H.; Diziain, S.; Steinert, M.; Assafrao, A. C.; Pertsch, T.; Urbach, H. P.; Rockstuhl, C.
    2016. Optics Express, 24 (4), 4128-4142. doi:10.1364/OE.24.004128
  24. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate.
    Wolf, S.; Rensberg, J.; Johannes, A.; Thomae, R.; Smit, F.; Neveling, R.; Moodley, M.; Bierschenk, T.; Rodriguez, M.; Afra, B.; Hasan, S. B.; Rockstuhl, C.; Ridgway, M.; Bharuth-Ram, K.; Ronning, C.
    2016. Nanotechnology, 27 (14), 145202. doi:10.1088/0957-4484/27/14/145202
  25. Quantitative and Direct Near-Field Analysis of Plasmonic-Induced Transparency and the Observation of a Plasmonic Breathing Mode.
    Khunsin, W.; Dorfmüller, J.; Esslinger, M.; Vogelgesang, R.; Rockstuhl, C.; Etrich, C.; Kern, K.
    2016. ACS Nano, 10 (2), 2214-2224. doi:10.1021/acsnano.5b06768
  26. Nonradiative and Radiative Resonances in Coupled Metamolecules.
    Cong, L.; Xu, N.; Chowdhury, D. R.; Manjappa, M.; Rockstuhl, C.; Zhang, W.; Singh, R.
    2016. Advanced Optical Materials, 4 (2), 252-258. doi:10.1002/adom.201500557
  27. Manipulation of photoluminescence of two-dimensional MoSe₂ by gold nanoantennas.
    Chen, H.; Yang, J.; Rusak, E.; Straubel, J.; Guo, R.; Myint, Y. W.; Pei, J.; Decker, M.; Staude, I.; Rockstuhl, C.; Lu, Y.; Kivshar, Y. S.; Neshev, D.
    2016. Scientific reports, 6, Art.Nr.: 22296. doi:10.1038/srep22296
2015
Book Chapters
  1. Randomly Textured Surfaces.
    Rockstuhl, C.; Fahr, S.; Lederer, F.; Bittkau, K.; Beckers, T.; Ermes, M.; Carius, R.
    2015. Photon Management in Solar Cells. Ed.: R. Wehrspohn, 91-116, Wiley, Weinheim
  2. Light-Trapping in Solar Cells by Directionally Selective Filters.
    Ulbrich, C.; Peters, M.; Fahr, S.; Üpping, J.; Kirchartz, T.; Rockstuhl, C.; Goldschmidt, J. C.; Gerber, A.; Lederer, F.; Wehrspohn, R. B.; Bläsi, B.; Rau, U.
    2015. Photon Management in Solar Cells. Ed.: R. Wehrspohn, 183-208, Wiley, Weinheim. doi:10.1002/9783527665662.ch7
  3. Rear Side Diffractive Gratings for Silicon Wafer Solar Cells.
    Peters, M.; Hauser, H.; Bläsi, B.; Kroll, M.; Helgert, C.; Fahr, S.; Wiesendanger, S.; Rockstuhl, C.; Kirchartz, T.; Rau, U.; Mellor, A.; Steidl, L.; Zentel, R.
    2015. Photon Management in Solar Cells. Ed.: R. Wehrspohn, 49-90, Wiley, Weinheim. doi:10.1002/9783527665662.ch3
Journal Articles
  1. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays.
    Chekini, M.; Filter, R.; Bierwagen, J.; Cunningham, A.; Rockstuhl, C.; Bürgi, T.
    2015. Journal of Applied Physics, 118 (23), 233107/1-10. doi:10.1063/1.4938025
  2. All-dielectric reciprocal bianisotropic nanoparticles.
    Alaee, R.; Albooyeh, M.; Rahimzadegan, A.; Mirmoosa, M. S.; Kivshar, Y. S.; Rockstuhl, C.
    2015. Physical Review B - Condensed Matter and Materials Physics, 92 (24), 245130. doi:10.1103/PhysRevB.92.245130
  3. Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes.
    Schumann, M. F.; Wiesendanger, S.; Goldschmidt, J. C.; Bläsi, B.; Bittkau, K.; Paetzold, U. W.; Sprafke, A.; Wehrspohn, R. B.; Rockstuhl, C.; Wegener, M.
    2015. Optica, 2, 850-853. doi:10.1364/OPTICA.2.000850
  4. Exact dipolar moments of a localized electric current distribution.
    Fernandez-Corbaton, I.; Nanz, S.; Alaee, R.; Rockstuhl, C.
    2015. Optics Express, 23 (26), 33044-33064. doi:10.1364/OE.23.033044
  5. Single-pass and omniangle light extraction from light-emitting diodes using transformation optics.
    Schumann, M. F.; Abass, A.; Gomard, G.; Wiesendanger, S.; Lemmer, U.; Wegener, M.; Rockstuhl, C.
    2015. Optics letters, 40 (23), 5626-5629. doi:10.1364/OL.40.005626
  6. A bianisotropic metasurface with resonant asymmetric absorption.
    Yazdi, M.; Albooyeh, M.; Alaee, R.; Asadchy, V.; Komjani, N.; Rockstuhl, C.; Simovski, C. R.; Tretyakov, S.
    2015. IEEE Transactions on Antennas and Propagation, 63, 3004-3015. doi:10.1109/TAP.2015.2423855
  7. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics.
    Toscano, G.; Straubel, J.; Kwiatkowski, A.; Rockstuhl, C.; Evers, F.; Asger Mortensen, N.; Wubs, M.
    2015. Nature Communications, 6, 7132/1-11. doi:10.1038/ncomms8132
  8. Revisiting substrate-induced bianisotropy in metasurfaces.
    Albooyeh, M.; Alaee, R.; Rockstuhl, C.; Simovski, C.
    2015. Physical Review B, 91, 195304/1-11. doi:10.1103/PhysRevB.91.195304
  9. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial.
    Lewandowski, W.; Fruhnert, M.; Mieczkowski, J.; Rockstuhl, C.; Gorecka, E.
    2015. Nature Communications, 6, 6590/1-9. doi:10.1038/ncomms7590
  10. Synthesis, separation, and hypermethod characterization of gold nanoparticle dimers connected by a rigid rod linker.
    Fruhnert, M.; Kretschmer, F.; Geiss, R.; Perevyazko, I.; Cialla-May, D.; Steinert, M.; Janunts, N.; Sivun, D.; Hoeppener, S.; Hager, M. D.; Pertsch, T.; Schubert, U. S.; Rockstuhl, C.
    2015. Journal of Physical Chemistry C, 119, 17809-17817. doi:10.1021/acs.jpcc.5b04346
  11. Dual and chiral objects for optical activity in general scattering directions.
    Fernandez-Corbaton, I.; Fruhnert, M.; Rockstuhl, C.
    2015. ACS Photonics, 2, 376-384. doi:10.1021/ph500419a
  12. Scattering dark states in multiresonant concentric plasmonic nanorings.
    Alaee, R.; Lehr, D.; Filter, R.; Lederer, F.; Kley, E. B.; Rockstuhl, C.; Tünnermann, A.
    2015. ACS Photonics, 2, 1085-1090. doi:10.1021/acsphotonics.5b00133
  13. A generalized Kerker condition for highly directive nanoantennas.
    Alaee, R.; Filter, R.; Lehr, D.; Lederer, F.; Rockstuhl, C.
    2015. Optics Letters, 40, 645-2648. doi:10.1364/OL.40.002645
  14. Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications.
    Alaee, R.; Albooyeh, M.; Yazdi, M.; Komjani, N.; Simovski, C.; Lederer, F.; Rockstuhl, C.
    2015. Physical Review B, 91, 115119. doi:10.1103/PhysRevB.91.115119
  15. Enhancing resonances of optical nanoantennas by circular gratings.
    Qi, J.; Kaiser, T.; Klein, A. E.; Steinert, M.; Pertsch, T.; Lederer, F.; Rockstuhl, C.
    2015. Optics express, 23 (11), 14583-14595. doi:10.1364/OE.23.014583
2014
Journal Articles
  1. Survey of Plasmonic Nanoparticles : From Synthesis to Application.
    Kretschmer, F.; Mühlig, S.; Hoeppener, S.; Winter, A.; Hager, M. D.; Rockstuhl, C.; Pertsch, T.; Schubert, U. S.
    2014. Particle & particle systems characterization, 31 (7), 721-744. doi:10.1002/ppsc.201300309
  2. Effective Optical Properties of Plasmonic Nanocomposites.
    Etrich, C.; Fahr, S.; Hedayati, M. K.; Faupel, F.; Elbahri, M.; Rockstuhl, C.
    2014. Materials, 7 (2), 727-741. doi:10.3390/ma7020727
  3. The spectral shift between near- and far-field resonances of optical nano-antennas.
    Menzel, C.; Hebestreit, E.; Mühlig, S.; Rockstuhl, C.; Burger, S.; Lederer, F.; Pertsch, T.
    2014. Optics Express, 22 (8), 9971-9982. doi:10.1364/OE.22.009971
  4. Nonlinear plasmonic antennas.
    Hasan, S. B.; Lederer, F.; Rockstuhl, C.
    2014. Materials today, 17 (10), 478-485. doi:10.1016/j.mattod.2014.05.009
  5. Metamorphose VI - the Virtual Institute for artificial electromagnetic materials and metamaterials: origin, mission, and activities.
    Bilotti, F.; Rockstuhl, C.; Schuchinsky, A.; Tretyakov, S.
    2014. EPJ Applied Metamaterials, 1, 1-5. doi:10.1051/epjam/2014002
  6. Towards negative index self-assembled metamaterials.
    Fruhnert, M.; Mühlig, S.; Lederer, F.; Rockstuhl, C.
    2014. Physical Review B, 89, 0775408/1-6. doi:10.1103/PhysRevB.89.075408
  7. Plasmonic nanoparticle clusters with tunable plasmonic resonances in the visible spectral region.
    Kretschmer, F.; Fruhnert, M.; Geiss, R.; Mansfeld, U.; Höppener, C.; Rockstuhl, C.; Pertsch, T.; Schubert, U. S.
    2014. Journal of Materials Chemistry C, 31, 6415-6422. doi:10.1039/c4tc01018c
  8. Highly resonant and directional optical nanoantennas.
    Qi, J.; Kaiser, T.; Peuker, R.; Pertsch, T.; Lederer, F.; Rockstuhl, C.
    2014. Journal of the Optical Society of America / A, 31, 388-393. doi:10.1364/JOSAA.31.000388
  9. Nanoantennas for ultrabright single photon sources.
    Filter, R.; Slowik, K.; Straubel, J.; lederer, F.; Rockstuhl, C.
    2014. Optics Letters, 39, 1246-1249. doi:10.1364/OL.39.001246
  10. Plasmonic nanoring fabrication tuned to pitch: efficient, deterministic, and large scale realization of ultra-small gaps for next generation plasmonic devices.
    Lehr, D.; Alaee, R.; Filter, R.; Dietrich, K.; Siefke, T.; Rockstuhl, C.; Lederer, F.; Kley, E. B.; Tünnermann, A.
    2014. Applied Physics Letters, 105, 143110. doi:10.1063/1.4897497
  11. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.
    Filter, R.; Bösel, C.; Toscano, G.; Lederer, F.; Rockstuhl, C.
    2014. Optics Letters, 39, 6118-6121. doi:10.1364/OL.39.006118
  12. Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces.
    Singh, R.; Al-Naib, I.; Chowdhury, D. R.; Cong, L.; Rockstuhl, C.; Zhang, W.
    2014. Applied Physics Letters, 105, 081108/1-5. doi:10.1063/1.4893726
  13. Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene.
    Yu, R.; Alaee, R.; Lederer, F.; Rockstuhl, C.
    2014. Physical review / B, 90, Art.Nr.: 085409/1-6. doi:10.1103/PhysRevB.90.085409
  14. Effects of film growth modes on light trapping in silicon thin film solar cells.
    Wiesendanger, S.; Bischoff, T.; Jovanov, V.; Knipp, D.; Burger, S.; Lederer, F.; Rockstuhl, C.
    2014. Applied Physics Letters, 104, 231103/1-5. doi:10.1063/1.4882997
  15. Stacked and tunable large-scale plasmonic nanoparticle arrays for surface-enhanced Raman spectroscopy.
    Mühlig, S.; Cialla, D.; Cunningham, A.; März, A.; Weber, K.; Bürgi, T.; Lederer, F.; Rockstuhl, C.
    2014. Journal of Physical Chemistry C, 118, 10230-10237. doi:10.1021/jp409688p
  16. Dissipation-driven entanglement between qubits mediated by plasmonic nanoantennas.
    Hou, J.; Slowik, K.; Lederer, F.; Rockstuhl, C.
    2014. Physical Review B, 89, 235413/1-9. doi:10.1103/PhysRevB.89.235413
  17. Extreme coupling: A route towards local magnetic metamaterials.
    Menzel, C.; Hebestreit, E.; Alaee, R.; Albooyeh, M.; Mühlig, S.; Burger, S.; Rockstuhl, C.; Simovski, C.; Tretyakov, S.; Lederer, F.; Pertsch, T.
    2014. Physical Review B, 89, 155125/1-8. doi:10.1103/PhysRevB.89.155125
  18. Bloch oscillations in plasmonic waveguide arrays.
    Block, A.; Etrich, C.; Limboeck, T.; Bleckmann, F.; Soergel, E.; Rockstuhl, C.; Linden, S.
    2014. Nature Communications, 5, 3843. doi:10.1038/ncomms4843
2013
Book Chapters
  1. Phase anomalies in micro-optics.
    Kim, M.-S.; Scharf, T.; Rockstuhl, C.; Herzig, H. P.
    2013. Progress in Optics, 115-197, Elsevier, Amsterdam. doi:10.1016/B978-0-444-62644-8.00003-0
  2. Multipole analysis of self-assembled metamaterials.
    Mühlig, S.; Rockstuhl, C.
    2013. Amorphous Nanophotonics. Ed.: T. Scharf, 89-118, Springer, Berlin. doi:10.1007/978-3-642-32475-8_4
Monographs
  1. Amorphous Nanophotonics.
    Rockstuhl, C.; Scharf, T.
    2013. Springer, Berlin
Journal Articles
  1. Phase anomalies in Talbot light carpets of selfimages.
    Kim, M.-S.; Scharf, T.; Menzel, C.; Rockstuhl, C.; Herzig, H. P.
    2013. Optics Express, 21 (1), 1287-1300. doi:10.1364/OE.21.001287
  2. Tunable graphene antennas for selective enhancement of THz-emission.
    Filter, R.; Farhat, M.; Steglich, M.; Alaee, R.; Rockstuhl, C.; Lederer, F.
    2013. Optics express, 21 (3), 3737-3745. doi:10.1364/OE.21.003737
  3. Propagation of electromagnetic fields in bulk terahertz metamaterials: A combined experimental and theoretical study.
    Alaee, R.; Menzel, C.; Banas, A.; Banas, K.; Xu, S.; Chen, H.; Moser, H. O.; Lederer, F.; Rockstuhl, C.
    2013. Physical Review B - Condensed Matter and Materials Physics, 87 (7), 075110. doi:10.1103/PhysRevB.87.075110
  4. Longitudinal-differential phase distribution near the focus of a high numerical aperture lens: Study of wavefront spacing and Gouy phase.
    Kim, M.-S.; Da Costa Assafrao, A.; Scharf, T.; Rockstuhl, C.; Pereira, S. F.; Urbach, H. P.; Herzig, H. P.
    2013. Journal of Modern Optics, 60 (3), 197-201. doi:10.1080/09500340.2013.765053
  5. A self-organized anisotropic liquid-crystal plasmonic metamaterial.
    Dintinger, J.; Tang, B.-J.; Zeng, X.; Liu, F.; Kienzler, T.; Mehl, G. H.; Ungar, G.; Rockstuhl, C.; Scharf, T.
    2013. Advanced Materials, 25 (14), 1999-2004. doi:10.1002/adma.201203965
  6. Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells.
    Wiesendanger, S.; Zilk, M.; Pertsch, T.; Rockstuhl, C.; Lederer, F.
    2013. Optics Express, 21 (SUPPL.3), A450-A459. doi:10.1364/OE.21.00A450
  7. A 3D tunable and multi-frequency graphene plasmonic cloak.
    Farhat, M.; Rockstuhl, C.; Baci, H.
    2013. Optics express, 21 (10), 12592-12603. doi:10.1364/OE.21.012592
  8. Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies.
    Jovanov, V.; Palanchoke, U.; Magnus, P.; Stiebig, H.; Hüpkes, J.; Sichanugrist, P.; Konagai, M.; Wiesendanger, S.; Rockstuhl, C.; Knipp, D.
    2013. Optics Express, 21 (13), A595-A606. doi:10.1364/OE.21.00A595
  9. Exploiting extreme coupling to realize a metamaterial perfect absorber.
    Huebner, U.; Pshenay-Severin, E.; Alaee, R.; Menzel, C.; Ziegler, M.; Rockstuhl, C.; Lederer, F.; Pertsch, T.; Meyer, H.-G.; Popp, J.
    2013. Microelectronic Engineering, 111, 110-113. doi:10.1016/j.mee.2013.02.028
  10. Impedance generalization for plasmonic waveguides beyond the lumped circuit model.
    Kaiser, T.; Hasan, S. B.; Paul, T.; Pertsch, T.; Rockstuhl, C.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (3), 035117. doi:10.1103/PhysRevB.88.035117
  11. A self-assembled three-dimensional cloak in the visible.
    Mühlig, S.; Cunningham, A.; Dintinger, J.; Farhat, M.; Hasan, S. B.; Scharf, T.; Bürgi, T.; Lederer, F.; Rockstuhl, C.
    2013. Scientific Reports, 3, 2328. doi:10.1038/srep02328
  12. Deep-subwavelength plasmonic nanoresonators exploiting extreme coupling.
    Alaee, R.; Menzel, C.; Huebner, U.; Pshenay-Severin, E.; Bin Hasan, S.; Pertsch, T.; Rockstuhl, C.; Lederer, F.
    2013. Nano Letters, 13 (8), 3482-3486. doi:10.1021/nl4007694
  13. Negative refractive index materials for improved solar cells.
    Fahr, S.; Rockstuhl, C.; Lederer, F.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (11), 115403. doi:10.1103/PhysRevB.88.115403
  14. Experimental and theoretical study of the Gouy phase anomaly of light in the focus of microlenses.
    Kim, M.-S.; Naqavi, A.; Scharf, T.; Weible, K. J.; Völkel, R.; Rockstuhl, C.; Herzig, H. P.
    2013. Journal of Optics, 15 (10), 105708. doi:10.1088/2040-8978/15/10/105708
  15. A path to implement optimized randomly textured surfaces for solar cells.
    Wiesendanger, S.; Zilk, M.; Pertsch, T.; Lederer, F.; Rockstuhl, C.
    2013. Applied Physics Letters, 103 (13), 131115. doi:10.1063/1.4823554
  16. Plasmon coupling in self-assembled gold nanoparticle-based honeycomb islands.
    Scheeler, S. P.; Mühlig, S.; Rockstuhl, C.; Hasan, S. B.; Ullrich, S.; Neubrech, F.; Kudera, S.; Pacholski, C.
    2013. Journal of Physical Chemistry C, 117 (36), 18634-18641. doi:10.1021/jp405560t
  17. Distinguishing chemical and electromagnetic enhancement in surface-enhanced Raman spectra: The case of para-nitrothiophenol.
    Thomas, M.; Mühlig, S.; Deckert-Gaudig, T.; Rockstuhl, C.; Deckert, V.; Marquetand, P.
    2013. Journal of Raman Spectroscopy, 44 (11), 1497-1505. doi:10.1002/jrs.4377
  18. Strong coupling of optical nanoantennas and atomic systems.
    Slowik, K.; Filter, R.; Straubel, J.; Lederer, F.; Rockstuhl, C.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (19), 195414. doi:10.1103/PhysRevB.88.195414
  19. Optical metamaterials with quasicrystalline symmetry: Symmetry-induced optical isotropy.
    Kruk, S. S.; Helgert, C.; Decker, M.; Staude, I.; Menzel, C.; Etrich, C.; Rockstuhl, C.; Jagadish, C.; Pertsch, T.; Neshev, D. N.; Kivshar, Y. S.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (20), 201404. doi:10.1103/PhysRevB.88.201404
  20. Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations.
    Hasan, S. B.; Etrich, C.; Filter, R.; Rockstuhl, C.; Lederer, F.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (20), 205125. doi:10.1103/PhysRevB.88.205125
  21. The fano resonance in symmetry broken terahertz metamaterials.
    Singh, R.; Al-Naib, I.; Cao, W.; Rockstuhl, C.; Koch, M.; Zhang, W.
    2013. IEEE Transactions on Terahertz Science and Technology, 3 (6), 820-826. doi:10.1109/TTHZ.2013.2285498
  22. Self-assembled plasmonic metamaterials.
    Mühlig, S.; Cunningham, A.; Dintinger, J.; Scharf, T.; Bürgi, T.; Lederer, F.; Rockstuhl, C.
    2013. Nanophotonics, 2 (3), 211-240. doi:10.1515/nanoph-2012-0036
Encyclopedia Entries
  1. Theory of Optical Metamaterials.
    Rockstuhl, C.; Menzel, C.; Mühlig, S.; Lederer, F.
    2013. Encyclopedia of Nanotechnology. Ed.: Bharat Bhushan, 2667-2680, Springer, Berlin