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Deutsche Zusammenfassung

Klassische Computer basieren auf dem Bit, einer logischen Einheit, die entweder den
Wert Null oder Eins repräsentiert. In modernen Systemen werden Bits durch sogenann-
te MOSFETs (Metal Oxide Fielde�ect Transistor) realisiert, wobei jeder Transistor ent-
weder leitend (Eins) oder nichtleitend (Null) ist. Während der letzten Jahrzehnte konn-
te die Leistung von Computern durch eine immer noch andauernde Miniaturisierung
ihrer Architektur stetig verbessert werden. Dennoch stoÿen selbst moderne Computer
rasch an ihre Grenzen, wenn sie komplexe mathematische Probleme lösen oder gar grö-
ÿere Quantensysteme simulieren sollen. Dies liegt daran, dass der Hilbertraum in dem
ein quantenmechanisches System �lebt� mit der Anzahl der zu simulierenden Teilchen
exponentiell gröÿer wird. Betrachten wir beispielsweise ein System bestehend aus N
miteinander wechselwirkenden Zweizustandssystemen. Um ein solches System vollstän-
dig darzustellen, muss ein klassischer Computer 2N komplexe Koe�zienten speichern,
einen für jeden Basiszustand des gekoppelten Systems. Dadurch �explodiert� die An-
zahl der benötigten Bits mit steigender Anzahl der zu simulierenden Teilchen förmlich.
Dies brachte Richard Feynman 1982 auf die Idee, diese besondere Eigenschaft eines
quantenmechanischen Systems auszunutzen. Durch die Projektion von mathematischen
Problemen oder Quantensystemen auf den Hilbertraum eines Systems aus gekoppelten
Zweizustandssystemen könnte ein gewaltiger Leistungssprung erreicht werden. In Ana-
logie zum klassischen Fall werden die Zweizustandssysteme, die die Grundbausteine
eines möglichen Quantencomputers sind, Quantenbits (Qubits) genant. Im Gegensatz
zu seinem klassischen Pendant kann ein System aus N Qubits in einer beliebigen Su-
perposition seiner Basiszustände sein. Dies ermöglicht Berechnungen, die auf einem
klassischen System so nicht möglich sind. Allerdings benötigt man speziell auf den
Quantencomputer zugeschnittene Algorithmen, die die besonderen Eigenschaften der
Qubits ausnutzen, um tatsächlich von einem Register aus Quantenbits zu pro�tieren.
Ein Beispiel für einen solchen Algorithmus ist der Shor-Algorithmus, welcher in der
Lage ist, groÿe zusammengesetzte Zahlen zu faktorisieren. Der quantenmechanische
Algorithmus benötigt dabei eine Berechnungszeit, die lediglich polynomisch mit der
Anzahl der Stellen ansteigt, während ein klassischer Algorithmus für die selbe Aufgabe
mit einer exponentiell ansteigenden Berechnungsdauer zu kämpfen hat. Um für einen
Quantencomputer verwendbar zu sein, muss ein Zweizustandssystem verschiedene Vor-
aussetzungen erfüllen, die unter dem Namen �DiVincenzo Kriterien� bekannt sind. Zu
diesen gehören unter anderem das Vorhandensein universeller Gates zur Kontrolle des
Qubits, die Möglichkeit, den Zusatnd des Qubits auszuleseen oder auch Koheränzzei-
ten, die die Dauer mehrerer (tausend) Gateanwendungen übersteigt. Eine mögliche
Realisierung von Quantenbits sind natürlich Spin-1/2 Systeme wie Elektronenspins in
Atomen oder Molekülen. Tatsächlich wurden bereits organische Moleküle verwendet,
um die Zahl 15 mit Hilfe eines Kernspinverfahrens in die Faktoren drei und fünf zu tei-
len. Atome und Moleküle besitzen zwar einen guten Schutz gegen ungewollte Ein�üsse
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der Umgebung, allerdings führt diese natürliche Abschirmung gleichzeitig dazu, dass
das Steuern und Auslesen des Qubits sehr schwierig wird. Dieses Problem besteht in
vielen Systemen: Entweder das Qubit ist gut geschützt gegen Dekoheränz oder es lässt
sich einfach ansteuern.
Unter den vielen möglichen Kandidaten für ein Qubit spielen supraleitende Qubits ei-

ne vielversprechende Rolle. Sie basieren auf mikroelektronischen supraleitenden Schalt-
kreisen, welche ohne gröÿere Schwierigkeiten mit modernen Litographieverfahren herge-
stellt werden können. Zusätlich können sie mittels elektrischer Schaltungen einfach mit-
einander gekoppelt werden und sind ebenso einfach anzusprechen. Andererseits führt
jede Kopplung an externe elektronische Schaltungen unweigerlich zu Dekoheränz, wel-
che bei supraleitenden Qubits besonders durch Ladungsrauschen und Rauschen des
magnetischen Flusses verursacht wird. Zusätzlich zur Dekoheränz verursacht durch
externe Störquellen existiert in supraleitenden Qubits noch ein weiterer, interner Stör-
prozess: Die Kopplung der Qubit Freiheitsgrade an Freiheitsgrade der Quasiteilchen im
Supraleiter.
Gemäÿ BCS Theorie lassen sich die besonderen Eigenschaften von supraleitenden

Materialien auf gebundene Zustände zweier Elektronen, die sogenannten Cooper Paa-
re, zurückführen. Diese zeigen auch ein kollektives Verhalten und sorgen damit dafür,
dass sich supraleitendene Schaltkreise wie quantenmechanische Systeme ähnlich zu
Atomen verhalten. Alle supraleitenden Qubits haben eines gemeinsam: sie basieren
auf dem Josephson E�ekt, dem koheränten Tunneln von Cooper Paaren durch eine
dünne Barriere zwischen zwei supraleitenden Schichten. Im Gegensatz hierzu ist das
Tunneln einzelner Quasiteilchen durch die Barriere kein koheränter E�ekt und verur-
sacht Dekoheränz. Glücklicherweise können Quasiteilchen im Supraleiter nur oberhalb
einer Energielücke, dem Ordnungsparameter des Supraleiters, existieren, was einen ge-
wissen Schutz des Qubits verspricht. Dennoch existieren neben thermisch angeregten
Quasiteilchen im Gleichgewicht auch durch Prozesse wie Photoanregung oder Di�u-
sion auftretende nicht Gleichgewichts Quasiteilchen in den supraleitenden Schichten.
Das Tunneln einzelner Quasiteilchen durch eine Josephson Junction gibt daher eine
universelle untere Grenze für Koheränzzeitden von supraleitenden Qubits vor. Daher
ist Dekoheränz verursacht durch Einzelteilchentunneln auch Thema dieser Arbeit.
Generell kann man zwischen zwei verschiedenen Arten der Dekoheränz unterschei-

den: Dephasierung und Relaxiation. Relaxiation beschreibt Prozesse, bei denen Energie
zwischen dem Qubit und seiner Umgebung ausgetauscht wird, was letztendlich dazu
führt, dass Qubit und Umgebung ins thermische Gleichgewicht kommen. Für das Qubit
bedeutet dies für gewöhnlich eine Relaxiation in den Grundzustand. Dephasierung da-
gegen beschreibt Prozesse ohne Energietransfer. Lediglich die Phase zwischen den Ba-
siszuständen des Qubits wird hierbei verändert, was aber dennoch zu einem Verlust
von Information führt.
Relaxiation durch Quasiteilchentunneln lässt sich sehr gut mittels Fermis goldener

Regel berechnen und ergibt einen exponentiellen Zerfall des Qubit Zustandes mit einer
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Rate Γ1. Die aus der goldenen Regel abgeleitete Relaxiationszeit T1 = Γ−1
1 wurde

durch viele Experimente bestätigt und liefert sehr gute Ergebnisse. Anderst verhält
es sich mit der Dephasierung. Hier führt eine Behandlung mit Fermis goldener Regel
zu einer divergenten Dephasierungsrate, da die zu Grunde liegende Spektralfunktion
der supraleitenden Reservoirs im niedrigen Frequenzbereich divergiert. Daher ist es
ein Hauptanliegen vorliegenden Arbeit, einen nicht divergierenden Ausdruck führ die
Dephasierungsrate zu �nden.
In der Arbeit wird zunächst eine generelle Einführung zum Thema supraleitende

Qubits und der zu Grunde liegenden Theorie gegeben, siehe Kapitel 1. Dabei gehen
wir auch auf die Circuit Quantenelektrodynamik ein, welche einen systematischen Weg
zur Bestimmung des Hamiltonoperators eines gegebenen Schaltkreises liefert. Im ein-
leitenden Kapitel wird ebenfalls eine kurze Zusammenfassung der wichtigsten Schritte
bei der Herleitung der BCS Theorie für Supraleiter gegeben. Anschlieÿend diskutieren
wir die mikroskopische Theorie, die dem Quasiteilchentunneln sowie dem Josephson
E�ekt zu Grunde liegt.
In Kapitel 2 entwickeln wir eine diagrammatische Technik, mit deren Hilfe sich so-

genannte o�ene Quantensysteme behandeln lassen, d.h. Systeme, die an wesentlich
gröÿere Reservoirs gekoppelt sind, wobei man aber nur an der Dynamik des eigentlich
Systems, in unserem Fall des Qubits, interessiert ist. Mit Hilfe dieser Technik ist es
möglich, die Kopplung zwischen System und Reservoir in beliebigen Ordnungen ein-
zubeziehen, um die Dynamik des Systems unter dem Ein�uss der Kopplung an das
Reservoir zu bestimmen.
Anschlieÿend wird die zuvor entwickelte Technik in Kapitel 3 auf das eigentlich Pro-

blem angewandt: Ein Qubit, welches durch Quasiteilchentunneln an die Supraleiter
gekoppelt ist. In diesem Kapitel werden zunächst Relaxiations- und Dephasierungs-
raten in der niedrigsten Ordnung im Tunnelhamiltonian berechnet. Da die Dephasie-
rungsrate für bestimmte Qubitkon�gurationen divergiert, entwickeln wir anschlieÿend
eine Methode ähnlich zur selbskonsistenten Bornnäherung, mit deren Hilfe wir einen
selbstkonsistenten Ausdruck für die Dephasierungsrate herleiten. Im letzten Abschnitt
dieses Kapitels werden wir die Markovnäherung wegfallen lassen, welche wir bis zu
diesem Punkt als gültig erachten. Die Markovnäherung geht von einem �erinnerungs-
losen Reservoir� aus, d.h., dass die Koheränzzeiten des Bades wesentlich kürzer sind
als die Zeitskala, die von der entpsrechenden Zerfallsrate des Qubits vorgegeben wird.
Eine Näherung die für Dephasierung nicht zwingend erfüllt ist. Mit einem alternativen
Ansatz �nden wir eine nicht markovsche Lösung des Problems mit einer Dephasierungs-
rate, welche keine Rate im eigentlichen Sinne ist. Statt eines Exponenten der linear in
der Zeit ist, �nden wir einen Zerfall mit einer komplizierteren Zeitabhängigkeit im
Exponenten.
Im letzten Kapitel 4 wenden wir die zuvor berechneten generellen Raten auf ein

Transmon an, einen speziellen Typ eines supraleitenden Qubits. Die berechneten Re-
laxiationsraten stimmen sehr gut mit den entsprechenden Experimenten überein. Mit
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Hilfe verschiedener Quasiteilchen Verteilungsfunktionen berechnen wir die Tempera-
turabhängigkeit der Raten. Anschlieÿend vergleichen wir die Dephasierungsraten mit-
einander, die sich aus den verschiedenen Methoden ergeben. Es zeigt sich, dass die
verschiedenen Raten für ein Transmon dasselbe Ergebnis liefern: Eine Dephasierungs-
zeit die wesentlich gröÿer als die Relaxiationszeit ist.
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Introduction

The basic building block of a classical computer is a bit, a system that can be in either
one of its two logical states zero or one. In modern computer architecture silicon based
MOSFET transistors are the most common physical realization of bits. During the last
decades classical computer performance has steadily increased due to a high degree of
miniaturization of computer architecture. According to Moore's law the number of
transistors per unit area doubles about every two years due to this miniaturization.
However, even the fastest classical computer quickly reaches its limits solving complex
mathematical problems or simulating large quantum systems. The reason for this is
the exponentially growth of the Hilbert space of a quantum system with increasing
particle number. For example, to represent the quantum state of a system containing
N two-level systems a classical computer has to store 2N complex coe�cients, one
for each base vector of the system. Hence the number of bits necessary to store and
simulate a quantum system rapidly explodes to unreasonable high values.

In 1982 Richard Feynman suggested to use exactly this property of a quantum system
to simulate quantum systems [1]. Mapping quantum systems or other mathematical
problems onto the Hilbert space of coupled quantum mechanical two-state systems
promises a huge increase in computational power. Similar to classical information pro-
cessing these two-state systems form the basic building blocks of a quantum computer
and are called quantum bits (qubits). Contrary to a classical N -bit system, the state
of a system consisting of N qubits can be in an arbitrary superposition of its 2N eigen-
states. This feature allows for powerful computations not possible with conventional
systems [2]. But only adapted algorithms that make use of these properties reap the
bene�ts of a quantum computer. An example for such an algorithm is Shor's algorithm
to factorize large integer numbers, a computation which requires exponential compu-
tation time in the number of digits on classical systems while the same result can be
achieved in polynomial time with a quantum computer [3].

To be applicable as qubit a two-level system has to ful�ll a set of requirements [4].
For example, we need a universal gate set, e.g. control over the qubit state, we must
be able to read easily out and couple qubits. A qubit must also have coherence times
longer than any timescale provided by gate operations. The simplest two level quantum
systems ful�lling these requirements (at least partly) are natural spin-1/2 systems, for
example nuclei or electron spins in atoms or molecules. Indeed, organic molecules have
been used to factorize the number 15 into its prime factors three and �ve using a NMR
implementation [5]. Although they exhibit good natural protection against noise and
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Introduction

environmental induced decoherence, atoms and other natural spin-1/2 systems su�er
from their poor ability to be addressed from outside making control and read-out a
di�cult task. However this trade o� has been observed in many systems. Either the
qubits are well protected from decoherence or they can be easily controlled but seldom
both.
Amongst several other alternative possible qubit realizations superconducting qubits

play a promising role. They are based on superconducting microelectronic circuits
which can be fabricated using state-of-the-art technology such as photo or electron
lithography. Using transmission lines they can be easily coupled to each other as
well as to read-out or control circuits. In contrary to microscopic systems as nuclei,
molecules or atoms, superconducting qubits are macroscopic devices with a large num-
ber of degrees freedom. But despite their macroscopic nature superconducting circuits
show quantum mechanical behavior such as discretized energy levels or superposition
of di�erent eigenstates, features arising due to the collective behavior of the Cooper
pair condensate of the superconducting wires. In order to show quantum mechanical
behavior superconducting qubits have to be protected against noise from the environ-
ment. This is a complicated task since on the one hand the qubit needs to be coupled to
read-out and control lines while on the other hand every coupling to external devices is
a possible source of noise and hence decoherence. In superconducting qubits there exist
two major sources of decoherence due to the environment: charge and �ux noise. In
addition to these external sources of decoherence which can, theoretically, be reduced
to very small values, superconducting qubits su�er from an additional internal sources
of decoherence: the coupling between qubit degrees of freedom and superconducting
quasiparticle degrees of freedom.
According to BCS theory of superconductivity the key features of a superconduct-

ing materials such as lossless electrical currents arise due to bound pairs of electrons,
known as Cooper pairs. Also it is the Cooper pairs that give rise to the collective quan-
tum mechanical behavior of superconducting circuits and hence create the possibility
to build superconducting qubits. All superconducting qubits are based on the Joseph-
son e�ect, coherent Cooper pair tunneling through a thin barrier sandwiched between
two superconducting layers. In contrast to Cooper pair tunneling single quasiparticle
tunneling through the Josephson junction gives rise to qubit decoherence. Although
they can exist only at energies above the superconducting gap there are always sin-
gle quasiparticles present in superconducting wires, partly thermally excited partly
due to non-equilibrium processes, for example excitation from stray infrared light or
in-di�usion from the electrical environment. The coupling between qubit and quasi-
particles implys a fundamental limit to qubit coherence times. Single quasiparticle
tunneling through a Josephson junction and the induced qubit limitations to coher-
ence times are subject of this thesis.
In general one can distinguish between two types of decoherence: pure dephasing and

qubit relaxation. The latter describes relaxation of the qubit into its ground state due
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to energy exchange with the environment while the former describes interactions with
the environment changing the qubits phase but not leading to relaxation since no en-
ergy is transfered. Relaxation due to quasiparticle tunneling is well understood and can
be described with an exponential decay with relaxation time T1, obtained from a �rst
order (golden rule) approximation[6][7]. This theory is con�rmed by many experiments
demonstrating qubit relaxation due to equilibrium as well as non-equilibrium quasipar-
ticles with relaxation times in good agreement with theoretical results. An interesting
experiment from Lenander and Martinis uses an additional RF-Squid to inject quasi-
particles into a supercondcuting circuit and measure corresponding lifetimes[8] while
Barends et al. demonstrated the in�uence of stray infrared light on qubit lifetimes
which they explained with non-equilibrium quasiparticles excited by the radiation[9].
In di�erent experiments the temperature dependence of relaxation times was measured
and can be traced back to quasiparticles [10][11][12].
Contrary to relaxation, dephasing due to quasiparticle tunneling is not that good

understood because a golden rule calculation unfortunately does not (necessarily) yield
a reasonable result when it comes to dephasing. Instead it yields rates that su�er
from divergences such that one has to deal with dephasing more carefully than with
relaxation. Hence, the main topic of this thesis is qubit dephasing due to quasiparticle
tunneling. We use a diagrammatic approach and �nd a self-consistent dephasing rate
in the Markov approximation ('memoryless superconductor'). The rate we calculate
in this section reproduces the result obtained from G. Catelani et al. published in
a recent publication using a di�erent approach [13]. In a second step we do not use
the Markov approximation and obtain a rate with a more complex time dependence.
While we have a time dependence of form exp(−t/T2∗) in the Markov approximation,
we �nd a time dependence of the form exp(−J2∗(t)) with J2∗ not linear in time in
the non-Markovian case. We calculate dephasing times for a transmon, a speci�c type
of superconducting qubit and that in this speci�c case both self consistently obtained
dephasing time T2∗ as well as the non-Markovian exponential decay are way longer
than the relaxation rate of the transmon and dephasing plays a minor role at the most.
But this result might change for di�erent types of qubits because in the speci�c case
of a transmon the dephasing rate doesn't diverge from the beginning. Therefor further
investigations for di�erent qubits will be necessary to make a �nal statement about
fundamental limits on dephasing times caused by quasiparticle tunneling.
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1 Chapter 1

Basics

In this chapter we establish the basis for the entire thesis. We sum up basic informa-
tion on superconducting qubits and the underlying theory. Superconducting electrical
circuits, basis for superconducting qubits, are described in the framework of quantum
electro dynamics (QED). Hence we will give a short introduction to this wide �eld
with special focus on quantum bits. Furthermore we discuss di�erent qubits design
which are all based on the Josephson junction. Since this device plays a crucial role
throughout the thesis we discuss both its voltage-current relations 1.1.2 and the corre-
sponding microscopic theory 1.3.2. Besides circuit theory superconductivity proofs to
be very important in this work. In 1.2 we sum up basic features of the microscopy BCS
(Bardeen-Cooper-Schrie�er) theory of superconductivity before we describe quasiparti-
cle tunneling through insulating barriers in section 1.3.

1.1 Superconducting Qubits

In this section we give a short introduction to quantum electro dynamics (QED) and
superconducting qubits. We show how to describe a superconducting circuit with a
Hamiltonian that can be derived for the corresponding classical circuit and depends on
a 'position' variable, the �ux φ and its canonical conjugate 'momentum', the charge q.
The transition to a quantum circuit is performed by replacing the ordinary numbers φ
and q with conjugate operators. Due to their linearity usual circuit elements as capac-
itors or inductances cannot be used to obtain two level quantum systems (equidistant
energy levels). Hence, in order to build arti�cial atoms with tunable parameters and
nonlinear energy spacing, we will �nd ourselves in need for a non-linear element. The
non-linear element of choice is the Josephson junction, based on Cooper pair tunneling
through a thin insulating (or normal conducting) barrier in between two superconduct-
ing leads. In sections 1.1.1 and 1.1.2 we will treat the Josephson junction simply as
a non-linear lumped element for which we assume that its microscopic properties are

1



1 Basics

of no further interest, a more detailed look on Josephson junction properties can be
found in section 1.3.2.

For interested readers, there are many good reviews on superconducting qubits
[14][15][16]. A glance on the future of superconducting qubits is given by M. H. Devoret
and R. J. Schoelkopf [2].

1.1.1 Circuit QED

In this section we will summarize the parts of the Les Houches course [17] on quantum
�uctuations in electrical circuits, that we need for our purpose which is to �nd a Hamil-
tonian for a given electric circuit. In general, this course provides a good introduction
into QED and dissipative circuits and is recommended to the interested reader.

We will treat the circuits in the 'lumped element' approximation, where each element
of the circuit is assumed to have no spacial extend, valid as long as energy scales cor-
respond to wavelengths λ ∼ ~c0/E way larger than system scales (an extension to this
model is straightforward and presented in section 4.2). As an example we take a look at
the LC oscillator in �gure 1.1a. For typical circuit parameters (L ∼ 10nF , C ∼ 1pF )
it has a resonance frequency ω0 = 1/

√
LC in the microwave spectrum, ω0 ∼ 1GHz,

with a corresponding wavelength λ ∼ 1cm [17] while the size of typical microelectronic
circuits is in the µm range such that the circuits are well in the lumped element limit
(later we will see, that superconducting qubits have transition frequencies in the range
5 − 20GHz, ful�lling the requirements for the lumped element approximation). The
circuits of interest consist of two terminal elements, such as inductors or capacitors.
Each of theses elements represents a branch of the circuit described by two physical
variables, the electrical current I(t) through it and the voltage drop V (t) across it.
For our purpose to describe a superconducting circuit with Hamilton mechanics, it is
favorable to introduce the branch �ux φ =

∫ t
−∞ V (t′)dt′ and charge q(t) =

∫ t
−∞ I(t′)dt′

instead of voltage and current, since the �ux is related to the phase of the super-
conducting condensate and it will turn out, that we can describe an electrical circuit
similar to a mechanical system where φ plays the role of a position and the charge q
being the conjugate momentum. Kirchho�'s laws impose some constraints to branch
�uxes and currents: all currents arriving/ leaving a node have to sum up to zero and all
�uxes around an arbitrary loop contained in the circuit have to sum up to an external
�ux φext penetrating the loop (to every branch is assigned a direction determining the
sign of the variables): ∑

b∈node
sbIb(t) = 0 (1.1)∑

b∈loop
sbφb = φext , (1.2)
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(a) LC oscillator (b) Inductive coupled LC oscillators

Figure 1.1: (a) A simple LC oscillator, that consists of two branches: inductance L and
capacity C, and (b) two inductive coupled LC oscillators, each with two branches and
one branch representing the coupling inductance L. Black dots represent nodes, tree and
closure branches are color coded red and blue respectively with arrows fixing electrical
current directions.

where sb = ±1 depending on branch directions. To obey those constraint, it is natural
to introduce node variables instead of branch variables. To be speci�c, one chooses
one node as the reference or 'ground' node and introduces node �uxes φi for every
additional node of the circuit. A node �ux is nothing else but the time integral of the
potential of the corresponding node with respect to the ground node, which itself has
zero potential and zero �ux. The next step is to choose a set of branches connecting
every node with the ground node in such a way, that there only exists one path along
these branches for every node. These branches form the so called 'spanning tree' (see
�gure 1.1 for examples). The remaining branches are closure branches, each creating a
closed loop together with spanning branches. Depending on wether a branch belongs
to the spanning or closure tree, one of the two following equations connecting branch
�ux φb with the two corresponding node �uxes φn hold:

φb∈T = φn − φ′n (1.3)

φb∈C = φn − φ′n + φext , (1.4)

where, again, φext is an external �ux penetrating the loop formed by the closure branch
b ∈ C. Now, to obey Kirchho�'s laws (1.1) the sum of all the currents arriving at a

3
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node and leaving a node must equal to zero. Together with the constitutive relations

IC,ii′(t) = C(φ̈i − φ̈i′) , (1.5)

IL,ii′(t) =
φi − φi′
L

, (1.6)

IJ,ii′(t) = I0 sin(
φi − φi′

Φ0
) (1.7)

for the di�erent elements one �nds the equations of motion (eof) for the given cir-
cuit. From these equations one than derives the systems Lagrangian and �nally the
corresponding Hamiltonian. We will show these steps on some examples below. In
equations (1.5-1.7) IC and IL are currents through a linear capacitive and a linear
inductive element respectively. The last relation represents a pure Josephson element,
a highly non-linear inductance, which is explained in more detail in sections 1.1.2 and
1.3.2.

A simple example for which we want to use previous recipe is the LC circuit in
�gure 1.1a, where one has only one active node (a) with an incoming current from the
capacity C and one leaving the node into the inductance L. One easily obtains the
well known equation of motion for the LC circuit

Cφ̈a −
φa
L

= 0 (1.8)

It's easy to check that the Lagrangian yielding this eof is

L =
C

2
φ̇a −

1

2L
φ2
a , (1.9)

which is the di�erence between the energy of the capacitor and the inductive energy,
so that we may interpret the capacities as masses, inductances as spring constants, the
�ux φa as a position, capacitative energies as kinetic energy and inductive energies as
potential energies in a mechanical harmonic oscillator. The charge qa is de�ned as the
canonical momentum of the node �ux φa:

qa =
∂L
∂φa

(1.10)

and is nothing else but the sum of all charges on the capacities connected to the
node, which can be easily shown for the simple case of the harmonic LC oscillator,
qa = Cφ̇a = CVa = Qa. The Hamiltonian for this simple system is, as in the mechanical
case, the sum of kinetic and potential energy

H =
1

2C
q2
a +

1

2L
φ2
a . (1.11)
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As a second illustrating example we take two LC circuits coupled via an inductance,
�gure 1.1b, and ask again what the Hamiltonian looks like. We have two active nodes,
a and b. Node a has incoming currents from the left LC circuit and an outgoing current
into inductance L while the latter current is incoming at node b and the current into
the right LC circuit is leaving nod b. Therefore, the eof for both node �uxes is found
to be

C1φ̈a +
φa
L1
− φb − φa + φext

L
= 0 (1.12)

C1φ̈b +
φb
L1
− φb − φa + φext

L
= 0 (1.13)

The Lagrangian, as for the previous example, is achieved by subtracting the potential
energy due to inductances from kinetic (capacitive) energies:

L =
C1

2
φ̇2
a +

C2

2
φ̇2
b −

1

2L1
φ2
a −

1

2L2
φ2
b −

1

2L
(φa − φb − φext)2 . (1.14)

The corresponding Hamiltonian is the sum of the electrostatic energy stored on the
capacitors and the magnetic energy stored in the inductive elements:

H =

(
1

2C1
q2
a +

1

2L1
φ2
a

)
+

(
1

2C2
q2
b +

1

2L2
φ2
b

)
+

1

2L
(φa − φb − φext)2 . (1.15)

We can identify three parts in the Hamiltonian, both uncoupled LC circuits (�rst two
terms) and a coupling term due to the inductance L.

The formal transition from a classical description as above to a quantum mechanical
one is straightforward. As in the mechanical analogy the classical variables φi and qi
are replaced by operators obeying the commutator relations for conjugate variables,

φi → φ̂i (1.16)

qi → q̂i (1.17)

[φ̂i, q̂j ] = i~δij , [φ̂i, φ̂j ] = [q̂i, q̂j ] = 0 . (1.18)

Again, we see that φi corresponds to a position variable x while qi corresponds to the
conjugate momentum px. Due to this transition from a classical to a quantum me-
chanical treatment the �ux and the charge cannot be at the same time measured with
arbitrary accuracy. Contrary they are represented with quantum mechanical wavefunc-
tions and are determined only up to a certain threshold. In most QED systems one of
the variables is strongly con�ned while the second variable is has a large uncertainty.

At the end of this section, we want to discuss shortly, why we cannot use a simple
harmonic oscillator to build qubits. The Hamiltonian (1.11) for the LC circuit is a
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simple harmonic oscillator that can be written in terms of creation and annihilation
operators a , a†

H = ~ω0(a†a+
1

2
) , ω0 = 1/

√
LC , (1.19)

with eigenenergies En = ~ω0(n + 1/2), yielding equal energy splitting ~ω0 between
all neighboring energy states. This prevents one from truncating the system to an
e�ective two level system. Assume one chooses the two lowest energies as basis states
for a qubit than every manipulation of the qubit, e.g. stimulated relaxation from |1〉
to |0〉, requires pulses with resonance frequency ω0, which in our example could not
only cause the transition |1〉 → |0〉, but also the excitation |1〉 → |2〉. Therefore it's
not possible to truncate the harmonic oscillators Hilbert space to two dimension only
but it will always be of in�nite size. The only possible way to bypass this issues is
by integrating non linear elements into the circuit which will provide the required non
degenerate energy spacing. The non linear element of choice is the Josephson junction,
because it is dissipation less but still non linear.

1.1.2 The Josephson Junction

super-
conductor

super-
conductor

tunnel barrier

(a) (b)

Figure 1.2: (a) Schematic setup of a Josephson junction with two superconductors and
a weak link. (b) A Josephson junction can be modeled as a capacity in parallel with a
pure Josephson tunneling element (cross).

In this section we want to discuss the governing equations of a Josephson junction
as element of an electrical circuit, which we need to include Josephson junctions into
the framework developed in section 1.1.1. A microscopic derivation of these equations
will be given in section 1.3.2.
A Josephson (tunnel) junction consists of two superconducting layers coupled via a

weak link, usually a thin oxide layer between the two superconducting layers (usually
aluminum, see �gure 1.2a). The barrier is thin enough to allow electron tunneling
between the superconductors. Since, at absolute zero of temperature, all electrons
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1.1 Superconducting Qubits

in the superconductors are part of the Cooper pair condensate1 (see section 1.2.1 for
details), there are no single electrons available to serve as charge carriers and Cooper
pair tunneling is the only possible contribution to a current through the junction.
Unfortunately, Cooper pair tunneling is a second order process requiring two electrons
to tunnel through the junction simultaneously. Therefore, it was long expected, that at
most a weak current could �ow through the junction unless the applied voltage exceeds
a value of 2∆/e, providing enough energy to break Cooper pairs and generate single
electron excitations above the gap ∆. Due to thermal excitations above the gap, a
small quasi particle current would �ow through the barrier even if a smaller voltage is
applied, but at temperatures well below ∆/kB this current is weak. In contrary B. D.
Josephson proposed in 1962, that tunneling of Cooper pairs through the barrier gives
rise to a signi�cant current with outstanding current- �ux characterisitcs through the
junction, even if no voltage is applied to the junction (and even at T = 0K) [18]. In
the following years, di�erent experiments (e.g. [19]) con�rmed Josephson's proposal
resulting in the Nobel prize for Josephson in 1973.
Due to Cooper pair tunneling, a highly non linear relation between the current I

through the junction, the voltage V across it and the phase di�erence ϕ between the
superconductors2 governs the behavior of a Josephson junction as part of an electrical
circuit:

I = I0 sin(ϕ) (1.20)

dϕ

dt
=

V

Φ0
, (1.21)

Here, I0 is the junction's critical current and depends on junction parameters, e.g.
junction geometry, and Φ0 = ~

2e is the reduced �ux quantum. One consequence of
above equations is the so called DC-Josephson e�ect: Even if no voltage is applied to
the junction, yet a constant, phase dependent current with |I| ≤ I0 will �ow. Another
interesting e�ect occurs if one applies a DC voltage to the junction. A constant voltage,
according to equation 1.20 and 1.21, yields an AC current I(t) ∼ sin( VΦ0

t+ϕ0) through
the junction. This is known as the AC-Josephson e�ect.
Equations (1.20) - (1.21) describe a 'pure' Josephson element, represented as a cross

(see �gure 1.2b) in a circuit diagram. A pure Josephson element can be interpreted as
a highly non linear inductive element. This can be shown by di�erentiating eq. (1.20)
with respect to time and replacing ϕ̇ with equation (1.21), yielding the conventional
relation

İ(t) =
V

LJ
, (1.22)

1In superconductors, two electrons can be in a bound state due to small attractive forces, so called

Cooper pairs. At T = 0K, all electrons are in these bound state and the Cooper pair condensate

forms a new ground state. The energy gap between a Cooper pair bound state and the quasi

particle continuum is ∆, the superconducting order parameter.
2The condensate can be described with only one wavefunction having a phase eiϕ(r,t)

7



1 Basics

where we introduced the Josephson inductance [20]

LJ = φ0/(I0 cos(ϕ)) . (1.23)

According to electro dynamics, an inductance is non dissipative and the energy stored
in an inductive element can be calculated as

E(ϕ) =

∫
dt′P (t′) =

∫
dt′V (t′)I(t′) = I0Φ0

∫
dt′V (t′)

dϕ

dt′
= −EJ cos(ϕ) , (1.24)

with the Josephson coupling energy EJ = I0Φ0 (for a linear inductance we have E(φ) =
1

2Lφ
2). Having the energy (and current phase relations) of pure Josephson elements,

they can easily be included in the Hamiltonian circuit theory from preceding section,
where it's convenient to use 'node phases' instead of node �uxes. Flux and phase at a
given position are connected via

ϕi =
φi
Φ0

mod2π . (1.25)

In addition to Cooper pair tunneling resulting in the Josephson e�ect, a Josephson
junction serves as a capacity, since the leads separated by an insulating layer form a
plate-capacitor with its capacity CJ depending on junction parameters. Therefore, a
Josephson junction is always modeled as a pure Josephson inductive element in parallel
with a capacity CJ , see �gure 1.2b.

1.1.3 Superconducting Qubits

L LJ C

Figure 1.3: General circuit for a superconducting qubit, where C and L are an effective
capacity and inductance due to circuit the Josephson junction is embedded in.

Now, with the highly non linear Josephson inductance (1.23), we have the last ele-
ment for actually building a qubit using superconducting circuits. The general circuit
of a simple superconducting qubit is sketched in �gure 1.3, where L is for example the
inductance of a superconducting loop connecting the junction sides or due to e.g. two
more large Josephson junctions which can be modeled as linear inductances. There
exist, in general, three basic types of qubits, namely charge, �ux and phase qubit, and
a lot of derivatives based on those three. The names are chosen to describe the variable
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1.1 Superconducting Qubits

that can be controlled externally for qubit operations and read-out. All qubits have in
common that they use at least one Josephson junction as non linear element, but they
di�er in circuit design, coupling to external circuit parts and in the parameter range
for L, C and EJ . To understand, why we need di�erent qubit designs, we �rst have a
look on the bare Josephson junction and the issues one has to overcome.

If we do not connect the junction leads with a circuit (see 1.2a), the Hamiltonian
takes the form

H = 4EC(n̂− qr
2e

)2 − EJ cos(ϕ) . (1.26)

Here, EC = e2

2C is the Cooper pair charging energy of the junction, n̂ is the operator
counting the Cooper pairs tunneled through the junction and qr is a residual charge
that always exists on the junction, e.g. due to production, and usually is way larger
than the charge corresponding to n [21]. This o�set charge cannot be controlled during
(or prior to) qubit operation, such that it is impossible to measure the in�uence of one
Cooper pair on energies of the entire system making it impossible to operate this pure
junction as a qubit. The di�erent qubit designs have di�erent strategies to overcome the
di�culties due to the uncontrollable but large residual charge by providing control over
charge on the junction or �ux through it. As an example we take a look on the Cooper
pair box (CPB), the simplest form of a charge qubit, and the transmon[22], a derivate
from the CPB. Both qubits are described with the same Hamiltonian (1.27) but operate
in entirely di�erent parameter regimes. Both, the CPB and the transmon, consist of a

Vg

EJ CJ

Cg

(a) Cooper pair box

Vg

EJ CJ

Cg

CB

(b) Transmon

Figure 1.4: Circuit diagrams for the CPB a and the Transmon b

superconducting island con�ned by a Josephson junction and a gate capacitor used to
apply a voltage Vg to the island. This additional voltage allows for tuning the charge
on the island to negate the uncontrollable o�set charge qr. In case of the transmon, the
Josephson junction is shunted with an additional capacity CB, allowing the transmon
to be operated in the opposite parameter regime (EJ � EC) as the CPB (EC ' EJ).
Circuit diagrams for both, transmon and CPB are shown in �gure 1.4. Both circuits
yield the same Hamiltonian:

H = 4EC(n̂− ng)2 − EJ cos(ϕ̂) , (1.27)
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where ng = CgVg/(2e) is an o�set charged due to the gate voltage and EC is the
charging energy, which is EC = e2/(Cj + Cg) or EC = (2e)2/(Cj + Cg + Cb) for CPB
and transmon respectively. n̂ is the number operator of excess Cooper pairs on the
island which, by its nature, has discrete eigenvalues n̂|n〉 = n|n〉, where n is an integer
number. This restricts its canonical conjugate variable, the phase di�erence ϕ across
the junction ([ϕ̂, n̂] = i), to values on a circle, ϕ ∈ [0, 2π), yielding Ψ(ϕ+ 2π) = Ψ(ϕ)
in the phase basis. The Hamiltonian 1.27 can either be written in the charge basis
with

n̂ = |n〉n〈n| (1.28)

cos(ϕ̂) =
1

2

∑
n

(|n+ 1〉〈n|+ |n〉〈n+ 1|) (1.29)

or in the phase basis
n̂ = −i∂ϕϕ̂ = ϕ . (1.30)

Using the phase basis, where we can interpret the Hamiltonian as a particle with
position ϕ and momentum n̂, we want to compare CPB and transmon. The additional
capacity CB in the transmon design can be used to drastically increase the ratio EJ/EC
which scales with 1/C. While for the CPB the ratio EJ/EC ' 1 is �xed by junction
parameters, this value can be orders of magnitude larger for the transmon due to CB,
drastically changing qubit behavior. As long as EJ and EC are in the same order of
magnitude, the attractive potential, described by V = −EJ cos(ϕ̂), is weak resulting
in wave functions in the ϕ-basis with a large width and spreading over a large range of
the cosine potential. Therefore, the particle feels the strong anharmonicity due to the
cosine potential, yielding strong anharmonicity in the eigen energies of the qubit as
well. On the other hand, the charge on the island is sharp de�ned in these eigenstates
and the CPB is sensitive to short time charge noise as well as long time shifts in ng.
Contrary, for the transmon with EJ � Ec the particle will be trapped in the �rst
minimum of the cosine potential with a narrow peaked wave function. In this case
it is appropriate to approximate the potential for the lowest lying energy levels as a
harmonic potential while anharmonicity can be introduced with a quartic perturbation:

Htransmon ≈ 4EC(n̂− ng)2 +
EJ
2
ϕ̂2

(
−Ej

4!
ϕ̂4

)
. (1.31)

In �gure 1.5 we compare the absolute value of exact wave functions and those obtained
with the harmonic approximation. The approximation becomes good for the ground
state as well as the �rst excited state at values for EJ/EC & 10 and is almost exact if
increasing the ratio by one order of magnitude. Therefore, we will use the harmonic
approximation later on to calculate di�erent matrix elements between qubit states for
the transmon, which we will need to calculate dephasing and relaxation rates.
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Figure 1.5: We plot the absolute value |Ψ(ϕ)|2 of the wave function for a the ground state
and b the first excited state of the Hamiltonian (1.27), for different ratios of EJ/EC (see
legend). Solid lines correspond to exact solutions, while dashed lines are obtained using
the harmonic oscillator Hamiltonian. The approximate wave functions coincidence with
the exact solutions at relative small ratios (EJ/EC ' 10), and we can use the harmonic
oscillator wave functions to calculate matrix elements for a transmon.
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At the end of this section we want to emphasize that, no matter how it actually
is realized, every superconducting qubit uses at least one Josephson junction which is
sensitive to the dissipative process of single electron tunneling processes which we are
going to investigate in this work. The qubit Hamiltonian we will use does not depend
on the actual realization of the qubit. Since a qubit is a two level system, it can also
be represented with spin-1/2 notation. The Hamiltonian of a qubit than reads

Hq =
δE

2
σz , (1.32)

where δE is the qubit energy splitting and σz is the Pauli matrix in z direction.
Throughout this work we will use this Hamiltonian for qubits and only use the actual
realization (e.g. transmon) if we need to calculate matrix elements.

1.1.4 Qubit Decoherence

A generic qubit state can be written as

|Ψ〉 = cos
Θ

2
|0〉+ sin

Θ

2
eiφ|1〉 (1.33)

with 0 ≤ Θ ≤ π and 0 ≤ φ ≤ 2π. We interpret Θ as polar and φ as azimuthal
angel of spherical coordinates and the qubit state as a vector pointing on a unit sphere
called Bloch sphere. For a perfect qubit, coupled to the environment only during gate
operations, the free time evolution of the state is unitary and the phase φ between the
two states oscillates with the qubits Larmor frequency, φ(t) = φ(0) + iδEt while the
polar coordinate remains constant. Due to undesired coupling with the environment
two types of error occur: relaxation and pure dephasing. The �rst one corresponds to
a change of the polar angel. For example, if the environment is at lower temperature
than the qubit it will drain energy from the qubit and the tip of the Bloch vector
will di�use to the south pole (ground state) of the sphere. The second process, pure
dephasing, describes undesired changes in the azimuth angel which can, for example,
arise from low-frequency �uctuations of the qubits energy splitting δE. Due to the
interaction with its environment the qubit will eventually reach its thermal equilibrium
state ~Ψ = tanh(δE/kBT )êz[21]. Assuming that the decay due to both processes is
exponential we can de�ne the relaxation rate Γ1 and the pure dephasing rate Γ2∗ .
These rates are related to the relaxation time T1 and decoherence time T2 as [21]

T1 = Γ−1
1 (1.34)

T2 = (Γ2∗ + Γ1/2)−1 (1.35)
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1.2 Superconductivity and Josephson Junctions

Superconductivity, due to its remarkable features, is the crucial ingredient to qubits
based on electrical circuits because without dissipation free current �ow QED could
never be realized. Nowadays, most superconducting circuits are based on aluminum, a
conventional superconductor with an s-wave order-parameter. The theory was estab-
lished in 1957 by Bardeen, Cooper and Schrie�er and hence is called BCS-theory. Since
a basic understanding of BCS theory and the corresponding quasiparticle excitations is
crucial for work with tunnel junctions and superconducting qubits, we will give a short
introduction to BCS theory in the following section. BCS theory provides the tools
we need to discuss electron tunneling and the Josephson junction in the succeeding
sections 1.3.2 and 1.3.

1.2.1 Superconductivity - BCS Theory

Superconductivity arises due to an instability of the Fermi surface to a small attractive
interaction between electrons, as demonstrated by Neil Cooper in 1956 [23]. This
instability was the foundation to a microscopic theory of superconductivity published
in 1957 by J. Bardeen, N. Cooper and R. Schrie�er [24],[25], nowadays known as the
BCS theory of superconductivity. According to BCS theory, the instability of the Fermi
sea to the small attractive interaction between electrons gives rises to a condensate
of electron pairs, the so called Cooper pairs. In conventional superconductivity this
attractive interaction is mediated by phonons and Cooper pairs are bound states of two
electron with vanishing total momentum, total angular momentum and in a spin singlet
(s=0). Therefore this type of superconductivity also is called s-wave superconductivity.
For this work we are not interested in the details of the attractive interaction and will
assume conventional superconductivity with a local interaction yielding a constant
attractive potential Vqq′ = −V (V > 0) in momentum space between electrons of
opposite momentum and spin. In this case the Hamiltonian can be written using
second-quantization:

H =
∑
k,σ

ξkc
†
kσckσ − V

∑
k,k′

c†k↑c
†
−k↓c−k′↓ck′↑ (1.36)

Here c
(†)
kσ is an annihilation (creation) operator for an electron with momentum k and

spin σ. The �rst term is the kinetic energy of the system (free particle Hamiltonian)
with energy ξk measured from the chemical potential µ and the second term is the
interaction between electrons, where we made use of the fact that in a conventional su-
perconductor only electrons with opposite spins and momentua couple to each other.
We can interpret c†k↑c

†
−k↓ and c−k′↓ck′↑ as creation and annihilation operator for a

Cooper pair respectively. For BCS theory a mean �eld approach to the Hamiltonian
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1.36 is good enough to yield the important features of superconductivity. Since super-
conductivity arises due to Cooper pairs, we expand the Hamiltonian in the deviation of
the Cooper pair operator c−k↓ck↑ from its (thermal) expectation value bk ≡ 〈c−k↓ck↑〉:

c−k↓ck↑ = bk +
[
c−k↓ck↑ − bk

]
, (1.37)

where we assume 〈[. . . ]〉 � bk and neglect terms of quadratic and higher orders in [. . . ].
This yields the BCS mean �eld Hamiltonian

H =
∑
k,σ

ξkc
†
kσckσ −

∑
k

(
∆∗c−k↓ck↑ + ∆c†k↑c

†
−k↓

)
−∆∗bk , (1.38)

with the order parameter ∆ = V
∑

k bk. The mean �eld Hamiltonian is an e�ective
one particle Hamiltonian and we can diagonalize it in a straightforward way. Therefore
we introduce the Nambu spinor

Ψk =

(
ck↑
c†−k↓

)
(1.39)

and express the BCS Hamiltonian in terms of Nambu spinors, yielding

H =
∑
k

Ψ†k

(
ξk ∆
∆∗ −ξk

)
Ψk −

∑
k

(
∆∗bk + ξk

)
≡
∑
k

Ψ†kHkΨk −
∑
k

(
∆∗bk + ξk

)
.

(1.40)

The 2 × 2 matrix Hk, with eigenvalues Ek =
√
ξ2
k + |∆|2, can be diagonalized with

a Bogolioubov transformation yielding a new set of fermionic operators de�ned as
Φk = U †kΨk: (

γk0

γ†k1

)
=

(
u∗k −vk
v∗k uk

)(
ck↑
c†−k↓

)
(1.41)

with |uk|2 + |vk|2 = 1. A proper choice for uk and vk is

uk =

√
1

2
(1 +

ξk
Ek

) (1.42)

vk = eiφ

√
1

2
(1− ξk

Ek
) (1.43)

where φ is the phase of the order parameter ∆. In their original approach, BCS started
from a variational ground state de�ned as |Ψ〉 =

∏
k(uk + vkc

†
k↑c
†
−k↓)|0〉 instead of the

mean �eld approach we present here. The parameters uk and vk in the variational

14



1.2 Superconductivity and Josephson Junctions

ground state turn out to be identical with the parameters from the mean �eld approach.
From the variational ground state we can �nd a physical meaning for uk and vk. While
latter measures the probability of Cooper pair state to be �lled, �rst measures the
probability to have an empty pair state. For the new quasiparticles γk0 and γk1 the
Hamiltonian 1.38 is diagonal and reads

H = −
∑
k

(
∆∗bk + ξk + Ek

)
+
∑
kα

Ekγ
†
kαγkα . (1.44)

Here, the �rst term is the energy gain of the Cooper pair condensate compared to
the Fermi sea, the second term is the quasiparticle spectrum with excitation energies

Ek = ±
√
ξ2
k + |∆|2. The quasiparticle spectrum has an energy gap of 2∆ between

hole like (Ek ≤ −|∆|) and electron like (Ek ≥ |∆|) quasiparticles. The energy gap is
temperature dependent only and obeys the self-consistency equation

∆ = V
∑
k

bk = V
∑
k

u∗kvk[1− f(Ek)] = V
∑
k

∆

2Ek
tanh(

Ek
kBT

) (1.45)

with the Fermi distribution f(x) = 1/(1+ex/kBT ). As usual, we evaluate the sum over
all k-vectors with an integral over quasiparticle energies:∑

k

→
∞∫
−∞

dξNel(ξ)→
∞∫
−∞

dEN(E) (1.46)

where Nel(ξ) is the electron density of states (dos) and N(E) = Nel(ξ)dξ/dE is the
BCS density of states. The attractive interaction has a characteristic energy scale
which is small compared to the Fermi energy, limiting integrals over electronic energies
to a narrow region around the Fermi energy such that we have to introduce a cuto�
energy for energy integration. For example, considering conventional superconductors
with phonon mediated electron-electron interaction, this cuto� energy is the Debye
energy of the phonons. In the case of a small cuto�-energy we can approximate the
electronic density of states with its value N0 at the Fermi surface and can evaluate the
BCS density of states

N(E) = N0
E√

E2 − |∆|2
Θ(E2 − |∆|2) , (1.47)

which has a square root singularity at the gap. We also introduce the density of states
normalized to the electron density at the fermi surface and denote it with a lower case
letter, n(E) = N(E)/N=. With the diagonalized Hamiltonian 1.44, the corresponding
quasiparticles γkα and the BCS density of states we have all tools that we need to deal
with electron tunneling occurring in a Josephson junction. Before we introduce the
formalism for quasiparticle tunneling processes we will present a di�erent approach to
superconductivity, that we will use later to calculate dephasing rates. The formalism
is based on Nambu spinors and the so called Nambu-Gorkov Greens functions.
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1.2.2 BCS Theory- Greens Function Formalism

In this section we present a slightly di�erent approach to the BCS theory of super-
conductivity based on Greens functions. To begin with, we recap the BCS mean �eld
Hamiltonian 1.38 from previous section, neglecting constant energy o�sets:

H =
∑
k

Ψ†k

(
ξk ∆
∆∗ −ξk

)
Ψk . (1.48)

We now introduce the Nambu-Gorkov (Matsubara) Greens function as

G(kσ, k′σ′, τ) = −〈TτΨk(τ)Ψ†k′〉 = −

 〈Tτ ck↑(τ)c†k′↑〉 〈Tτ ck↑(τ)c−k′↓,i〉
〈Tτ c†−k↓(τ)c†k′↑〉 〈Tτ c

†
−k↓(τ)c−k′↓〉

 , (1.49)

where τ = it is the imaginary time and Tτ the time ordering operator with respect to
τ . With the Heisenberg equation of motion for an operator Â(τ)

∂τ Â(τ) = [H, Â(τ)] (1.50)

we �nd the equation of motion for the Nambu-Gorkov Greens function:

(−∂τ − ξkτ3 + ∆τ+ + ∆∗τ−)G(k, k′, τ) = δ(τ)δkk′ , (1.51)

with τi the i
th Pauli matrix. We Fourier transform above eof yielding

(iωn − ξkτ3 + ∆τ+ + ∆∗τ−)G(k, k′, iωn) = δkk′ , (1.52)

where we have fermionic Matsubara frequencies ωn = (2n + 1)π/β with the inverse
temperature β = 1/kBT . This yields the Greens function of the BCS superconductor

G(k, k′, iωn) =
iωn + ξkτ3 −∆τ+ −∆∗τ−

(iωn)2 − ξ2
k − |∆|2

(1.53)

which has poles exactly at the excitation energies E2
k = ξ2

k + |∆|2, yielding the same
quasiparticle spectrum as in previous section. The density of states of the BCS super-
conductor can be calculated using

N (ω) = − 1

π
Im
∑
kk′

G(k, k′, iωn → ω + iη) = N0
ω −∆τ1√
ω2 + |∆|2

, (1.54)

The Nambu-Gorkove Green's function's diagonal elements produce the BCS quasipar-
ticle density of states N(ω) while o� diagonal elements give rise to the pair den-
sity of states, P (ω) = N(ω)∆/ω. Again we remind of the normalized densities,
p(ω) = P (ω)/N0 and n(ω) = N(ω)/∆. Since we don't �nd any additional insight
from the Greens function method at this point, we won't discuss the formalism in
details at this point. We will refer to this section in 3.3.
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1.3 Quasiparticle Tunneling

1.3 Quasiparticle Tunneling

In this section we will analyze two superconductors coupled via a weak link, e.g. a
Josephson junction. We will motivate a Hamiltonian for the system and give a micro-
scopic derivation of the Josephson e�ect and show the connection to superconducting
qubits. We will see, that in addition to the coherent pair tunneling single quasiparticles
present above the gap can tunnel through the weak link. This single particle processes
are dissipative and induce qubit decoherence, e.g. relaxation and dephasing. We will
�nd ourselves in the need for a framework dealing with the qubit coupled to the single
particle part of the Hamiltonian, which is not included in the qubit Hamiltonian. Such
a framework will be provided in chapter 2. We analyze the dynamics of the qubit
coupled to the single particle part of the tunneling Hamiltonian in chapter 3.

1.3.1 Foundation

In this section we want to give the foundations for the upcoming sections about the
Josephson e�ect and single quasiparticle tunneling. Therefore we have to introduce
the Hamiltonian describing the di�erent subsystems building the Josephson junction.
As presented in section 1.1.2, the Josephson junction consists of two superconducting
leads separated by a thin insulating barrier or another weak link suppressing the super
current, see �gure 1.2a. For a usual Josephson junction with aluminum leads, we can
describe both superconducting sides with bulk BCS Hamiltonians

Hi =
∑
k,σ

ξkc
†
kσ,ickσ,i −∆i

∑
k

(
c−k↓,ick↑,i + c†k↑,ic

†
−k↓,i

)
=
∑
kα

Ek,iγ
†
kα,iγkα,i , i = l, r (1.55)

where l, r stands for the left and right lead respectively. We neglect the constant
energy gain of the condensate which means nothing else than measuring the systems
energy with reference energy ε0 = εFermiSea − εcondensate. Additionally we take the as
a real constant, which is possible due to a gauge transformation absorbing the gaps
phase ϕl/r into the de�nition of creation and annihilation operators. The weak link
between both leads allows electrons to tunnel from one lead to the other giving rise to
a �nite overlap of electron wave functions belonging to di�erent sides. We describe the
coupling between both sides due to this �nal overlap with the tunneling Hamiltonian

HT =
∑
kk′σ

gkk′e
iϕ/2ckσ,lc

†
k′σ,r + h.c. , (1.56)

where the phase ϕ = ϕr − ϕl is the phase di�erence between the condensates. The
tunneling matrix element gkk′ describes the overlap of wavefunctions for electrons with
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momenta k and k′ on the left and right side respectively. For conventional tunnel
junctions the coupling is not magnetic and no spin �ip occurs for an electron tunneling
from one side to the other. Since we do not know details about the tunnel matrix
element, we will assume it to be a constant not depending on momenta k and k′. This
is a common assumption for the tunneling matrix element and yields results �n good
agreement with experimental data. As we will see, the constant tunnel element g is
connected to the normal state resistance of the junction as [20]

RN =
~g2N0,lN0,r

4πe2
, (1.57)

with the electron density of state (dos) at the Fermi surface for the left and right
lead N0,l/r. The �rst part of the tunneling Hamiltonian represents a tunneling process
from left to right while the harmonic conjugate h.c. represents a tunneling process in
the other direction. Since the BCS Hamiltonians on either side are diagonal in the γ
operators, we express the tunneling Hamiltonian in these operators. Therefore we have
to invert relation 1.41, yielding(

ck↑,i
c†−k↓,i

)
=

(
uk,i vk,i
−vk,i uk,i

)(
γk0,i

γ†k1,i

)
(1.58)

The parameters uk,i and vk,i are real for our de�nition of the BCS Hamiltonian and
the tunnel Hamiltonian. The Hamiltonian expressed in terms of γ particles can be
split into two fundamental di�eret parts. On the one hand, we �nd terms proportional
to γkα,iγk′β,j (γ

†
kα,iγ

†
k′β,j), on the other hand the second class of terms has the normal

tunneling form proportional to γkα,iγ
†
k′α,j . While latter class gives rise to single particle

tunneling �rst class is pair tunneling and gives rise to the Josephson e�ect. Therefore,
we split the tunnel Hamiltonian into two parts, namely the pair tunneling Hamiltonian
Hp and the single quasiparticle tunneling Hqp:

HT = Hqp +Hp (1.59)

Hqp = g
∑
kk′α

Akk′γkα,lγ
†
k′α,r + h.c. (1.60)

Hp = g
∑
kk′α

Bkk′εαγkβ,lγk′α + h.c. . (1.61)

Here, we de�ned the coherence factors Akq for quasi particle tunneling and Bkq for pair
tunneling respectively:

Akk′ = eiϕ/2uk,luk′,r − e−iϕ/2vk,lvk′,r (1.62)

Bkk′ = eiϕ/2uk,lvk′,r + e−iϕ/2vk,luk′,r (1.63)

while εα = +1 for α = 1 and εα = −1 for α = 0 and β 6= α.
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1.3.2 Pair Tunneling & Josephson Effect

In this section we will calculate the change in energy due to the coupling between the
superconducting leads. We will �nd, that the coupling gives rise to a constant energy
shift and an additional shift proportional to cos(ϕ) where ϕ is the phase di�erence
between the superconductors. To clarify why we separated the tunneling Hamiltonian
into a 'pair' and a quasiparticle term claiming that the pair Hamiltonian gives rise, we
will �rst calculate the energy shift

〈δH〉 = 〈HT 〉 (1.64)

at zero temperature with simple second order perturbation theory (since HT is linear
in creation/ annihilation operators for each side the �rst order in HT vanishes). At
zero temperature the unperturbed supercondcutors are in their ground states |0〉i with
γkα,i|0〉i = 0 yielding the ground state |0〉 ≡ |0〉1 ⊗ |0〉r. The second order energy shift
due to tunneling reads

〈δH〉 =
∑
m

〈0|HT |m〉〈m|HT |0〉
−εm

= −
∑
m

〈0|Hp|m〉〈m|Hp|0〉
εm

−
∑
m

〈0|Hqp|m〉〈m|Hqp|0〉
εm

,

(1.65)
where εm is the energy of the intermediate state |m〉. In the quasiparticle Hamiltonian
Hqp only combinations of a creation operator for one side with a annihilation operator
for the other side occur. Therefore everytime the quasiparticle part acts on the ground
state, we have a anihilation operator acting on the ground state yielding Hqp|0〉 =

H†qp|0〉 = 0 so that the quasi particle part vanishes at zero temperature. Using the
symmetry of the Hamiltonian under spin rotation we evaluate the pair contribution to
be

〈δHp〉 = −2g2
∑
m

∑
kk′

|Bkk′ |2
〈0|γk1,lγk′0|m〉〈m|γ

†
k′0γ

†
k1,l|0〉

εm
= −2g2

∑
kk′

|Bkk′ |2

Ek + Ek′
.

(1.66)

We evaluate the squared norm |Bkk′ |2 with relations 1.42 and 1.43 for real vk. We �nd

|Bkk′ |2 =
1

2

[
1− ξkξk′

EkEk′
+ cos(ϕ)

∆2

EkEk′

]
. (1.67)

The linear part in electron energies vanishes during summation over all possible k
vectors and the zero temperature energy shift due to pair tunneling is

〈δHp〉 = −2
g2

2

∑
kk′

1

Ek + Ek′
− 2 cos(ϕ)

g2

2

∑
kk′

∆2

EkEk′

1

Ek + Ek′
(1.68)
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The �rst expression is a constant energy shift we are not interested in and therefore
won't analyze any further. The second expression proportional to the cosine of the
phase di�erence is exactly the energy shift −EJ cos(ϕ) we used in the section on su-
perconducting qubits. With our approach we can calculate the the Josephson energy
EJ based on a microscopic model. Evaluating the sums in previous expression yields

EJ = 2
g2

2
N0,lN0,r

∫ ∫
dξldξr

∆2

ElEr

1

El + Er
. (1.69)

with the substitution sinh Θl = ξi/∆ we �nd

EJ = 2
g2

2
∆N0,lN0,r

∫ ∫
dΘldΘr

1

cosh(Θl) + cosh(Θr)
= g2π2∆N0,lN0,r (1.70)

the well known Ambegaokar-Barato� relation for the Josephson energy EJ at zero
temperature.
Calculating the e�ect at elevated temperatures is a little more tricky but since we

will apply the same technique to calculate dephasing rates, we will give a derivation at
this point. To begin with, we de�ne the combined right-left Greens function

Grl(k, k
′, τ) = −〈TτΨk,r(τ)Ψ†k′,l〉 = −

 〈Tτ ck↑,r(τ)c†k′↑,l〉 〈Tτ ck↑,r(τ)c−k′↓,l〉
〈Tτ c†−k↓,r(τ)c†k′↑,l〉 〈Tτ c

†
−k↓,r(τ)c−k′↓,l〉

 ,

(1.71)
and note that the thermal expectation value for the tunneling Hamiltonian can be
expressed in terms of the diagonal elements of the right-left Greens function:

〈δHT 〉 = g
∑
kk′σ

eiϕ/2〈ckσ,lc
†
k′σ,r〉+ e−iϕ/2〈ck′σ,rc

†
kσ,l〉 = g

∑
kk′σ

eiϕ/2〈c−k′↑,rc
†
−k↑,l〉

+ eiϕ/2〈ck↓,lc
†
k′↓,r〉 = 2

∑
kk′

e−iϕ/2Grl,22(k, k′, 0−)− e−iϕ/2Grl,11(k, k′, 0−) . (1.72)

We now proceed as in section 1.2.2 by �nding the eof for the left-right as well as the
left-left Greens function Gl since those di�erential equations are coupled due to the
tunneling. In Fourier space we �nd

(iωn − ξkτ3 + ∆τ1)Gl(k, k
′, iωn) = δkk′ + g

∑
q

(
eiϕ/2 0

0 −e−iϕ/2

)
Grl(q, k

′, τ) (1.73)

(iωn − ξkτ3 + ∆τ1)Grl(k, k
′, iωn) = g

∑
q

(
e−iϕ/2 0

0 −eiϕ/2

)
Gl(q, k

′, τ) (1.74)

where we identify the BCS Greens function Go(k, iωn) = (iωn − ξkτ3 + ∆τ1)−1. Since
we want to calculate the Josephson e�ect up to second order in g, we need the Greens
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function only linear in g and can solve for the right-left Greens function by taking the
left side function only up to zeroth order in g. Therefore we insert G0 in the eof for
the right-left Greens function and obtain

Grl(k, k
′, iωn) = gG0(k, iωn)

(
e−iϕ/2 0

0 −eiϕ/2

)
Gp(k

′, iωn) . (1.75)

With the free BCS Greens function

G0(k, iωn) =
−1

ω2
n + ξ2

k + ∆2

(
iωn + ξk −∆
−∆ iωn − ξk

)
(1.76)

we �nd the right-left function to be

Grl(k, k
′, iωn) = g

(
(iωn + ξk)(iωn + ξk′ )e

−iϕ/2 −∆2eiϕ/2 −∆(iωn + ξk)e−iϕ/2 + ∆(iωn − ξk′ )e
iϕ/2

−∆(iωn + ξk′ )e
−iϕ/2 + ∆(iωn − ξk)e−iϕ/2 −(iωn − ξk′ )(iωn −−ξk)eiϕ/2 + ∆2e−iϕ/2

)
(ω2
n + ξ2

k + ∆2)(ω2
n + ξ2

k′ + ∆2)
(1.77)

We insert the expression for Grl into equation 1.72 for the energy shift due to tunneling.
This yields

〈δHT 〉 = 4g2
∑
n

(ω2
n + ∆2 cosϕ)

∑
k

1

ω2
n + ξ2

k + ∆2

2

(1.78)

As in the previous paragraph we neglect the constant energy shift and take into account
the term proportional to the cosine only. We evaluate the sum in the k space with
integration in energy space and �nd the Josephson energy at elevated temperatures

EJ = 4g2π2∆2N0,lN0,r
1

β

∑
n

1

ω2
n + ∆2

(1.79)

The sum over Matsubara frequencies can be evaluated as contour integral in the usual
way yielding

EJ = −2g2π2∆2N0,lN0,r
nF (∆)− nF (−∆)

∆
= 2g2π2∆N0,lN0,r tanh

β∆

2
(1.80)

which converges to the value obtained for zero temperature for β goes to in�nity (T →
0). Obviously, we did not distinguish between pair and single quasiparticle tunneling in
the derivation of the temperature dependent Josephson energy. On one hand this makes
sense since at elevated temperatures we always have thermally excited quasiparticles
above the gap, which explains the factor tanh β∆

2 ?1−2nF (∆) in equilibrium. For non-
equilibrium cases we can substitute the Fermi function nF with a general distribution
function f(E) and the hyperbolic tangent is replaced with 1 − 2f(∆). On the other
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hand, we associate dissipation with single quasiparticle e�ects since they are joint with
real excitations in the superconductors. However, we have a dissipation free process
here, thermally in�uenced by quasi particle excitations but it seems like we have only
contributions from Cooper pairs in our derivation. This di�culties in separating single
particle from pair e�ects are already revealing the problems one has in distinguishing
between these e�ects when analyzing qubit decoherence due to tunneling processes
since the pair tunneling is included in the qubit Hamiltonian already and one has to
avoid double counting.

1.3.3 Quasiparticle tunneling and Qubit (de-)coherence

To analyze the in�uence of single particle tunneling on a superconducting qubit, we
start from the Hamiltonian of Josephson junction in a superconducting circuit which
in its microscopic form is

H = Ecn̂
2 +H0,l +H0,r +HT . (1.81)

We explicitely write every Hamiltonian of interest into above Hamiltonian: The charg-
ing energy EC of the junction, the BCS Hamiltonians of both leads and the tunneling
Hamiltonian for the junction. As we've seen in previous section, pair tunneling e�ects
are dominant at low temperatures and we make use of this fact by explicitly pulling
out the energy shift due to pair tunneling. The Hamiltonian now reads

H = Ecn̂
2 − EJ cosϕ+H0,l +H0,r + H̃T . (1.82)

Here, we identify the Josephson junction Hamiltonian we used in the QED section,
HJ = EC n̂

2 − Ej cosϕ. The new tunneling Hamiltonian H̃T should only include
single particle e�ect. The last statement is di�cult to quantize or base on a solid
mathematical foundation, e.g. we could de�ne H̃T = HT +EJ cosϕ, which still is hard
to handle as we will see. Nevertheless, from this point we will take ϕ as a quantum
mechanical operator and treat the Josephson junction in the way described in section
1.1. Therefore, we can express the system Hamiltonian for a superconducting qubit
coupled to the single particle tunneling Hamiltonian as

H = HS +HR +HT , (1.83)

where from now on we will simply use the tunneling Hamiltonian 1.56 in our calcu-
lations and keep in mind that we have to be careful with which terms to actually
use. HR is the reservoir Hamiltonian, in this case the BCS leads. This Hamiltonian
belongs to the general class of Hamiltonians describing the coupling of a microscopic
system, in our case the qubit, to very large reservoirs, the two superconductor in our
case, with a coupling Hamiltonian HC , the tunneling in our case. Therefore, we need
a theoretical framework capable of dealing with these kind of systems, so called open
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quantum systems. We will develop such a framework in the following chapter allowing
us to calculate the time evolution of the microscopic system, without the exact time
evolution of the large reservoirs which anyway are more or less undisturbed by the
small system.
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2 Chapter 2

Open Quantum Systems and the
Master Equation

In this chapter we introduce a systematic expansion of the non-unitary time evolution
of a quantum system coupled to two (or more) large reservoirs. Therefore we expand
the time evolution of the systems density matrix on a Keldysh contour and �nd a di-
agrammatic expansion. With this diagrammatic language we are able to describe the
time evolution with a propagator Π obeying a Dyson like equation. With the diagram-
matic approach and the Dyson equation we obtain the tools to �nally tackle the time
evolution of a qubit coupled to quasiparticle degrees of freedom.

2.1 The Master Equation

In this thesis we want to discuss decoherence of superconducting qubits due to tunneling
of single quasiparticles through a Josephson junction, a problem that involves a small
system, the qubit, with a limited number of eigenstates coupled to larger systems,
the reservoirs. In the speci�c case of quasiparticle tunneling the reservoirs are two
superconducting leads. Throughout this section we will refer to the microscopic system
simply as 'system' and talk about the 'full system' if both, reservoirs and microscopic
system, are considered. Because we are not interested in the exact time evolution of
the reservoirs, we need a systematic way to get rid of uninteresting reservoir degrees
of freedom, a step referred to as 'tracing out the environment'. Since their exists
an energy transfer between the small system and the connected reservoirs, the time
evolution of the system can not be described in closed form without taking into account
reservoir degrees of freedom in some way. Hence this kind of system is known as an
�open quantum system�.

The starting point for our calculation is the equation of motion for the full density
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matrix (system and reservoirs), known as the Von Neumann equation:

ρ̇ = −i
[
H, ρ

]
(2.1)

where H is the full system Hamiltonian, which consists of three di�erent parts, namely
the system part HS , the reservoir Hamiltonian HR and the coupling between reservoir
and system HC :

H = HS +HR +HC . (2.2)

We emphasize that the reservoirs can either provide energy to the system or take energy
away from it but will, in general, remain undisturbed due to their large size compared
to the small system of interest. This allows us to 'trace out the environment' and
introduce the reduced density matrix describing the microscopic systems dynamics:

ρS(t) = TrR
{
ρ(t)

}
. (2.3)

In this expression, the trace is only taken with respect to the reservoir degrees of
freedom. The reduced density matrix contains the relevant information of the system of
interest: the behavior of the small system while it is coupled to the large reservoirs. The
entire problem is reduced to �nd the time evolution of the reduced density matrix. In
a standard approach one uses the Born-Markov approximation to �nd a Lindblad form
master equation which describes the system dynamics [26]. However, this approach
lacks the possibility to make statements about higher order contributions from the
coupling Hamiltonian. But exactly this kind of contributions will prove important when
it comes to qubit dephasing where �rst order approximations fail. To overcome the
issue with the standard Lindblad approach, we will introduce an alternative approach
to the problem. In the following sections we will expand the reduced density matrix
time evolution on a Keldysh contour and introduce a diagrammatic language to solve
the given problem.

2.1.1 Expansion on Keldysh Contour

This section closely follows the derivation of a diagrammatic expansion from Michael
Marthaler [27]. The starting point for our calculation is the thermal average of a
general operator Â which is taken with respect to the full density matrix ρ:

〈Â(t)〉 = Tr
[
ρ(t0)U †(t, t0)ÂU(t, t0)

]
(2.4)

where U(t, t0) = T exp(−i
∫ t
t0
H(t′)dt′) is the full time evolution operator from start

time t0 when the coupling between reservoir and system is switched on to time t
and T is the time ordering operator. For a time independent Hamiltonian, the time
evolution operator reduces to the well known form U(t, t0) = e−iH(t−t0). The trace has
to be taken with respect to all states, including reservoir as well as system states. To
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simplify our calculations we will assume that the density matrix factorizes at time t0,
ρ0 = ρ(t0) = ρS(t0)⊗ ρR(t0), a reasonable assumption hence the coupling is switched
o� at previous times and without coupling the density matrix factorizes. In addition
the initial density matrix becomes less important for long time dynamics in which we
are more interested than in short time dynamics. De�ning a reduced density matrix for
the system implies, that the change of the system due to the coupling is not too large
such that the systems eigenstates are still good quantum numbers which can be used
to describe the system. Therefore we can assume that the energy scale due to coupling
is much weaker than the system and reservoir Hamiltonians. To take into account this
smallness, it is convenient to change from the Schrödinger to the interaction picture
with respect to HC

Ã(t) = U †0(t, t0)AU0(t, t0) ,

U0(t, t0) = e−iH0(t−t0) ,

H0 = HS +HR .

(2.5)

Here, Ã(t) denotes an operator in the interaction picture, U0(t, t0) is the time evolu-
tion operator of the free system and reservoirs, which, because system and reservoir
Hamiltonians commute, factorizes into the product of the free system time evolution
US(t, t) = e−iHS(t−t0) and the reservoir time evolution UR(t, t0) = e−iHR(t−t0). Using
Ã(t) we can rewrite equation 2.4

〈Â(t)〉 = Tr
[
ρ0U

†
I (t, t0)Ã(t)UI(t, to)

]
(2.6)

with the interaction picture time evolution operator UI(t, t0) and its conjugate de�ned
as time ordered exponentials

UI(t, t0) = T exp

{
−i
∫ t

t0

H̃C(t′)dt′

}
(2.7)

U †I (t, t0) = T̄ exp

{
i

∫ t

t0

H̃C(t′)dt′

}
. (2.8)

T (T̄ ) denotes the (anti-) time ordering operator. The time ordering operator acting
on a set of time dependent operators at di�erent time will always re-arrange their
sequence in ascending order with respect to their time arguments (anti time ordering:
descending order). Now, with a clever choice of Â, we are able to derive the equation of
motion for the reduced density matrix directly from eq. (2.6). To accomplish this, we
chose the operator Â to be Â = P̂ss′ = |s〉〈s′|, where |s〉 and |s′〉 are system eigenstates
ful�llingHS |s〉 = Es|s〉. Now we want to show that the thermal average 〈P̂ss′(t)〉 equals
the matrix element ρs′s(t) = 〈s′|ρS(t)|s〉 of the reduced density matrix. To do this we
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2 Open Quantum Systems and the Master Equation

start with the matrix element ρs′s(t), explicitly carry out the trace over system states
and use the invariance of the trace under cyclic permutation to show this equivalence:

ρs′s(t) = 〈s′|TrR{ρ(t)}|s〉 = 〈s′|TrR{Uρ0U
†}|s〉

= 〈s′|TrR{UρR,0
∑
qq′

|q〉ρqq′〈q′|U †}|s〉 =
∑
qq′

TrR{〈s′|U |q〉ρR,0ρqq′〈q′|U †|s〉}

=
∑
qq′

TrR{ρR,0ρqq′〈q′|U †|s〉〈s′|U |q〉} = Tr
∑
r,qq′

ρR,0ρqq′〈q′|r〉〈r|U †P̂ss′U |q〉

= TrR
∑
r

〈r|ρR,0U †I P̂ss′,IUI
∑
qq′

(|q〉ρqq′〈q′|)|r〉 = Tr{ρ0U
†
I P̂ss′,IUI}

= 〈P̂ss′(t)〉 (2.9)

With the identity 2.9 we are able to derive the time evolution of the density matrix
element ρss′(t) by use of equation 2.4 for the operator P̂s′s

ρss′(t) =
∑
qq′

ρqq′(t0)〈q′|TrR
{
ρR(t0)U †I (t, t0)P̂s′s,I(t)UI(t, t0)

}
|q〉 , (2.10)

where TrR{. . . } is the trace with respect to the reservoirs. We can interpret equation
2.10 as a rate equation for the scattering from a matrix element ρqq′ at a time t0 into
the matrix element ρss′ at a later time t. We identify this scattering rates with a

time evolution operator Πqq′→ss′ = 〈q′|TrR
{
ρR(t0)U †I (t, t0)P̂s′s,I(t)UI(t, t0)

}
|q〉. This

evolution operator or propagator propagates the density matrix element ρqq′(t0) to the
element ρss′(t). We will analyze it in more detail in the following sections. Unfortu-
nately equation (2.10) in the current form is unpractical for calculations because of
the time ordered exponentials hidden in the time evolution operators. To overcome
the issues with the time evolution operators, we expand them into Taylor series and
sort the resulting sums into products with the same order in the coupling Hamiltonian
HC . From that expansion we are able to �nd a diagrammatic expansion for ρss′ which
we can exploit to calculate ρss′ up to arbitrary orders in HC . After expanding the
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2.1 The Master Equation

exponentials the interaction time evolution operators read

UI(t, t0) = T exp

−i
t∫

t0

HC(t′)dt′


=
∞∑
n=0

(−i)n
t∫

t0

dt1

t1∫
t0

dt2 · · ·
tn−1∫
t0

dtn[HC(t1)HC(t2) · · ·HC(tn)]

U †I (t, t0) = T̄ exp

i
t∫

t0

HC(t′)dt′


=
∞∑
n=0

(i)n
t∫

t0

dt1

t1∫
t0

dt2 · · ·
tn−1∫
t0

dtn[HC(tn)HC(tn−1) · · ·HC(t1)] ,

(2.11)

where we absorbed time ordering operators into integral limits. Inserting above equa-
tions in the time evolution for ρss′ yields

ρss′(t) =
∑
qq′

ρqq′(t0)〈q′|TrR{ρR(t0)
∞∑
n=0

∞∑
m=0

in(−i)m
t∫

t0

dt1

t1∫
t0

dt2 · · ·
tn−1∫
t0

dtn×

t∫
t0

dt′1

t′1∫
t0

dt′2 · · ·

t′m−1∫
t0

dt′m[HC(tn)HC(tn−1) · · ·HC(t1)]

× P̂s′s,I(t)[HC(t′1)HC(t′2) · · ·HC(t′m)]}|q〉 . (2.12)

This expression is still rather complicated and we further simplify it by introducing
a closed Keldysh time contour, see �gure 2.1. The contour starts at time t0 following
the upper branch until it reaches the operator P̂s′s at time t from where it returns to
the initial time following the lower branch. Every vertex at time ti on the contour
represents a coupling Hamiltonian H̃C(ti). The operators are ordered according to
their appearence on the contour, such that operators on the upper branch are anti
time ordered and always to the left of the operator P̃s′s(t) while operators on the lower
branch are automatically time ordered and appear after P̃s′s(t). We introduce the
Keldysh time ordering operator Tγ which automatically orders operators according to
their position on the Keldysh contour, beginning with the operator most left on the
upper branch and ending most left on the lower branch. In addition it applys a minus
sign for every vertex on the lower branch, taking care of the minus sign in the time
evolution operator UI . With the Keldysh time ordering we rewrite the time evolution
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×s
′

s

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t

q′

q

Figure 2.1: Expansion on Keldysh contour: The time evolution from ρqq′ to ρss′ can
be represented as a anti-time ordered evolution from q′ → s′, upper branch, and a time
ordered evolution from s → q, lower branch. The whole evolution is described with the
Keldysh contour starting at t0 and q′, ending at t0 and q after taking it’s way to time
t and s, s′. Each vertex on the branches represents a coupling Hamiltonian at time ti.
Operator sequence is determined by position on the contour.

into its �nal form which we will us as a basis for our diagrammatic technique:

ρss′(t) =
∑
qq′

∑
qq′

ρqq′(t0)〈q′|TrR{ρR(t0)
∞∑
n=0

in
t∫

t0

dt1

t1∫
t0

dt2 · · ·

· · ·
tn−1∫
t0

dtnTγ [HC(t1)HC(t2) · · ·HC(tn)P̂s′s,I(t)]}|q〉 .

(2.13)

As an illustrative example on how a diagram translates into mathematical language,
we take a look on the 9th order diagram in �gure 2.1. The corresponding mathematical
expression for this diagram reads:

∼ (−1)4i9〈q′|TrR{ρR(t0)

t∫
t0

dt9

t9∫
t0

dt8 · · ·
t2∫
t0

dt1[HC(t1)HC(t2)HC(t5)HC(t7)HC(t8)

P̂s′s,I(t)HC(t9)HC(t6)HC(t4)HC(t3)]}|q〉 ,
(2.14)

where the factors i9 and (−1)4 arise due to the 9th order and the four vertices on
the lower branch respectively. The coupling Hamiltonians in front of Ps′s are anti time
ordered and belong to the upper branch while the remaining time ordered Hamiltonians
belong to the lower branch. Integral limits are determined by the position of time ti
on the real time axis, which spans from left to right.

In the next section we will introduce a speci�c form for the coupling Hamiltonian
HC and derive a set of diagrammatic rules for this form of HC .
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2.1 The Master Equation

2.1.2 Coupling with N Reservoirs

In this section we will choose a speci�c but still rather general form for the coupling
Hamiltonian and take a closer look on how we can derive diagrammatic rules from this
type of coupling. Assume we haveN reservoirs with operators Rk,α, k = 1, . . . , N in the
coupling Hamiltonian (Greek subscripts count di�erent operators acting on the same
Hilbert space). In this case we can write the general form of the coupling Hamiltonian
as

HC =
∑
i

∑
α,...,ν

gi,α,...,ν ŜiR̂1,αR̂2,β . . . R̂N,ν =
∑
i

∑
{α}

gi,{α}ŜiR̂{α} =
∑
i

∑
{α}

Hi,{α}

(2.15)
where Ŝi is an operator acting in the system Hilbert space, R̂i,γ is an operator acting
in the Hilbert space of reservoir i and gi,α,...,ν is a coupling constant. For convenience
we de�ned the �super reservoir� operator R{α} = R1,αR2,β . . . RN,ν , where {α} is a
multi index taking into account the di�erent combinations of reservoir operators. The
de�nition for Hi,{α} is self-explanatory. Now, in order to derive a set of diagrammatic
rules, we take a closer look on the diagram in �gure 2.2a, where we labeled the vertices
with coupling Hamiltonian indices. This diagram reads (〈. . . 〉R = TrR{. . . })

D = (−1)2i4
t∫

t0

dt4

t4∫
t0

dt3

t3∫
t0

dt2

t2∫
t0

dt1×
〈
〈q′|H̃i,{α1}(t2)H̃j,{α2}(t3)H̃k,{α3}(t4)H̃l,{α4}(t1)|q〉

〉
R

(2.16)
To simplify this expression we make use of the time dependence of the coupling

i, {α1} j, {α2}

| | | | |

t1 t2 t3 t4
t

l, {α4} k, {α3}

q′

q

×s
′

s

(a)

i, {α1} j, {α2}

| | | | |

t1 t2 t3 t4
t

l, {α4} k, {α3}

×

s′

s

q′ q1

q q2

(b)

Figure 2.2: Exemplary fourth order diagram with (b) and without (a) internal system
indices.

Hamiltonian in the interaction picture, H̃C(t) = U0(t, t0)HCU
†
0(t, t0), which is only

determined by the free system and reservoir Hamiltonians. Since the free time evolution
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operator factorizes into a system and a reservoir operator according to

U0(t, t0) = U0,S(t, t0)U0,R(t, t0) (2.17)

where U0,S acts on system states while U0,R describes the time evolution of the unper-
turbed reservoirs, the coupling Hamiltonian 2.15 simpli�es to

H̃i,{α}(t) = gi,{α}U0,S(t, t0)ŜiU
†
0,SU0,R(t, t0)R̂{α}U

†
0,R(t, t0)

= gi,{α}S̃i(t)R̃{α}(t) ,
(2.18)

and the integrand in equation 2.16 factorizes into a system part and a reservoir part
as well, yielding

D =(−1)2i4gi,{α1}gj,{α2}gk,{α3}gl,{α4}

t∫
t0

dt4

t4∫
t0

dt3

t3∫
t0

dt2

t2∫
t0

dt1

×〈q′|S̃i(t2)S̃j(t3)P̃s′s(t)S̃k(t4)S̃l(t1)|q〉〈R̃{α1}(t2)R̃{α2}(t3)R̃{α3}(t4)R̃{α4}(t1)〉R .
(2.19)

To evaluate last expression, we take a look on the system and reservoir part of the
integrand separately. First, to get rid of the time dependence in the operators S̃i(t),

we insert a one (1 =
{∑

q |q〉〈q|
}
) in between every pair of system operators and

explicitly write the time dependence of each operator with free evolution operators:

〈q′|S̃i(t2)S̃j(t3)P̃s′s(t)S̃k(t4)S̃l(t1)|q〉

= 〈q′|US(t2, t0)ŜiU
†
S(t2, t0)

∑
q1

|q1〉〈q1|

US(t3, t0)ŜjU
†
S(t3, t0)US(t, t0)|s′〉

× 〈s|U †s (t, to)US(t4, t0)ŜkU
†
S(t4, t0)

∑
q2

|q2〉〈q2|

US(t1, t0)ŜlU
†
S(t1, t0)|q〉 . (2.20)

Since US(t, to) is a free time evolution, products of the form US(t, t0))|q〉 yield a simple
oscillatory time dependence with frequency determined by the energy Eq of state q:

US(t, t0)|q〉 = e−iEq(t−t0)|q〉 , (2.21)

such that the entire time dependence of the system part can be absorbed in oscillatory
factors. Equation 2.20 simpli�es to its �nal form

〈q′|S̃i(t2)S̃j(t3)P̃s′s(t)S̃k(t4)S̃l(t1)|q〉 =
∑
q1,q2

〈q′|Si|q1〉〈q1|Sj |s′〉〈s|Sk|q2〉〈q2|Sl|q〉

× ei(Eq1−Eq′ )(t2−t0)ei(Es′−Eq1 )(t3−t0)ei(Es−Es′ )(t−t0)ei(Eq2−Es)(t4−t0)ei(Eq−Eq2 )(t1−t0)

(2.22)
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2.1 The Master Equation

At this point, we can identify a couple of diagrammatic rules dealing with 'free time
evolution' lines and the system part of a diagram. Every line segment of the Keldysh
contour connecting two vertices represents a free time evolution of the system. To every
such line segment we assign a system state |qi〉 (see 2.2b) and the line reaching from
vertex i to vertex j contributes a factor e−iEqi (tj−ti), where |qi〉 is the state assigned
to the line. In addition, every vertex contributes a factor 〈qin|Ŝi|qout〉, where |qin〉 and
|qout〉 are the in- and outgoing state at the vertex respectively. Finally we have to sum
over all internal states assigned to the lines.
Compared to the rather simple system part, dealing with the reservoir part of equa-

tion 2.19 is more complicated. We have a closer look on the reservoir part and expand
the compact notation into full notation:〈

R̃{α1}(t2)R̃{α2}(t3)R̃{α3}(t4)R̃{α4}(t1)
〉
R

=
〈
{R1,α1(t2)R2,β2(t2) · · ·RN,ν1(t2)}{R1,α2(t3) · · ·RN,ν2(t3)} · · ·RN,ν4(t1)}

〉
R
.

(2.23)

Since the trace is taken with respect to the density matrix at time t0 which by de�-
nition factorizes, we can factorize the trace into traces over each reservoir separately.
Therefore, we have to bring the operators for each reservoir close to each other. Hence
we have to commute operators belonging to di�erent reservoirs under the trace yield-
ing a minus sign for every pair of commuted fermionic operators. The �nal sign of
the expectation value therefore depends on the number p of fermionic permutations
necessary to factorize the trace. After all permutations are performed, the trace over
the reservoir states reads〈

R̃{α1}(t2)R̃{α2}(t3)R̃{α3}(t4)R̃{α4}(t1)
〉
R

=
〈
R̃1,α1(t2)R̃1,α2(t3)R̃1,α3(t4)R̃1,α4(t1)

〉
R1

× · · · ×
〈
R̃N,ν1(t2)R̃N,ν2(t3)R̃N,ν3(t4)R̃N,ν4(t1)

〉
RN
· (−)p . (2.24)

We reduced the problem of calculating the trace over all reservoir operators to indi-
vidual traces for each reservoir. These traces can be performed using Wicks theorem,
telling us, that a thermal average over a product of fermionic/ bosonic operators can
be split into products of two operator thermal averages e.g.:〈

R̃1,α1(t2)R̃1,α2(t3)R̃1,α3(t4)R̃1,α4(t1)
〉

=
〈
R̃1,α1(t2)R̃1,α2(t3)R̃1,α3(t4)R̃1,α4(t1)

〉
+
〈
R̃1,α1(t2)R̃1,α2(t3)R̃1,α3(t4)R̃1,α4(t1)

〉
+
〈
R̃1,α1(t2)R̃1,α2(t3)R̃1,α3(t4)R̃1,α4(t1)

〉
(2.25)

where AB · · ·C · · ·D · · · is the contraction between C and D. To evaluate the con-
tractions the pair of contracted operators has to be next to each other under the trace
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yielding a minus sign for every necessary fermionic permutation to reach this ordering,
e.g. the above example evaluates to〈

R̃1,α1(t2)R̃1,α2(t3)R̃1,α3(t4)R̃1,α4(t1)
〉

=
〈
R̃1,α1(t2)R̃1,α2(t3)

〉〈
R̃1,α3(t4)R̃1,α4(t1)

〉
∓
〈
R̃1,α1(t2)R̃1,α3(t4)

〉〈
R̃1,α2(t2)R̃1,α4(t1)

〉
+
〈
R̃1,α1(t2)R̃1,α4(t1)

〉〈
R̃1,α2(t2)R̃1,α3(t4)

〉
(2.26)

Here, the − and + sign apply for fermionic/ bosonic operators respectively due to the
odd number of permutations necessary to connect contracted operators in the middle
term.
Since we have to apply Wick's theorem to every reservoir average the number of terms

for large numbers of reservoirs N and higher orders in HC will explode. Therefore, we
will restrict ourselves to the case with two reservoirs, which indeed is the case for
quasiparticle tunneling in superconducting qubits. In the next section we will �nd the
�nal set of diagrammatic rules for this case. With this rules we will be able to calculate
dephasing and relaxation rates in the next chapter.

2.1.3 Coupling with 2 Reservoirs - Diagrammatic Rules

In this section we analyze the reservoir part of the diagrammatic rules. Therefore we
restrict ourselves to a case of two reservoirs coupled to the system. Additionally we
will assume both reservoirs to be fermionic and the reservoir operators to be fermionic

annihilation/ creation operators γ
(†)
i,kσ, σ a spin index and k the momentum. We analyze

the following coupling Hamiltonian:

HC =
∑
i

∑
kk′σ

gi,kk′γ2,k′σγ
†
1,kσŜi + g∗i,kk′σγ1,kσγ

†
2,k′σŜ

†
i

+
∑
i

∑
kk′σ

g̃i,kk′γ1,kσγ2,k′−σŜi + g̃∗i,kk′γ
†
2,k′−σγ

†
1,kσŜ

†
i ≡

∑
i

Hi,qpŜi +Hi,pŜi + h.c. .

(2.27)

This Hamiltonian describes the coupling between two particle exchanging reservoirs
and a system described by the operator Ŝi. The coupling constant gi,kk′ determines
the strength of the perturbation. We explicitly split the Hamiltonian into two parts,
the quasiparticle Hamiltonian Hqp and the pair Hamiltonian Hp. The quasiparticle
Hamiltonian describes ordinary particle transfer with a particle transfered from one
reservoir to the other while the pair Hamiltonian describes processes involving pairs of
quasiparticles. For quasiparticle tunneling through a Josephson junction this distinc-
tion is crucial since the pair Hamiltonian contributes to the Josephson e�ect while the
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quasiparticle part describes dissipative processes involving single particle tunneling.
Quasiparticle and pair Hamiltonian read

Hqp =
∑
i

∑
kk′σ

gi,kk′γ2,k′σγ
†
1,kσŜi (2.28)

Hp =
∑
i

∑
kk′σ

g̃i,kk′γ1,kσγ2,k′−σŜi (2.29)

To achieve the given form of the coupling Hamiltonian we applied some assumptions.
First we assume a spin independent coupling constant g between reservoirs and system
and s-wave superconductivity. Latter implies that quasiparticle pairs as in the pair
Hamiltonian always have opposite spin (s-wave) while for the single particle part we
assume that no spin �ips occur during tunneling since g is spin independent. We will
see, that the Hamiltonian describing quasiparticle tunneling in a Josephson junction is
exactly of the form 2.27.
In section 2.1.2 we found the diagrammatic rules for the system part of the diagram-

matic expansion and postponed the rules for the reservoir parts into this section. As
mentioned in previous section, we have to deal with averages of the form〈

γ2,k′σγ
†
1,kσ · · · γ1,k1σγ

†
2,k′1σ

〉
(2.30)

which we can factorize in two operator expectation values using Wicks theorem. The
Hamiltonian 2.27 is linear in reservoir operators for each reservoir inducing an uneven
number of creation and annihilation operators for uneven orders in HC . Since we have
non zero expectation values only for combinations of one creation and one annihilation
operator uneven orders in HC vanish and the �rst non vanishing order is 2nd order
in HC . With the same argument we can show that non vanishing diagrams have to
have the same number of Hqp and H

†
qp as well as the same number of Hp and H

†
p. For

example the average 〈
HqpHp

〉
∼
〈
γ2,k′σγ

†
1,kσγ1,kσγ2,k′−σ

〉
(2.31)

vanishes. This statement only holds for diagonal reservoir Hamiltonians Hi,0, implying

Hi,0 =
∑

kσ Ekγ
†
i,kσγi,kσ. Now we analyze the example diagram in �gure 2.3a. Using

the system rules from previous section we evaluate the diagram to be

D2 =

t∫
t0

tj∫
t0

dtjdtie
i
{
Eq′ (ti−t0)+Es′ (t−ti)+Es(tj−t)+Eq(t0−tj)

}
〈q′|Si|s′〉〈s|Sj |q〉

×
∑
kik′iσi

∑
kjk′jσj

gi,kik′i
g∗j,kjk′j

〈
γ2,k′iσi

(ti)γ
†
1,kiσi

(ti)γ1,kjσj
(tj)γ

†
2,k′jσj

(tj)

〉
. (2.32)
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Hi,qp

H†j,qp

×s
′

s

| | |

ti tj
t

q′

q

(a)

i

j

×s
′

s

| | |

ti tj
t

q′

q

(b)

Figure 2.3: a: Example 2nd order diagram with two single quasiparticle vertices. b:
The same diagram with contractions between the vertices. Both vertices are quasiparticle
vertices with one out and one in port each.

With Wick's theorem we �nd〈
γ2,k′iσi

(ti)γ
†
1,kiσi

(ti)γ1,kjσj
(tj)γ

†
2,k′jσj

(tj)

〉
=
〈
γ†1,kiσi(ti)γ1,kjσj

(tj)
〉〈

γ2,k′iσi
(ti)γ

†
2,k′jσj

(tj)

〉
. (2.33)

Latter step leads us to the diagrammatic de�nition of a contraction. We represent
a contraction between two vertices with a directed line pointing from annihilation to
creation operator. A contraction for reservoir 1 is represented with a solid line while
a dashed line represents a contraction for the second reservoir. Due to the form of the
coupling Hamiltonian 2.27, every vertex has two ports, one for each reservoir. A 'port'
can either be a annihilation (out port, contraction leaving the vertex) or a creation
operator (in port, contraction joining the vertex). Therefore we can distinguish between

Hi,qp, H
†
i,qp, Hi,p and H

†
i,p due to the connected contraction lines, see �gure 2.3b as an

illustration. In math, we de�ne a contraction for reservoir i pointing from vertex m to
vertex n as the correlation function

γ>i (tn, tm) =
〈
γi,knσn(tn)γ†i,kmσm(tm)

〉
(2.34)

γ<i (tn, tm) =
〈
γ†i,knσn(tn)γi,kmσn(tm)

〉
, (2.35)

where we have (≷) for tn ≷ tm with respect to the Keldysh contour. If Hi,0 is a free
particle Hamiltonian we can calculate the contractions to be

γ≷i = f±i (Ekn)e±iEkn (tn−tm)δknkm . (2.36)

Here we de�ned f+
i (E) := (1−fi(E)) and f−i := fi(E) where fi(E) is the quasiparticle

distribution function for reservoir i, which in (quasi) equilibrium is a Fermi function
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2.1 The Master Equation

but might di�er in more complex cases (e.g. non equilibrium quasiparticles). At this
point we can put everything together and de�ne a complete set of of rules for our
diagrammatic expansion of the reduced density matrix. The diagrammatic rules in
time space are

1. Each vertex represents either a pair or a single quasiparticle coupling Hamilto-
nian. Every quasiparticle vertex has one incoming and one outgoing port be-
longing to the di�erent reservoirs. Every pair vertex has either two incoming or
two outgoing ports. Every out port has to be connected to an in port with a
contraction, where the in and out port have to belong to the same reservoir.

2. Every contraction for reservoir i running from vertex m (at time tm) to vertex n
(time tn) contributes a factor γ≷i (tn, tm)

3. Every vertex i gives rise to a factor gαi,kik′i
〈qin|Ŝi|qout〉, where gαi,kik′i is determined

by the type of the vertex: gi,kkk′i for Hqp, g
∗
i,kkk

′
i
for H†qp, g̃i,kkk′i for Hp and �nally

g̃∗i,kkk′i
for H†qp

4. Every line segment of the Keldysh contour running from vertex m to vertex n
contributes a factor e−iEqn (tn−tm) corresponding to free time evolution of the
system.

5. Sum over all reservoir indices (momenta ki, k
′
i and spin σi), sum over all internal

system states qi and integrate over all internal times ti with respect to the time
ordering determined by the real time axis (choose appropriate integral boundaries∫ t
t0

∫ t2
t0
dt2dt1 · · · ).

6. The prefactor is determined by im(−1)a+c wherem is the total number of vertices,
a the number of vertices on the lower branch and c the number of fermionic
reservoir line crossings.

2.1.4 Dyson Equation

In this section we use the diagrammatic rules derived in the previous section to �nd
a Dyson like equation for the reduced density matrix ρS(t). Therefore we go back to
equation 2.13 governing the time evolution of the matrix element ρss′(t). We have
already de�ned the time propagator (time evolution operator) Πqq′→ss′(t, to) in section
2.1.1. The evolution operator describes the propagation from the matrix element ρqq′

at time t0 to the matrix element ρss′ at time t. We can write 2.13 as

ρss′(t) =
∑
qq′

Πqq′→ss′(t, t0)ρqq′(t0) (2.37)
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2 Open Quantum Systems and the Master Equation

describing the scattering from all matrix elements into the element ρss′ and vice versa.
For convenience we recall the de�nition of Πqq′→ss′(t, t0)

Πqq′→ss′(t, t0) ≡ 〈q′|TrR{ρR(t0)
∞∑
n=0

in
t∫

t0

dt1

t1∫
t0

dt2 · · ·

· · ·
tn−1∫
t0

dtnTγ [HC(t1)HC(t2) · · ·HC(tn)P̂s′s,I(t)]}|q〉 . (2.38)

In addition we de�ne the superoperator Π(t, t0) which describes the time evolution of
ρS from t0 to t. Π is a tensor whose components are given by Πqq′→ss′ . The �nal time
dependence of ρS looks quite simple with this de�nition:

ρS(t) = Π(t, t0)ρ(t0) . (2.39)

Graphically Π is the sum of all di�erent diagrams, see �gure 2.4.

We can distinguish two large classes of diagrams. One class consists of diagrams
which have contractions that are connected with each other only with free time evo-
lution segments. These diagrams can be separated into several parts without cutting
a contraction line and we call them separable diagrams. In contrary, diagrams which
cannot be cut into parts are called inseparable, see �gure 2.5 for examples. From this
point we proceed by de�ning the selfenergy Σ as the sum of all inseparable diagrams.
Figure 2.6 shows some example diagrams belonging to the self energy. Since every
diagram in the expansion for Π is either separable or inseparable we can expand Π in
terms of the selfenergy connected by free time evolution lines. We de�ne Π0(t2, t1) as
the free time propagation superoperator from t1 to t2 (Π0 is the 0th order diagram in
the expansion for Π). The expansion of Π in terms of the selfenergy is shown graphi-
cally in �gure 2.7 and gives rise to a Dyson like equation for the time evolution operator
Π. The graphical equation 2.7 has the form of a convolution between Π, Π0 and Σ:

Π(t, t0) = Π0(t, t0) +

t∫
t0

dt1

t1∫
t0

dt2 Π0(t, t1)Σ(t1, t2)Π(t2, t0). (2.40)

The time evolution superoperator acts on the entire reduced density matrix and hence
is a tensor with its size depending on the system size, e.g. for a two state system
(qubit) it has 16 components. To get rid of this huge dimensionality it's useful to go
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2.1 The Master Equation

back to the element wise de�nition. The Dyson equation for each component reads

Πqq′→ss′(t, t0) = Π0,qq′→ss′(t, t0)

+

t∫
t0

dt1

t1∫
t0

dt2 Πqq′→q2q′2(t2, t0)Σq2q′2→q1q′1(t1, t2)Π0,q1q′1→ss′(t, t1) (2.41)

This expression can also be represented graphically, see �gure 2.8.

Π = + + + + · · ·

Figure 2.4: The time evolution of the reduced density matrix can be described with
the superoperator Π(t, t0). This operator is the sum of all topological distinguishable
diagrams.

×s
′

s

(a) Inseparable diagram

×s
′

s

(b) Separable diagram

Figure 2.5: Examples for a separable (b) and an inseparable (a) diagram. In (a), no
vertical line can be drawn between the leftmost and rightmost vertex without crossing a
contraction while (b) consists of two parts connected only with free time evolution lines
and can be cut into two parts.

Σ = + + + · · ·

Figure 2.6: Part of the selfenergy Σ with a 2nd, 4th and 6th order diagram.

2.1.5 Master Equation and Markov Approximation

In this section we derive the master equation for the propagator Π(t, t0) and apply the
so called Markov approximation to this equation. The Master equation is the equation
of motion (eof) for Π. To �nd the master equation we calculate the time derivate of
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Π = + Σ + Σ Σ + · · ·

= Π0
+ Π0 Σ Π0

+ Π0 Σ Π0 Σ Π0
+ · · ·

= Π0
+ Π Σ Π0

Figure 2.7: Expansion of time evolution operator in terms of the selfenergy and the
resulting Dyson equation for the propagator Π(t, t0).

Π
q′ s′

q s

= Π0

q′ s′

q s

+ Π
q′ q′2

q q2

Σ
q′1 s′

q1 s
Π0

Figure 2.8: Component wise Dyson equation for the time propagator

equation 2.40. To �nd the time derivate of the entire expression, we investigate it term
by term. First, we have to �nd the time derivate for the free propagator Π0. The free
propagator corresponds to the �rst diagram in �gure 2.7 which, corresponding to the
diagrammatic rules, reads

Π0,qq′→ss′ = δq′s′δqse
i(Es−Es′ )(t−t0) . (2.42)

Hence, the time derivate of each element of the free propagator is rather simple,
Π̇0,qq′→ss′ = i(Es − Es′)Π0,qq′→ss′ . In a compact notation we write

Π̇0(t, t0) = i[HS ,Π0(t, t0)] , (2.43)

where the commutator has to be calculated according to

[HS ,Π0,qq′→ss′ ] = 〈q′|HSUS(t, t0)|s′〉〈s|U †S(t, t0)|q〉 − 〈q′|HSUS(t, t0)|s′〉〈s|U †S(t, t0)HS |q〉
= (Es − E′s)Π0,qq′→ss′ .

In a second step we have to calculate the time derivate of the integral part of equation
2.40. This yields

∂

∂t

∫∫
· · · = i

t∫
t0

dt1

t1∫
t0

dt2 [HS ,Π0(t, t1)]Σ(t1, t2)Π(t2, t0) +

t∫
t0

dt1 Σ(t, t1)Π(t1, t0) ,

(2.44)

40



2.1 The Master Equation

where we can identify the �rst term with the commutator [HS ,Π(t, t0)]. This yields
the �nal master equation for the superoperator Π and for its components:

∂

∂t
Π(t, t0) = i[HS ,Π(t, t0)] +

t∫
t0

dt′Σ(t, t′)Π(t′, t0) (2.45)

∂

∂t
Πqq′→ss′(t, t0) = i(Es − E′s)Πqq′→ss′(t, t0) +

t∫
t0

dt′Σq1q′1→ss′(t, t
′)Πqq′→q1q′1(t′, t0) .

(2.46)

To this point, the master equation is still exact since we didn't have to make any
approximations to get to equation 2.45. In principle we can calculate the kernel Σ
up to any arbitrary order in the coupling. Still, this is a very labor intense process
and for many applications a �rst non-vanishing order (second order in the coupling)
calculation is good enough. Yet we will encounter a problem later on, where a �rst order
approximation does not give convergent results and we have to apply renormalization
techniques based on the derived diagrammatic approach.
We want to close this section with a very common approximation, the Markov ap-

proximation. Assuming that the coherence time of reservoir correlations is short com-
pared to the timescale provided by the propagator, we can approximate Π(t′, t0) with
Π(t, t0)Π−1

0 (t, t′) in equation 2.45 and the master equation reduces to

Π̇qq′→ss′(t, t0) = i(Es − Es′)Πqq′→ss′(t, t0)

+
∑
q1q′1

Πqq′→q1q′1(t− t0)

0∫
−∞

Σq1q′1→ss′(t
′)Π−1

0 (t′)qq′→ss′dt
′ (2.47)

We used time translational symmetry to replace Σ(t, t′) by Σ(t− t′). Further we let t0
go to minus in�nity which is possible because we expect the selfenergy to decay rapidly
due to short coherence times of the bath such that we do not introduce signi�cant errors
with this extension of integral limits. We can write the master equation in the Markov
approximation as a simple rate equation:

Π̇qq′→ss′(t, t0) = i(Es − Es′)Πqq′→ss′(t, t0)−
∑
q1q′1

Πqq′→q1q′1(t− t0)Γq1q′1→ss′ (2.48)

where we de�ned the scattering rate from qq′ to ss′

Γqq′→ss′ = −
0∫

−∞

Σqq′→ss′(t
′)dt′. (2.49)

In the upcoming chapter we will calculate the decay rates for a qubit caused by quasi-
particles tunneling through a Josephson junction.
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3 Chapter 3

Quasiparticle Tunneling & Qubit
Decoherence

In this chapter we analyze qubit decoherence due to quasiparticle tunneling. We apply
the technique developed in chapter 2 on a qubit coupled to quasiparticle degrees of free-
dom. The coupling arises due to single particle tunneling trough a Josephson junction
and limits qubit coherence times to fundamental limits. First we calculate relaxation
and pure dephasing rates in a lowest order approximation in the coupling 3.2. For
relaxation this yields reasonable results which are in good agreement with experiment
while lowest order dephasing rates are divergent. Hence we analyze qubit dephasing
caused by quasiparticle tunneling in more detail in section 3.3. Within Markov approx-
imation we �nd a self-consistent expression for the pure dephasing rate Γ2∗. In the last
section we renounce Markov approximation and �nd a 'time dependent rate' for qubit
dephasing.

3.1 Relaxation and Dephasing - Basics

Finally we have all basics we need to deal with the actual subject of this thesis: Qubit
relaxation and dephasing due to quasiparticle tunneling processes in the Josephson
junction(s) building the qubit. The starting point for the discussion is the Hamiltonian

H = HS +HR + H̃T , (3.1)

where we have the qubit Hamiltonian HS = δE
2 σz, the BCS Hamiltonians for the two

superconductors of the junction (HR) and the modi�ed tunnel Hamiltonian H̃T =
HT +EJ cos ϕ̂, with HT as in 1.56. We note that the thermal average of the tunneling
Hamiltonian HT gives rise to the Josephson term of the qubit Hamiltonian and we
have to be careful about double counting of the corresponding terms. Therefore we
introduced the modi�ed tunneling Hamiltonian H̃T . Nevertheless, we will use the
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3 Quasiparticle Tunneling & Qubit Decoherence

unmodi�ed tunnel Hamiltonian for our calculations and analyze the in�uence of the
modi�cation later on. To make use of the diagrammatic technique developed in the
previous chapter, we have to distinguish qubit operators from reservoir operators in
the tunneling Hamiltonian. Therefore we recall the tunnel Hamiltonian once more:

HT = g
∑
kk′σ

eiϕ/2ckσ,lc
†
k′σ,r + h.c. , (3.2)

where c
(†)
kσ,α are electron annihilation (creation) operators in the superconducting leads.

Since the qubit Hamiltonian is developed in the framework of QED, the phase drop
ϕ across the junction is an operator in qubit space and we have the qubit part of the
Hamiltonian, Ŝ = eiϕ/2. The remains of the tunnel Hamiltonian make the reservoir
part R̂. Since we want to analyze relaxation and dephasing separately, we have to split
the tunnel Hamiltonian into parts producing qubit state �ips and parts that leave the
qubit state unchanged. First contribute to both relaxation and dephasing while latter
produce pure dephasing only. We project the qubit part of the tunnel Hamiltonian
onto the spin space provided by the qubit and express the result in terms of the Pauli
matrices σi. This yields

eiϕ/2 = ασz + (β+σ+ + β−σ−) + γσ0 (3.3)

where we have the diagonal Pauli matrices σz and σ0 leaving the qubit state unchanged
and the ladder operators σ± producing qubit state �ips. The remaining parameters
are de�ned as

α =
1

2

(
〈1|eiϕ/2|1〉 − 〈0|eiϕ/2|0〉

)
(3.4)

γ =
1

2

(
〈1|eiϕ/2|1〉+ 〈0|eiϕ/2|0〉

)
(3.5)

β+ = 〈1|eiϕ/2|0〉 (3.6)

β− = 〈0|eiϕ/2|1〉 . (3.7)

As we will see later it is favorable to express the exponential functions in these expres-
sions with cosine and sine

α =
1

2

(
c11 − c00 + i[s11 − s00]

)
(3.8)

γ =
1

2

(
c11 + c00 + i[s11 + s00]

)
(3.9)

β+ = c10 + is10 (3.10)

β− = c01 + is01 (3.11)

cij = 〈i| cos(ϕ/2)|j〉 (3.12)

sij = 〈i| sin(ϕ/2)|j〉 . (3.13)
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3.2 Relaxation and Dephasing - Second Order

With this projection the tunnel Hamiltonian reads

HT = g
{
ασz + (β+σ+ + β−σ−) + γσ0

}∑
kk′

ckσ,lc
†
k′σ,r + h.c. . (3.14)

Since we are dealing with BCS superconducting reservoirs electrons do not provide the
best basis for calculations. In many situations it is favorable to use Bogolioubov quasi-
particles instead. The transformed Hamiltonian in the BCS basis reads (see section
1.3):

HT = Hqp +Hp (3.15)

Hqp = g
∑
kk′α

Akk′γkα,lγ
†
k′α,r + h.c. (3.16)

Hp = g
∑
kk′α

Bkk′εαγkβ,lγk′α + h.c. . (3.17)

with coherence factors

Akk′ = eiϕ/2uk,luk′,r − e−iϕ/2vk,lvk′,r (3.18)

Bkk′ = eiϕ/2uk,lvk′,r + e−iϕ/2vk,luk′,r . (3.19)

Replacing e±iϕ/2 with the projection 3.3 yields the corresponding operator for use in
the diagrammatic framework.
For the sake of completeness and later use we give the expression for cosϕ in terms

of Pauli matrices, too:

cosϕ = αγσz + β+γσ+ + β−γσ− +
1

2

(
α2 + γ2 + β+β−

)
σ+ + h.c. (3.20)

In the next section we are going to calculate qubit relaxation and dephasing rates
in the �rst non-vanishing order (e.g. 2nd order in HT ). These rates correspond to
rates emerging from golden rule calculations and yield reasonable results for qubit
relaxation. On the other hand, the dephasing rate in second order su�ers from a
logarithmic divergence at the superconducting gap for two equal superconductors. To
overcome this issue we will renormalize the dephasing rate using our diagrammatic
technique in section 3.3. In addition we will calculate a non-Markovian dephasing
'rate' which demonstrates that for pure dephasing the assumption of an exponential
decay of the o�-diagonal density matrix arguments doesn't hold anymore and there a
pure dephasing 'rate' is not de�ned for all cases.

3.2 Relaxation and Dephasing - Second Order

3.2.1 Golden Rule Rates

Relaxation and dephasing rates in �rst non vanishing order in HT can be calculated
with the diagrammatic technique presented in previous chapter but may also be derived
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3 Quasiparticle Tunneling & Qubit Decoherence

from golden rule calculations. In this section we will use Fermi's golden rule to derive
the general form of decoherence rates due to quasiparticle tunneling. We will use
these calculations to discuss the physical processes corresponding to dephasing and
relaxation while we will use the diagrammatic technique to �nd the exact expressions
for the rates in the section after. In �gure 3.1 we show examples for di�erent tunneling

Figure 3.1: Sketch of a Josephson junction with all relevant information for quasiparticle
tunneling: BCS density of states n(E) for the superconductors (showing the characteristic
divergence at the gap ∆) and the product n(E)f(E) between density of states and quasi-
particle distribution function (blue). The area beneath this product gives the number of
quasiparticles present at a given energy (dark blue area). In realistic situations the distri-
bution function f(E) decreases rapidly for energies E > 0 and quasiparticles are present
in a very narrow region above the gap only. The red and green arrow represent the two
decoherence processes due to quasiparticle tunneling. The red arrow shows a tunneling
process of a quasiparticle close to the gap to an empty state of the second superconductor
at an energy E ∼ ∆ + δE. During tunneling the quasiparticle gains an energy δE which
it takes from the qubit.The green arrow represents a tunneling process with no energy
transfer.

processes, red and green arrow. The red arrow represents a quasiparticle tunneling
from an occupied state close to the gap (E ∼ ∆) to an empty state in the second
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3.2 Relaxation and Dephasing - Second Order

superconductor with energy E ∼ ∆ + δE. During tunneling the quasiparticle gains an
energy δE which it takes from the qubit. To preserve energy conservation the qubit has
to relax from the excited state to the ground state to provide the energy δE. Therefore
processes with energy gain/ loss of the quasiparticle contribute to qubit relaxation. To
�nd the golden rule rate for relaxation we have to sum over all possible quasiparticle
transitions from energy E to energy E+δE weighted with the corresponding transition
matrix for the qubit and the probability f(Ek) for the �rst state to be occupied and
the probability 1− f(Ek′) for the second state to be empty:

Γ1 =
∑
kk′

|M1,kk′ |2f(Ek)(1− f(Ek′))δ(Ek′ − Ek − δE) (3.21)

The δ-function ensures energy conservation during the process. We change from sum-
mation to integration over energy and �nd

Γ1 =

∫∫
dE1dE2|M1(E1, E2)|2n(E1)f(E1)n(E2)(1− f(E2))δ(E2 − E1 − δE) (3.22)

In latter expression the product of the density of states n(E) and the distribution
function f(E) appears. The area beneath this product is a measure for the number
of quasiparticles present at a given temperature, see dark blue areas in �gure 3.1. As
illustrated in the �gure, the number of quasiparticles at energies larger than the gap
is negligible compared to the number of quasiparticles present close to the gap (both
due to the divergence of the density of states as well as the strong decrease of f(E)
with increasing energy). Hence most processes relevant for relaxation rates will occur
at energies close to the gap. The rates for dephasing are similar but the quasiparticle
energies on the left and right side have to be identical (green arrow in �gure 3.1) such
that we have

Γ2∗ =
∑
kk′

|M2,kk′ |2f(Ek)(1− f(Ek′))δ(Ek − Ek′) (3.23)

We will calculate the exact rates in the next section so that we do not bother with
the exact form of Mi. We want to emphasize that the only relevant quasiparticle
parameter (besides the tunneling matrix element g) in the golden rule rates is the dis-
tribution function f(E). In thermal equilibrium the distribution function is a Fermi
distribution which is close to zero for energies above the gap and small temperatures.
Therefore decoherence rates due to equilibrium quasiparticles are negligible at usual
qubit operation temperatures. Nonetheless recent experiments clearly show the in�u-
ence of quasiparticles on qubit relaxation [28][29] also at low temperatures. This can
be explained with the presence of non equilibrium quasiparticles in the junction region.
Possible sources of quasiparticles are for example leakage from electronic surroundings
or quasiparticles generated by infrared radiation. Corresponding distribution functions
can be calculated numerically with a Boltzmann equation taking account of quasiparti-
cle generation and relaxation. These calculations are not part of this thesis and we will
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3 Quasiparticle Tunneling & Qubit Decoherence

simply assume quasi equilibrium distributions for our calculations. In the next section
we will use our diagrammatic technique to calculate the exact second order results for
qubit relaxation/ dephasing.

3.2.2 Qubit Decoherence - Diagrammatic Notation & General Remarks

Compared to chapter 2 we will change the notation slightly in the following sections.
We had introduced the components of the propagator Π as Πqq′→ss′(t, t0) in previous
chapter. This notation is going to be lengthy and confusing. Thus we introduce an
alternative notation:

Πqq′→ss′ → Πq′s′
qs . (3.24)

Within this notation the position of the indices in mathematical notation equal their
position in the corresponding diagrams such that comparison between mathematical
and graphical language is going to be straightforward. In this notation the matrix
elements of the reduced density matrix read

ρss′(t)→ ρs
′
s (t) , (3.25)

and the governing equation for the reduced density matrix changes to

ρs
′
s (t) =

∑
qq′

ρq
′
q (t0)Πq′s′

qs (t, t0) (3.26)

Since we deal with a two level system the states |s〉 represent either the excited state
(s = 1) or the ground state (s = 0) which simpli�es the calculations signi�cantly since
all summations over internal indices run over two di�erent states only.

In this section we will calculate decoherence rates using the second order Markov
approximation, see equation 2.47. Hence we need the self energy Σ in second order.
There are four topological di�erent diagrams in second order for the quasiparticle
Hamiltonian

as well as for the pair Hamiltonian
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To every diagram there exits another diagram with �ipped arrow directions such that
their is a total of eight quasiparticle and eight pair diagrams in second order which we
have to sum up to �nd the selfenergy in second order approximation. The diagrams
with �ipped arrow directions yield the same contributions as the plotted diagrams but
with the two superconductors exchanged. For identical superconductors their is no
di�erence between diagramms with �ipped arrows. When talking about relaxation
every vertex represents a ladder operator σ± while for pure dephasing every vertex
represents the σz Pauli matrix.

3.2.3 Relaxation Rate

In this section we will use our diagrammatic technique to �nd expressions for relaxation
rates in second order which is the lowest non vanishing order inHT . For pure relaxation
we truncate the tunnel Hamiltonian to the dissipative part proportional to the ladder
operators σ± and split it into quasiparticle and pair Hamiltonian:

Hqp ≡ g
∑
kk′α

σ+

[
β+uk,luk′,r − β∗−vk,lvk′,r

]
︸ ︷︷ ︸

A+
kk′

+σ−

[
β−uk,luk′,r − β∗+vk,lvk′,r

]
︸ ︷︷ ︸

A−
kk′

 γkα,lγ
†
k′α,r

+h.c. (3.27)

Hp ≡ g
∑
kk′α

εα

σ+

[
β+uk,lvk′,r − β∗−vk,luk′,r

]
︸ ︷︷ ︸

B+
kk′

+σ−

[
β−uk,lvk′,r − β∗+vk,luk′,r

]
︸ ︷︷ ︸

B−
kk′

 γkβ,lγk′α,r

+h.c. (3.28)

Since relaxation describes the decay of the qubits excited state, we analyze the density
matrix element ρ1

1(t). Its time evolution is determined by four propagators and the
corresponding matrix elements at time t0:

ρ1
1(t) = ρ1

1(t0)Π11
11(t, t0) + ρ0

0(t0)Π01
01(t, t0) + ρ0

1(t0)Π01
11(t, t0) + ρ1

0(t0)Π11
01(t, t0) . (3.29)

Here the �rst term on the ride hand side (rhs) describes decay of the matrix element
ρ1

1 while the second term describes qubit excitation from the ground to the excited
state due to the reservoirs. The last two terms describe scattering from o� diagonal
elements into diagonal elements and belong to dephasing. They only occur if we have
σz as well as σ± coupling at the same time. In our calculations we will restrict the
tunneling Hamiltonian to either its dissipative part (∼ σ±) contributing to relaxation
or to its non dissipative part ∼ σz contributing to pure dephasing. Therefore the last
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two terms of the rhs will always vanish in our calculations and we will neglect them
from this point on. In Markov approximation (equation 2.47) the Master equations for
the remaining two propagators read

Π̇11
11(t) = Π11

11(t)

0∫
−∞

dt′Σ11
11(t′) + Π01

01(t)

0∫
−∞

dt′Σ10
10(t′) (3.30)

Π̇01
01(t) = Π01

01(t)

0∫
−∞

dt′Σ00
00(t′) + Π11

11(t)

0∫
−∞

dt′Σ01
01(t′) . (3.31)

Hence one has to calculate the second order diagrams for the four surviving selfenergy
components which than can be used to �nd the rates de�ned by the time integrals over
those selfenergies. These four rates govern the entire time evolution of matrix element

ρ1
1(t). Qubit decay or relaxation is described by the rate

0∫
−∞

dt′Σ10
10(t′) which describes

relaxation from the excited to the ground state.

We show now how to calculate the diagrams, selfenergy and �nally the relaxation
rate for the component Σ10

10(t). The four quasiparticle diagrams contributing to this
speci�c component of Σ are

+

−

1 0 0

1 1 0

+

−

1 0 0

1 1 0
−

+
1 1 0

1 0 0
−

+
1 1 0

1 0 0

a) b) c) d)

Here numbers (0 and 1) represent the qubit states while the nodes are labeled with the
ladder operator (+ or −) corresponding to the vertex (their exists only one possibility
at each vertex since e.g. σ+|1〉 = 0). First we evaluate diagrams a) and b) and �nd

a) + b) = −g2〈1|σ+|0〉〈0|σ−|1〉
∑
kqα

{
|A+

kq|
2γ>k (t− t′)γ<q (t′ − t)e−iδE(t−t′)

+|A−kq|
2γ<k (t′ − t)γ>q (t− t′)e−iδE(t−t′)

} (3.32)

The remaining diagrams c) and d) yield the same contribution but with t and t′

exchanged. With the explicit form of γ≷k (t − t′) = f±eiEk(t−t′) we note that c) and
d) are the complex conjugate of a) and b). Using this and interchanging k and q in
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3.2 Relaxation and Dephasing - Second Order

the second term (which is possible since we assume identical superconductors on both
sides) we obtain the �nal form for Σ01

01:

Σ10
10(t− t′) = −2g2

∑
kqσ

(|A+
kq|

2 + |A−kq|
2)fq(1− fk)Re

{
ei(Ek−Eq−δE)(t−t′)

}
. (3.33)

The corresponding decay rate is de�ned in equation 2.49 and yields a time integral
which we can solve using the Sokhotski�Plemelj theorem

∞∫
0

g(E)ei(E−ω)dt′ = πg(E)δ(E − ω)− iP g(E)

E − ω
. (3.34)

Here P 1
x denotes the Cauchy principal value. From equation 3.33 we know that the

decay rate is purely real such that the principal values of former expression vanish.
Changing summation over k-vectors into integration over energies yields

∑
kqσ

→ 2

∞∫
−∞

∞∫
−∞

dξ1dξ2N(ξ1)N(ξ2)→ 8N2
0

∞∫
0

∞∫
0

dξ1dξ2.

Here N(ξk) is the electron density of states in the superconductor and ξk are electron
energies. In the second step we used that electrons participating in the tunneling
processes are close to the Fermi surface and replaced N(ξ) with it's value at the Fermi
surface N(0) = N0. In the second step we used that the functions we integrate depend
either linear (Akq ∼ ξk/Ek) or quadratic on electron energies ξk. Integrating from infty
to ∞ kills summands linear in ξ while for the quadratic part we can change the region
of integration to [0,∞] and multiply a factor 2. In a �nal step we change the integration

variables from electron energies ξk to quasi particles energies Ek =
√
ξ2
k + ∆2 yielding

8N2
0

∞∫
0

∞∫
0

dξ1dξ2 → 8N2
0

∫ ∞
∆

∫ ∞
∆

dE1dE2 n(E1)n(E2) (3.35)

with the normalized quasi particle density of states n(E) = E/
√
E2 −∆2. We assume

that there occur no transitions with energy transfer δE > 2∆ so that we can ignore
'band-to-band' transitions from the Cooper pair condensate into the quasi particle
band. This process would describe breaking of a Cooper pair leaving a hole in the
condensate and free quasiparticles above the gap. A process requiring an energy of
2∆. Such processes would require qubit transition frequencies δE ≥ 2∆ which is not
reasonable for any real qubit. To obtain our �nal result for the relaxation rate we need
the coherence factors |A±kk′ |

2. Using equation 3.27 we �nd

|A±kq|
2 = |β+|2u2

k,lu
2
q,r + |β−|2vk,lvq,r − 2Re(β+β−)uk,luq,rvk,lvq,r . (3.36)
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3 Quasiparticle Tunneling & Qubit Decoherence

With the de�nitions 3.8 and using |c10|2 = |c01|2 (which holds for the sine terms as
well) the coherence factors read

|A±kq|
2 = |c10|2(uk,luq,r − vk,lvq,r)2 + |s10|2(uk,luq,r + vk,lvq,r)

2 . (3.37)

With the identity

(ukuq ± vkvq)2 =
1

2
(1± ∆2

EkEq
)

we can further simplify the coherence factors to their �nal form:

|A±kq|
2 = |c10|2

1

2

(
1− ∆2

EkEq

)
+ |s10|2

1

2

(
1 +

∆2

EkEq

)
. (3.38)

Now we can plug all the ingredients together to �nd our �nal result for the qubit
relaxation rate due to quasiparticle tunneling:

Γ1 = Γ10
10 = 16πN2

0 g
2

∞∫
∆

∞∫
∆

(EE′ −∆2)|c10|2 + (EE′ + ∆2)|s10|2

EE′

× n(E)n(E′)f(E)(1− f(E′))δ(E′ − E − δE) (3.39)

This rate is exactly of the form we have already derived with Fermi's golden rule, see
3.22: We have the probability f(E) to �nd a quasiparticle at energy E, the probability
of an empty state at an energy E + δE (forced by the delta function) and the den-
sity of states at both energies yielding the number of available quasiparticles for these
tunneling processes. The qubit itself in�uences the relaxation rate solely due to the
matrix elements |c/s01|2 which depend on the qubit Hamiltonian and the correspond-
ing parameters and eigenfunctions. We will calculate the matrix elements later for a
Transmon as an example.
Here we want to proceed by taking a look on the low energy limit of the relaxation

rate. We assume that the qubit transition energy δE is way smaller than the super-
conducting gap and the distribution function has �nite values only in a narrow region
above gap such that 1 − f(E) ≈ 1 and f(E) ≈ 0 for E > ∆. In this case the main
contribution to the integral arises from energies which ful�ll E −∆� δE and we can
approximate one energy integration according to

2N0

∫ ∞
∆

dEn(E)f(E) · · · → nqp

∫ ∞
∆

dEδ(E −∆) · · · (3.40)

with the quasiparticle density

nqp = 2N0

∫ ∞
∆

dEn(E)f(E) . (3.41)
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3.2 Relaxation and Dephasing - Second Order

In the low energy limit we �nd a simple form for the relaxation rate, which very well
�ts experimental data:

Γ1 = 8N0πg
2nqpn(∆ + δE)

δE|c01|2 + (2∆ + δE)|s01|2

∆ + δE
(3.42)

Equation 3.42 is our �nal result for the qubit relaxation rate due to quasiparticle tun-
neling. The remarkable feature is the linear dependence on the quasiparticle density
nqp which can be veri�ed experimentally and has proven to be consistent with experi-
mental data [10][11][12].

At this point one question remains: what about the pair Hamiltonian? Of course
this Hamiltonian already had its part generating the Josephson term but on the other
hand one may argue that either one takes into account only the Josephson e�ect at zero
temperature or one had to pay attention to the quasiparticle Hamiltonian as well when
it comes to the Josephson e�ect at elevated temperatures. Hence we will calculate the
relaxation rates due to the pair Hamiltonian and will analyze that rate with respect to
the fact that the pair Hamiltonian already has been used to a certain degree. Similar
to the quasiparticle induced rate there is a total of four diagrams contributing to the
relaxation rate due to pair tunneling. The selfenergy is similar to the one for the
quasiparticle Hamiltonian:

Σ10
10(t− t′) = −2g2

∑
kqα

|Bkq|2
{(

1− f(Ek)
) (

1− f(Eq)
)
Re(ei(Ek+Eq+δE)(t−t′))

+f(Ek)f(Eq)Re(e
i(Ek+Eq−δE)(t−t′))

}
(3.43)

The coherence factor |B±kq|
2 equals the quasiparticle coherence factor |A±kq|

2 and the
time integration arising from the Markov approximation yields the relaxation rate due
to the pair tunneling Hamiltonian:

Γ1 = 16πN2
0 g

2

∞∫
∆

∞∫
∆

(EE′ −∆2)|c10|2 + (EE′ + ∆2)|s10|2

EE′
n(E)n(E′)

×
{

(1− f(E))(1− f(E′))δ(E′ + E + δE) + f(E)f(E′)δ(E′ + E − δE)
}

(3.44)

One can easily see that this rate vanishes since the arguments of both δ-functions can
never be zero. With E ≥ ∆ the argument of the �rst function is always greater than
zero while for the second δ-function we have E+E′ ≥ 2∆� δE. Thus both δ-functions
give no contribution and the relaxation rate due to the pair Hamiltonian vanishes as
one would expect since pair tunneling is a coherent non dissipative process.
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3 Quasiparticle Tunneling & Qubit Decoherence

3.2.4 Dephasing Rate

In previous section we successfully applied a second order (golden rule) approximation
to qubit relaxation due to single quasiparticle tunneling through the junction. Hence
we apply the same approximation to pure qubit dephasing which describes o� diago-
nal element decay of the density matrix. For pure dephasing we truncate the tunnel
Hamiltonian to the part proportional to σz,

Hqp = σzg
∑
kqα

1

2

{[
c11 − c00 + i(s11 − s00)

]
uk,luq,r

−
[
c11 − c00 − i(s11 − s00)

]
vk,lvq,r

}
︸ ︷︷ ︸

Azkq

γkα,lγ
†
qα,r + h.c.

(3.45)

and analyze the o� diagonal density matrix elements. We will focus on one o� diagonal
element, namely ρ1

0(t):

ρ1
0(t) = ρ1

0(t0)Π11
00(t, t0) + ρ0

1(t0)Π01
10(t, t0) + ρ1

1(t0)Π11
10(t, t0) + ρ0

0(t0)Π01
00(t, t0) (3.46)

Since we consider σz coupling solely no spin-�ips occur and only one propagator sur-
vives, namely Π11

00(t, t0). Therefor, as for the propagators, only selfenergy components
without any spin �ips survive and the equation of motion for the only surviving prop-
agator in Markov approximation is

Π̇11
00(t, t0) = Π11

00

{
i δE +

∫ 0

−∞
dt′Σ11

00(t′)e−i δE t
′

}
(3.47)

Altogether there are eight diagrams contributing to the selfenergy from which we plot
four here since the remaining four can be obtained by simply changing all arrow direc-
tions. The four diagrams we want do discuss in more detail are

z z
1 1 1

0 0 0

z

z

1 1 1

0 0 0
z z

1 1 1

0 0 0
z

z
1 1 1

0 0 0

a) b) c) d)
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3.2 Relaxation and Dephasing - Second Order

where we begin with diagrams a) and b). With our diagrammatic rules we obtain
their contributions

a) = −2g2〈1|σz|1〉〈1|σz|1〉
∑
kq

|Azkq|2γ>k (t− t′)γ<q (t′ − t)ei δE(t−t′) (3.48)

b) = 2g2〈1|σz|1〉〈0|σz|0〉
∑
kq

|Azkq|2γ>k (t− t′)γ<q (t′ − t)ei δE(t−t′) . (3.49)

Due to the σz matrix elements the second diagram obtains an additional minus sign
such that both end up with the same sign. Diagrams c) and d) yield the same contri-
bution with t and t′ exchanged while the four diagrams we didn't show yield the same
contribution as diagrams a) - d) but with left and right superconductor exchanged.
Since we assume identical superconductors we obtain the self energy Σ11

00

Σ11
00 = −16g2

∑
kq

|Azkq|2(1− f(Ek))f(Eq)Re
(
ei(Ek−Eq)(t−t

′)
)
ei δE(t−t′) (3.50)

The coherence factor |Azkq|2 di�ers from the factors occurring for relaxation rates only
due to the matrix elements of sine and cosine of the phase across the junctions. We
�nd it to be

|Azkq|2 =
1

4
(c11 − c00)2(uk,luq,r − vk,lvq,r)2 +

1

4
(s11 − s00)2(uk,luq,r + vk,lvq,r)

2

=
1

4
c2 1

2

(
1− ∆2

EkEq

)
+

1

4
s2 1

2

(
1 +

∆2

EkEq

)
(3.51)

with the de�nition c2 = 1
4(c11 − c00)2 and likewise for the sine elements. We calculate

the dephasing rate according to Γ2∗ =
∫ 0
−∞ dt

′Σ(t′)e−i δE t
′
and �nd

Γ2∗ = 16g2π
∑
kq

|Azkq|2(1− f(Ek))f(Eq)δ(Ek − Eq) . (3.52)

As usual we convert the summation into integration over energies and �nd our �nal
result for the dephasing rate

Γ2∗ = 32N2
0 g

2π

∫ ∞
∆

∫ ∞
∆

dEdE′
(EE′ −∆2)c2 + (EE′ + ∆2)s2

EE′

× n(E)n(E′)f(E′)(1− f(E))δ(E − E′) . (3.53)

We analyze the dephasing rate separate for the part proportional to c2 and the one
proportional to s2 since they show entirely di�erent behavior. We begin with the cosine
part since it is of good nature and can be treated without special care. The remaining
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3 Quasiparticle Tunneling & Qubit Decoherence

part of the dephasing rate will induce di�culties since it is divergent at the gap ∆ and
we will �nd ourselves in need for more subtle methods to get rid of that divergence.
But let's �rst investigate the fair part proportional to c2. First we evaluate one integral
using the δ-function. This yields

Γ2∗,c = 32N2
0 g

2πc2

∫ ∞
∆

dE
E2 −∆2

E2

E√
E2 −∆2

(1− f(E))n(E)f(E)

= 32N2
0 g

2πc2

∫ ∞
∆

dE(1− f(E))f(E) ≈ 32N2
0 g

2πc2f(∆)δf ,

(3.54)

with the width δf of the distribution function. The remaining integral in the last
expression (before the approximation

∫
∼ f(∆)δf) for the dephasing rate is convergent

in any case and the dephasing rate is well de�ned. In the last step we approximated
the integral with its value at the gap since the distribution function vanishes rapidly
at higher energies. Since the distribution function is very small even at the gap it
is obvious that the dephasing rate arising from quasiparticles and the cosine matrix
elements c11 and c00 only is very small compared to the relaxation rate if not the
matrix elements are huge compared to the corresponding matrix elements c01 and s01

appearing in the relaxation rate. We will compare matrix elements later in the section
on the transmon qubit where we will see that indeed matrix elements for dephasing are
way smaller than elements appearing in relaxation. Though we want to make a short
remark on the matrix elements at this point. If the qubit Hamiltonian is symmetric
in the phase di�erence ϕ across the junction the resulting wave functions will all have
a certain parity in ϕ. Therefore all matrix elements of the form 〈i| sin(ϕ/2)|i〉 and
〈0| cos(ϕ/2)|1〉 will vanish for such a qubit. A qubit which falls into this class is e.g.
the transmon. More details, as mentioned before, in section 4. So �nally we have
to deal with the part of the dephasing rate proportional to s2 (although this matrix
elements vanish in many cases). Again we use the δ-function to eliminate on energy
integral leaving us with following expression for the sine part of the dephasing rate:

Γ2∗,s = 32N2
0 g

2πs2

∫ ∞
∆

dE
E2 + ∆2

E2 −∆2
f(E)(1− f(E)) (3.55)

Unfortunately the integral appearing in last expression has a logarithmic divergence at
the gap and cannot be calculated. To overcome this issue we will improve our second
order approximation in the next section and will �nd a self-consistent dephasing rate
which is well de�ned.

3.3 Dephasing

Up to now we have calculated relaxation and dephasing rates in second order Markov
approximation. While everything is �ne for relaxation we had to realize that the
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3.3 Dephasing

a) b) c) d)

Figure 3.2: a) and c) are examples for diagrams not belonging to the nested class while
b) and d) are nested.

dephasing rate obtained within this approximation is not well de�ned in any case but
lacks of a logarithmic divergence. The goal of this section is to �nd dephasing rates
which are de�ned in any case. In a �rst step we will re-normalize the second order
results to obtain a self-consistent rate. We �nd a rate that coincides with a self-
consistent rate obtained in [13]. We then will take one more step and calculate a non
Markovian dephasing rate which will yield clearly di�erent results compared to the
Markovian rates: Instead of an ordinary exponential decay with an exponent linear in
time t we will �nd exponents with more complex time dependence.

3.3.1 Self Consistent Rate

In this section we re-normalize the second order diagrams in a straightforward way
to obtain a self-consistent equation for the propagator Π which re�ects itself into a
self consistent equation for the dephasing rate Γ2∗ . We re-normalize the second order
dephasing rate by replacing the free propagator which appears in every second order
diagram with the full propagator, e.g.:

Π

similar to a self-consistent Born approximation in equilibrium solid state theory. Tak-
ing a closer look on the diagrams arising from this step we see, that within this re-
normalization we sum up all diagrams belonging to a class we call �nested� diagrams.
A nested diagram is characterized by a contraction which connects the most left vertex
with the one most right, see �gure 3.2 for examples. We can apply the diagrammatic
rules to the last diagram above which yields a contribution (without qubit matrix
elements) proportional to

∼
∑
kqα

|Akq|2γ>k (t− t′)γ<q (t′ − t)Π(t− t′) . (3.56)
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3 Quasiparticle Tunneling & Qubit Decoherence

Since we replaced the free propagator in the diagram with the full propagator the
only di�erence to the second order diagram is the change from the free time evolution
ei δE (t−t′) to the full time dependence Π(t, t′). Therefore we obtain the self energy
Σ11

00(t, t′) by replacing the exponential factor in equation 3.50 with the propagator
Π11

00(t, t′) which yields

Σ11
00 = −32g2

∑
kq

|Azkq|2(1− f(Ek))f(Eq)Re
(
ei(Ek−Eq)(t−t

′)
)

Π11
00(t, t′) . (3.57)

We insert the self energy into the master equation for the propagator Π which leaves
us with a self consistent integral-di�erential equation for Π, namely(

∂t − i δE
)

Π11
00(t− t′) = −32g2

∑
kq

|Azkq|2(1− f(Ek))f(Eq)

×
∫ t

t0

dt′Re
(
ei(Ek−Eq)(t−t

′)
)

Π11
00(t− t0)Π11

00(t′ − t0) . (3.58)

In principle one could solve this equation for Π (at least numerically) and obtain a
result without Markov approximation. Instead we apply the Markov approximation
again. Since the Markov equation always hast the form of a rate equation for the prop-
agator, we already know from this approximation that the propagator is of exponential
form, Π(t) ∼ e(iδE−Γ2∗ )t. We plug that explicit form in the de�ning equation for the
dephasing rate 2.49 and obtain the self consistent equation for the dephasing rate:

Γ2∗ = 32g2
∑
kq

|Azkq|2(1− f(Ek))f(Eq)

∫ ∞
0

dt′Re
(
ei(Ek−Eq)(t

′)
)
e−Γ2∗ t

′
. (3.59)

Calculating the time integral is straightforward and yields a Lorentzian with width Γ
which can be understood due to the fact that the coupling to quasiparticle tunneling
induces a �nite lifetime for the qubit states/ quasiparticle states which re�ects in a
broadening of the δ-function spectral density for the superconductors into a Lorentz
peak δ(Eq − Ek) → Γ

(Ek−Eq)2+Γ2 , similar to particle physics where �nite particle life-

times can be calculated with the width of the Lorentzian peaks. Replacing sums with
integrals yields the �nal form for the self-consistent rate:

Γ2∗ = 32N2
0 g

2

∫ ∞
∆

∫ ∞
∆

dEdE′
(EE′ −∆2)c2 + (EE′ + ∆2)s2

EE′

× n(E)n(E′)f(E′)(1− f(E))
Γ2∗

(E − E′)2 + Γ2
2∗
. (3.60)

This expression for the self-consistent dephasing rate equals equation (28) from [13].
We can simplify the expression with the low energy approximation we have used before
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3.3 Dephasing

to get rid of distribution functions f(E). We note that this approximation is not
necessarily valid for dephasing. We will discuss this at the end of this chapter in more
detail. Yet, in the low energy limit the self-consistent equation reduces to

Γ2∗ = 16N0g
2nqp

∫ ∞
∆

dE
(E −∆)c2 + (E + ∆)s2

√
E2 −∆2

Γ2∗

(E −∆)2 + Γ2
2∗

(3.61)

which we want to solve for the special case s = 0 which for instance happens to be true
for a transmon qubit. In this case the golden rule approximation too is valid as we
have mentioned before but the golden rule rate 3.54 is determined by the integral over
the distribution function and is not directly connected to the quasiparticle density nqp
which is accessible in experiments. For s = 0 we write the self consistent dephasing
rate as

Γ2∗ = 16N0g
2c2nqp

1

∆

∞∫
0

dx

√
x

x+ 2

Γ2∗

x2 + (Γ2∗/∆)2
(3.62)

which can be solved exactly if we apply one more approximation. Since the main
contribution to the integral comes from x ≈ 0 we additionally assume

√
x+ 2 ≈

√
2.

With these assumptions the �nal low energy dephasing rate in the 'transmon-case'
reads

Γ2∗ =
[
16N2

0 g
2c2πxqp

]2 ∆

2
. (3.63)

For the transmon we will �nd not only that s2 = 0 but also c01 = 0 so that for the
transmon the ratio between self consistent dephasing rate and relaxation rate in the
low energy approximation becomes

Γ1

Γs∗
=
|s01|2

c4

1

8N2
0 g

2xqp∆

√
2 + δE/∆

δE/∆
(3.64)

Since δE � ∆ and c2 � |s01|2 (see �gure 4.3) the dephasing rate due to quasiparticle
tunneling for the transmon is very small compared to the pure relaxation rate Γ1 and
the decoherence time is determined by relaxation solely.
We �nish this section with a short note on renormalization with the qubit relaxation

rate Γ1 instead of the dephasing rate itself. The corresponding diagrams are achieved
by plugging in in the propagator Π00

11,± instead of the dephasing propagator plugged in

above. The propagator Π00
11,± is achieved in second order approximation from pure σ±

coupling and has the form e(iδE−Γ1)t and the corresponding rate is (of course not self
consistent) given by

Γ2∗ = 32N2
0 g

2

∫ ∞
∆

∫ ∞
∆

dEdE′
(EE′ −∆2)c2 + (EE′ + ∆2)s2

EE′

× n(E)n(E′)f(E′)(1− f(E))
Γ1

(E − E′)2 + Γ2
1

(3.65)
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3.3.2 Non- Markovian Ansatz

In this section we will approach the problem of a qubit coupled to quasiparticle tunnel-
ing from an entirely new side, similar to an approach in [30]. Therefore we will go back
from the diagrammatic technique to the exact time evolution of the reduced density
matrix, equation 2.10

ρss′(t) =
∑
qq′

ρqq′(t0)〈q′|TrR
{
ρR(t0)U †I (t, t0)P̂s′s,I(t)UI(t, t0)

}
|q〉 (3.66)

which can be simpli�ed making use of the fact that the coupling Hamiltonian HT ∼ σz
is diagonal in spin space for pure dephasing. In this case we can write HT (t) = σzR̂(t)
where R̂ is the reservoir part of the tunneling Hamiltonian. For quasi particle tunneling
we have

R̂ = g
∑
kqσ

αckσ,lc
†
qσ,r + h.c. , (3.67)

where we use electron operators throughout this section. With latter notation and
de�ning numbers s = ±1 for the excited and ground state respectively we �nd

ρss′(t) = e−i
ω0(s−s′)

2
(t−t0)ρss′(t0)

〈
T̄ exp

is′
t∫

t0

R(t′)dt′

T exp

−is
t∫

t0

R(t′)dt′


〉
R

.

(3.68)
On one hand latter equation yields constant diagonal elements (ρss(t) = ρss(t0)) while
on the other hand o� diagonal elements are governed by

ρ10(t) = e−iδE(t−t0)ρ10(t0)

〈
T̄ exp

−i
t∫

t0

R(t′)dt′

T exp

−i
t∫

t0

R(t′)dt′


〉
R

(3.69)

ρ01(t) = eiδE0(t−t0)ρ01(t0)

〈
T̄ exp

i
t∫

t0

R(t′)dt′

T exp

i
t∫

t0

R(t′)dt′


〉
R

(3.70)

Since R(t) and R(t′) do not commute it's di�cult to calculate above averages. Hence
we will try to simplify the averages. Therefore we have a look on the Hamiltonian of
the full system again

H = HR +HS + σzR̂ . (3.71)

Comparing this expression with 3.68 we see that the σz operator yields factors s = ±1
in the exponent of the reduced density matrix elements. Replacing σz with σz−σ0 will
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3.3 Dephasing

lead to a factor of 0 or 2 for s = ±1 and hence either the time ordered oder anti time
ordered exponent would simply yield a one. Hence we write the Hamiltonian 3.71 as

H = HR + σ0R̂+ (σz − σ0)R̂ (3.72)

with the unit matrix in Pauli space σ0. Now we rede�ne the reservoir Hamiltonian to
H̃R := HR+R̂ leaving us with the new coupling/ tunnel Hamiltonian H̃T := (σz−σ0)R̂.
Using the re-de�ned Hamiltonians in eq (3.66) we �nd

ρss′(t) = e−i
δE(s−s′)

2
(t−t0)ρss′(t0)×

×

〈
T̄ exp

i(s′ − 1)

t∫
t0

R(t′)dt′

T exp

−i(s− 1)

t∫
t0

R(t′)dt′


〉
R̃

(3.73)

where the thermal average has to be taken with respect to the new bath Hamiltonian
H̃R. To obtain this expression for the reduced density matrix elements we have to
assume that the initial density matrix still factorizes into the density matrix for the
new reservoir and the system density matrix. Hence we want to emphasize that the
initial condition should in�uence the short time dynamics but play no role at longer
times. For both o�-diagonal elements one of the (anti) time ordered exponentials has
a zero argument and evaluates to one so that

ρ10(t) = e−iδE(t−t0)ρ10(t0)

〈
T̄ exp

−2i

t∫
t0

R(t′)dt′


〉
R̃

(3.74)

ρ01(t) = eiδE(t−t0)ρ01(t0)

〈
T exp

−2i

t∫
t0

R(t′)dt′


〉
R̃

. (3.75)

With that method we were able to simplify the operators in the thermal average brack-
ets at the cost of a more complicated bath Hamiltonian which is no longer diagonal in
quasiparticle space. Therefore we have to treat thermal averages with more care but
we can tackle them with the Greens function methods we have already applied to the
BCS Hamiltonian and it will turnout that the change due to the �new� reservoir which
is made of the two coupled superconductors doesn't change the Greens functions to
much. To relate the Green's function with the time evolution, we take the average in
3.74 and expand the exponential yielding〈
T̄ exp

−2i

t∫
t0

R(t′)dt′


〉
R̃

=
∑
n

(−2i)n

n!

t∫
t0

dt1 · · ·
t∫

t0

dtn

〈
T
{
R(t1)R(t2) · · ·R(tn)

}〉
.

(3.76)
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3 Quasiparticle Tunneling & Qubit Decoherence

First we note that only even orders survive since for every uneven order we have
unbalanced creation/ annihilation numbers such that the averages vanish. Second we
apply Wicks theorem to the thermal average which factorizes the average into products
of two operator Greens functions

∑
n

(−2i)n

n!

t∫
t0

dt1 · · ·
t∫

t0

dtn

〈
T
{
R(t1)R(t2) · · ·R(tn)

}〉

=
∑
n

−2n

n!

 t∫
t0

dt1

t∫
t0

dt2

〈
T
{
R(t1)R(t2)

}〉
n

= exp

−2

t∫
t0

dt1

t∫
t0

dt2

〈
T
{
R(t1)R(t2)

}〉 (3.77)

Hence the entire problem to �nd an expression for the time evolution of the density
matrix has reduced to the problem of evaluating the reservoir-reservoir correlation

function
〈
T
{
R(t1)R(t2)

}〉
where we have to take the average with respect to the

�new� reservoir H̃R = HR + R. To evaluate it we express the average in terms of
electron correlation functions which yields〈

T
{
R(t1)R(t2)

}〉
=
∑
kk′

∑
qq′

g2α2

(〈
Tck,l(t1)cq,r(t1)†

〉〈
Tck′,l(t2)cq′,r(t2)†

〉
+
〈
Tck,l(t1)cq′,r(t2)†

〉〈
Tc†q,r(t1)ck′,l(t2)†

〉
−
〈
Tck,l(t1)ck′,l(t2)

〉〈
Tc†q,r(t1)cq′,r(t2)†

〉)
+g2α∗2

(〈
Tcq,r(t1)ck,l(t1)†

〉〈
Tcq′,r(t2)ck′,l(t2)†

〉
+
〈
Tcq,r(t1)ck′,l(t2)†

〉〈
Tc†k,l(t1)cq′,r(t2)†

〉
−
〈
Tcq,r(t1)cq′,r(t2)

〉〈
Tc†k,l(t1)ck′,l(t2)†

〉)
+ g2|α|2

(〈
Tck,l(t1)cq,r(t1)†

〉〈
Tcq′,r(t2)ck′,l(t2)†

〉
+
〈
Tck,l(t1)ck′,l(t2)†

〉〈
Tc†q,r(t1)cq′,r(t2)

〉
−
〈
Tck,l(t1)cq′,r(t2)

〉〈
Tc†q,r(t1)ck′,r(t2)†

〉
+
〈
Tcq,r(t1)ck,l(t1)†

〉〈
Tck′,l(t2)cq′,r(t2)†

〉
+
〈
Tcq,r(t1)cq′,r(t2)†

〉〈
Tc†k,l(t1)ck′,l(t2)†

〉
−
〈
Tcq,r(t1)ck′,l(t2)

〉〈
Tc†k,l(t1)cq′,r(t2)†

〉)
.

(3.78)

In that expression every thermal average represents a electron Greens function where
we have 'normal' Greens functions which are correlation functions between creation
and annihilation operators and anomalous Greens functions (correlations between two
creation/ annihilation operators) for both superconductors separately as well as Greens
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3.3 Dephasing

functions measuring the correlation between both superconductors. The mixed Greens
functions give rise to the Josephson e�ect and to avoid double counting we will neglect
these correlation functions if it comes to dephasing. Using Nambu spinors 1.39 we
can cover all twelve di�erent kinds of Greens functions that appear in the bath-bath
correlation function with three averages, namely the one-side Greens function

Gi(kk
′σ, τ) = −〈TτΨk,i(τ)Ψ†k′,i〉 = −

 〈Tτ ckσ,i(τ)c†k′σ′,i〉 〈Tτ ckσ,i(τ)c−k′−σ′,i〉
〈Tτ c†−k−σ,i(τ)c†k′σ′,i〉 〈Tτ c

†
−k−σ,i(τ)c−k′−σ′,i〉


(3.79)

and the left-right (right-left respectively) functions

Gji(kk
′σ, τ) = −〈TτΨk,j(τ)Ψ†k′,i〉 = −

 〈Tτ ckσ,j(τ)c†k′σ,i〉 〈Tτ ckσ,j(τ)c−k′−σ,i〉
〈Tτ c†−k−σ,j(τ)c†k′σ,i〉 〈Tτ c

†
−k−σ,j(τ)c−k′−σ,i〉

 ,

(3.80)
where i, j represent either the l(eft) or r(ight) superconductor and τ = it is the imag-
inary time. Now we carry out the same steps as we have in section 1.2.2 where
we used the Greens function formalism to derive the BCS superconductivity. Due
to the tunnel Hamiltonian which now appears in the Hamiltonian, the Greens func-
tions will experience a derivation from their unperturbed BCS form G0

i (kσ, iωn) =
(iωn−ξkτ3 +σ∆τ1)−1. The Heisenberg equations of motion ( ∂∂τ ckσ,i(τ) = [H, ckσ,i(τ)])
have to be taken with respect to the Hamiltonian H = H0 +HT where we have

H0 =
∑
i=l,r

∑
k,σ

ξkc
†
kσ,ickσ,i −

∑
k

(
∆∗c−k↓,ick↑,i + ∆c†k↑,ic

†
−k↓,i

)
(3.81)

HT = g
∑
kq

αc†kσ,lcqσ,r + α∗c†qσ,rckσ,l . (3.82)

This yields the eof for the Nambu Gorkov Greens functions

(−∂τ − ξkτ3 + σ∆τ1)Gl(kk
′σ, τ) =δ(τ)δkk′

+ (g1τ3 + ig2τ0)
∑
q

Grl(qk
′σ, τ) (3.83)

(−∂τ − ξqτ3 + σ∆τ1)Grl(qk
′σ, τ) = (g1τ3 − ig2τ0)

∑
K

Gl(kk
′σ, τ) . (3.84)

and the same equations with right and left exchanged. We de�ned g1 = Re
[
gα
]
and

g2 = Im
[
gα
]
. Applying a discrete Fourier transformation to these equations yields the

63



3 Quasiparticle Tunneling & Qubit Decoherence

following algebraic equations for the Greens functions:

Gl(kk
′σ, iωn) = G0

l (kσ, iωn)δkk′ +G0
l (kσ, iωn)(g1τ3 + ig2τ0)

×
∑
q

Grl(qk
′σ, iωn) (3.85)

Grl(qk
′σ) = G0

r(qσ, iωn)(g1τ3 − ig2τ0)
∑
k

Gl(kk
′σ, iωn) . (3.86)

As it becomes clear from 3.78 we do not need the entire Greens function of the system
but only the density of states ∼

∑
kk′ G(k, k′, iωn). Therefore we de�ne the density of

states in imaginary frequency space

Fi(iωn) =
∑
kk′

Gi(k, k
′, iωn) (3.87)

Fij(iωn) =
∑
kk′

Gij(k, k
′, iωn) (3.88)

F 0
i (iωn) =

∑
k

G0
i (k, iωn) , (3.89)

yielding two very simple algebraic equations for the one- and two sided densities:

Fi(iωn) = F 0
i (iωn) + F 0

i (iωn)(g1τ3 + ig2τ0)Fji(iωn) (3.90)

Fji(iωn) = F 0
j (iωn)(g1τ3 − ig2τ0)F 0

i (iωn) . (3.91)

As mentioned before the two-sided functions give rise to the Josephson e�ect so that
we will neglect the corresponding terms in the bath-bath correlation function. For the
one sided functions we �nd

F−1
i (iωn) = (F 0

i )−1(iωn)− (g1τ3 + ig2τ0)F 0
j (iωn)(g1τ3 − ig2τ0) , (3.92)

which can be solved by use of the relation

∑
k

G0
i (k, iωn) = −

∑
k

iωn + ξkτ3 −∆τ1

ω2
n + ξ2

k + ∆2
= −N0

∞∫
−∞

dξ
iωn −∆τ1

ω2
n + ξ2 + ∆2

= N0π
iωn −∆τ1√
ω2
n + ∆2

. (3.93)

After short computation we obtain the on-side density of states in imaginary frequency
space

Fi(iωn) =
N0π

1 + γ|α|2

√
ω2
n + ∆2

ω2
n + ∆2(1 + δ)

(
iωn −∆̃

−∆̃∗ iωn

)
(3.94)
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with the parameter δ and the gap

δ =
2γ|α|2

(
cos(2ϕα)− 1

)
(1 + γ|α|2)2

(3.95)

∆̃ =
1 + γα2

1 + γ|α|2
∆ (3.96)

where we de�ned γ = g2N2
0π

2 which is of course nothing else than the Josephson energy
normalized to the gap, γ = EJ/∆ and ϕα = arg(α). We see that the gap obtains an
additional phase and is no longer pure real. The derivation up to this point was not
much di�erent to the derivation of the Josephson e�ect using Nambu-Gorkov Greens
functions in chapter 1 1.3.2. Still their are important di�erences since we have already
included the Josephson term in the qubit Hamiltonian and found the new parameter
α playing the role of the phase factor eiϕ/2. Now we obtain the density of states using
n(ω) = −1

π Im
[
Fi(iωn → ω + i0)

]
, yielding

N (ω) =
N0

1 + γ|α|2

√
ω2 −∆2

ω2 −∆2(1 + δ)

 ω −∆1+γ|α|2 cos(2ϕα)
1+γ|α|2

−∆1+γ|α|2 cos(2ϕα)
1+γ|α|2 ω

Θ(ω2−∆2)

+
N0

1 + γ|α|2

√
∆2 − ω2

ω2 −∆2(1 + δ)

 0 −∆γ|α|2 sin(2ϕα)
1+γ|α|2

∆γ|α|2 sin(2ϕα)
1+γ|α|2 0

Θ(∆2 − ω2) . (3.97)

The �rst part is similar to the usual BCS density of states with the important di�erence
that the singularity is shifted away from the gap ∆. Since δ ≤ 0 and |δ| ≤ 1 we have
(1 + δ)∆ ≤ ∆ and for |ω| ≥ ∆ no singularity appears at all. The second part arises
due to the imaginary part of the phase obtained by the gap. This part of the dos has
a singularity at ω2 = ∆2(1 + δ). For the special of α being real we have cos(2ϕα) = 1
and the parameter δ as well as sin(2ϕα) equal zero so that we recover the usual BCS
dos scaled with the factor (1 + γ|α|2)−1. From this point on our calculation of the
reservoir correlation is similar to the work of Leppäkangas and Marthaler on �ux qubit
relaxation[6]. Before we calculate the reservoir correlation functions we introduce the
greater and lesser Greens functions as

G>(k, k′, σ, t) =
〈
ckσ(t)c†k′σ

〉
, G<(k, k′, σ, t) =

〈
c†kσck′σ(t)

〉
(3.98)

F>(k, k′, σ, t) =
〈
ckσck′−σ(t)

〉
, F>(k, k′, σ, t) =

〈
c†kσ(t)c†k′−σ

〉
. (3.99)

Their Fourier transforms G(ω) =
∫
dteiωtG(t) are related to the single electron spectral

function A(k, k′, ω) and the pair spectral function B≷(k, k′, ω) as[31]

G≷(k, k′, ω) = A(k, k′, ω)f±(ω) (3.100)

F≷(k, k′, ↑) = −F≷(k, k′, ↓) = B≷(k, k′, ω)f±(ω) . (3.101)
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3 Quasiparticle Tunneling & Qubit Decoherence

The spectral functions introduced above themselves are related to the density of states
in the usual way:∑
k,k′

A(k, k′, ω) = πn11(ω) = πn22(ω) = πn(ω) (3.102)

∑
k,k′

B>(k, k′, ω) = −πn21(ω) = πp̄(ω) ,
∑
k,k′

B<(k, k′, ω) = −πn12(ω) = πp(ω) ,

(3.103)

where p(ω) can be interpreted as 'pair density of states' while n(ω) is the usual density
of states for quasiparticles. With this tools we are �nally in the position to calculate
the reservoir correlation functions. We do this for one function exemplary since the
procedure is all the same for the remaining functions. We begin with∑

σ

∑
kk′

∑
qq′

〈
Tckσ,l(t1)c†k′σ,l(t2)

〉〈
Tc†qσ,r(t1)cq′σ,r(t2)

〉
=

2
∑
kk′

∑
qq′

Θ(t1 − t2)G>(k, k′, σ, t1 − t2)G<(q, q′, σ, t2 − t1)

+Θ(t2 − t2)G<(k, k′, σ, t1 − t2)G>(q, q′, σ, t2 − t1) , (3.104)

express the Green's functions with their Fourier transforms 3.100 and �nally use rela-
tion 3.102 to introduce the density of states into above expression and �nd

2
∑
kk′

∑
qq′

〈
Tckσ,l(t1)c†k′σ,l(t2)

〉〈
Tc†qσ,r(t1)cq′σ,r(t2)

〉
=

2π2N2
0

∞∫
−∞

∞∫
−∞

dω1dω2

(2π)2
n(ω1)n(ω2)

[
Θ(t1 − t2)f(ω2)(1− f(ω1))e−i(ω1−ω2)(t1−t2)

+ Θ(t2 − t1)f(ω2)(1− f(ω1))e−i(ω1−ω2)(t2−t1)
]
.

(3.105)

The remaining averages contribute similar expressions to the reservoir correlation〈
TR(t1)R(t2)

〉
. We carry out the time integral in the time evolution of ρ01(t), eq.

3.74, and �nd the �nal form of the exponent, the time dependent dephasing 'rate'

J2∗(t− t0) = 32π2g2N2
0 |α|2

∫∫
dω1dω2

(2π)2

[
n(ω1)n(ω2)− α2 + α∗2

2|α|2
p(ω1)p̄(ω2)

]

× f(ω2)(1− f(ω1))
2 sin2(ω1−ω2

2 (t− t0))

(ω1 − ω2)2
. (3.106)
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This integral is convergent even for the BCS density of states with singularity at the
gap. In addition to the decay governed by the rate Γ2∗ the qubit experiences a frequency
shift due to quasiparticle tunneling induced dephasing. The frequency shift is given by
the imaginary part of the exponent

ν(t−t0) = −32π2g2N2
0 |α|2

∫∫
dω1dω2

(2π)2

[
n(ω1)n(ω2)− α2 + α∗2

2|α|2
p(ω1)p̄(ω2)

]
f(ω2)(1−f(ω1))

× (ω1 − ω2)(t− t0)− sin((ω1 − ω2)(t− t0))

(ω1 − ω2)2
. (3.107)

The main contribution to the integral will arise from ω1 ≈ ω2 such that we can truncate
both frequency integrals to positive ω-values. With latter approximation and if we
take the standard BCS quasiparticle and pair density (n0(ω) = ω/

√
ω2 −∆2 and

p0(ω) = ∆/
√
ω2 −∆2) and replace the last time dependent fraction with a δ function

in expression 3.106 we recover the golden rule dephasing rate obtained earlier in this
work. We can express the matrix element ρ01 with these rates and �nd

ρ01(t− t0) = ei(δE·(t−t0)−ν(t−t0))−J2∗ (t−t0) (3.108)

At the end of this section we analyze the non Markovian dephasing rate for the special
case of real α as it is the case for the transmon qubit. In this case the densities of
states reduce to there BCS form and, after applying the low energy approximation, we
obtain

J2∗(t) ≈
16g2|α|2N0nqp

1 + γ|α|2
t

2

∞∫
0

dx

√
x

x+ ∆t

2 sin2 x

x2
(3.109)

Usually the superconducting gap is of order 109− 1011Hz while we expect the time to
be at least of the order of relaxation yielding t ∼ 10−6s. Hence the parameter ∆t is of
order 103 − 105 while the main contribution to the integral comes from x ≈ 0 and we
can approximate the expression for the dephasing rate with

J2∗(t) ≈

16g2|α|2N0nqp
1 + γ|α|2

∞∫
0

dx
√
x

2 sin2 x

x2

 t1/2

2
√

∆

=
16g2|α|2N0nqp

1 + γ|α|2

√
2π

∆
t1/2 . (3.110)

This time dependent rate looks quite familiar since (despite to the small factor γ|α|2
in the denominator) the prefactor is the same as the one we have already seen for
the relaxation as well as the self consistent dephasing rate. Nevertheless we see that,
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3 Quasiparticle Tunneling & Qubit Decoherence

although we can de�ne a golden rule rate without running into the square root singu-
larity, an exact non Markovian treatment yields a di�erent time dependence compared
to the Markovian self-consistent or golden rule calculation: ∼ Γ2∗t

1/2 instead of Γ2∗t.
We will later see that J(t) = atb very well �ts numerical results but with b di�erent
to 1/2 (we will even encounter a case with b ≈ 1). The exponent b depends on the
exact shape of the distribution function since for the low energy approximation to be
valid we need a very narrow distribution function while a smeared out distribution as
the equilibrium Fermi distribution will lead to linear time dependence instead of the
square root dependence, see section 4.1.2.
For a theoretical qubit with a pure imaginary matrix element α = is, we can apply

a similar approximation and �nd a rate proportional to t3/2:

J2∗(t) ≈

16g2|α|2N0nqp
1 + γ|α|2

∞∫
0

dx
√
x

2 sin2 x

x2

 t1/2

2
√

∆

=
16g2|α|2N0nqp

1 + γ|α|2
4
√
π

3
√

∆
t3/2 (3.111)

We want to emphasize that, in contrary to relaxation, the low energy approximation
has to be used with care for pure dephasing. To clarify this, we �rst have a look on
relaxation again. There a tunneling process is related to an energy transfer of size δE
from the qubit to the quasiparticle. This results in the energy conserving delta function
forcing E−E′ = δE in the integrand for the golden rule relaxation rate 3.39. Therefore
the relevant energy scale besides the superconducting gap is the qubit energy splitting
δE. The low energy approximation is valid as long as the distribution function in
the integrand decreases so fast that the main contribution to the integral arises from
energies E − ∆ � δE which is valid for almost every realistic distribution function.
The situation for pure dephasing is entirely di�erent. Here, no energy is transfered
between qubit and quasiparticle. Hence the main contribution to the dephasing rates
arises from E ≈ E′ in the integrals de�ning the rates. This holds for the golden rule
rate where a delta function enforces E = E′ as well as for the self-consistent 3.60 and
non-Markovian rate 3.106 where the integrands have pronounced maxima at E = E′.
Hence the low energy approximation is valid only when the distribution function is
very close to a delta function, f(E) ≈ δ(E −∆). In chapter 4 we calculate dephasing
rates for a transmon using a Fermi distribution. In this case the distribution function
doesn't ful�ll this requirement and the low energy approximation fails for dephasing
while yielding very good results for relaxation. In this case the non-Markovian 'rate'
J2∗ becomes even linear in t and we are able to de�ne a true non-Markovian dephasing
rate which is in good agreement with the self-consistent rate.
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4 Chapter 4

Relaxation and Dephasing for a
Transmon Qubit

In this chapter we calculate relaxation and dephasing times (Ti = Γ−1
i ) for transmon

qubits. Relaxation rates obtained in the low energy approximation show good agreement
with experimental results. In contrary to our approximate low energy approximation
the non Markovian dephasing rate shows a linear behavior in time and we compare it
to the self-consistent and golden rule rate (which converges for the transmon). In the
second part of this chapter we analyze a transmission line embedded Josephson junction
and �nd that the design provides no advantage compared to a lumped element transmon
in matters of quasiparticle induced decoherence.

4.1 Lumped Element Transmon

In this chapter we will use the rate equations we found in previous sections to calculate
the decoherence of a transmon [22] qubit. As mentioned in section 1.1.3 a transmon
in the lumped element representation obeys the Hamiltonian

H = 4EC n̂
2 − EJ cos(φ) (4.1)

with charging energy EC = e2/2(CJ + CS) for a Josephson junction in parallel with
a shunting capacity CS , Cooper pair number operator n̂ and phase drop φ across the
junction. As we have mentioned already for a transmon with EJ � Ec the particle
will be trapped in the �rst minimum of the cosine potential with a narrow peaked wave
function such that we can approximate the potential for the lowest lying energy levels
as a harmonic potential

H ≈ 4EC(n̂− ng)2 +
EJ
2
ϕ̂2 . (4.2)
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4 Relaxation and Dephasing for a Transmon Qubit

To analyze the qubit anharmonicity we treat the next order of the cosine ∼ φ4 as a
perturbation and calculate the energy shift in �rst order perturbation theory we �nd

δEn = −EC
4

(2n2 + 2n+ 1) . (4.3)

We de�ne the absolute and relative anharmonicity by

α = E32 − E21 αr =
α

E21
(4.4)

where E21 = E2 −E1. Using the energy levels calculated with perturbation theory we
�nd

α = −EC αr =
−1√

8EJ/EC − 2
(4.5)

The absolute anharmonicity depends on the charging energy only while the relative
anharmonicity decreases with the ratio EJ/EC suggesting that we need this ratio as
small as possible which is the case for e.g. the charge qubit. On the other hand the
transmon is de�ned in a region with EJ � EC which is necessary to provide the
transmon with its outstanding protection against charge noise [22]. The price to pay
is the weak anharmonicity which, on the other hand, allows for the harmonic oscillator
approximation we will use to calculate the matrix elements for decoherence rates. We
will later on compare the dependence of decoherence rates on the ratio EJ/EC with
the anharmonicity. The only qubit dependent parameters in the expression 3.42 for the
relaxation rate in low energy approximation (and the corresponding dephasing rates)
are the matrix elements sij and cij which can easily be calculated using the harmonic
oscillator wave functions for the ground state n = 1 and the �rst excited state n = 2.
We �nd

s00 = s11 = c10 = c01 = 0 (4.6)

c00 = e
− 1

2

√
EC
8EJ (4.7)

c11 =
(

1−
√
EC/8EJ

)
e
− 1

2

√
EC
8EJ (4.8)

s01 = s10 =
(
EC/8EJ

)1/4
e
− 1

2

√
EC
8EJ (4.9)

The qubit energy splitting in this approximation equals the junctions plasma frequency
δE =

√
8EJEC .
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4.1 Lumped Element Transmon

4.1.1 Relaxation

With expression 3.42 for the relaxation rate in low energy approximation we �nd the
transmons relaxation rate due to quasiparticle tunneling

Γ1 = 8N0πg
2nqp

√
2 + δ

δ

√
EC
8EJ

e
−
√

EC
8EJ , (4.10)

with the small parameter δ = δE
∆ =

√
8ECEJ

∆2 � 1. We use equation 1.70 to express

the tunneling matrix element g2 in terms of the gap ∆ and the Josephson energy
EJ yielding π2N2

0 g
2∆ = EJ . In addition we de�ne xqp =

nqp
2N0∆ , the quasiparticle

density normalized to the Cooper pair density. Substituting those expressions into the
relaxation rate yields our �nal result for the relaxation rate of a transmon due to single
quasiparticle tunneling

Γ1 =
2xqp
π

√
2 + δ

δ

√
8EJECe

−
√

EC
8EJ . (4.11)

The rate depends on quasiparticle properties solely due to the normalized quasiparticle
density

xqp =
1

∆

∞∫
∆

dE
E√

E2 −∆2
f(E) =

∞∫
1

dx
1√

x2 − 1
f(∆x) . (4.12)

In equilibrium the quasiparticle distribution function is a Fermi-Dirac distribution
which can be approximated with a Boltzmann function for energies close to the gap.
In this limit the integral in the de�ning equation for the normalized density can be
calculated yielding

xqp(T ) =

√
πkBT

2∆
e
− ∆
kBT (4.13)

The density and hence the relaxation rate is exponentially suppressed at temperatures
below the gap and increases with higher temperatures due to thermally excited quasi-
particles. Therefore we expect the rate to increase exponentially with the temperature
and the qubit is well protected against relaxation due to quasiparticles at low tem-
peratures if the superconductors are in equilibrium. Nevertheless experimental data
show excess quasiparticles even at lower temperatures which can only be understood
if there are additional non-equilibrium quasiparticles present at the junction. Possible
sources of these quasiparticles can be the leakage from surroundings or quasiparticles
excited due to radiation [9]. The presence of non-equilibrium quasiparticles leads to
a saturation of the quasiparticle density at low temperatures and hence a �nite relax-
ation rate even at low temperatures. We numerically solve the Boltzmann equation
with quasiparticle injection at energy Einj > ∆ and quasiparticle relaxation due to
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4 Relaxation and Dephasing for a Transmon Qubit

phonon scattering to obtain the normalized quasiparticle density in the presence of
non-equilibrium quasiparticles [32]. In Addition we use the Boltzmann equation in
relaxation time approximation with a constant injection rate η:

η =
f(E)− feq(E)

τ(E)
(4.14)

and the de�nition for xqp to obtain

xqp =
1

∆

∞∫
∆

dEf(E)n(E) = xeqqp(T ) +
η

∆

∞∫
∆

dEn(E)τ(E)

= xeqqp(T ) + x0
qp , (4.15)

where xeqqp(T ) is de�ned in equation 4.13. To obtain this form for xqp we assumed
that the relaxation time has no temperature dependence which seems rather crude but
�ts well with experimental data for qubit relaxation rates although the saturation in
relaxation does not necessarily arise due to non-equilibrium quasiparticles. We plot
all three quasiparticle densities, the thermal equilibrium density xeqqp, the numerically
obtained one and the one emerging from relaxation time approximation in �gure 4.1a.
Both densities emerging from solving Boltzmann equation show saturation. This can be
understood as a balance of quasiparticle generation and relaxation, e.g. due to phonon
or electron scattering. At temperatures higher than the gap quasiparticle density is
dominated by thermally excited quasiparticles.
Now we can plug everything together and compare our results with real life ex-

periments. We want to apply our results to an experiment performed by Sun et al.
[33]. In their experiment they measure T1 times for transmon qubits build from dif-
ferent materials in dependence of temperature. The transmons, we chose two of them,
consist either of pure aluminum (∆ = 180µeV ) superconductors or oxygen doped alu-
minum (∆ = 280µeV ). Due to the larger gap, thermal quasiparticles are suppressed
in the doped aluminum up to higher temperatures as in the transmon made of pure
aluminum leading to higher T1 times at elevated temperatures. Qubit parameters
are taken from [33] and summarized in table 4.1. We compare the temperature de-
pendence of normalized quasiparticle densities xqp for both qubits obtained with the
di�erent approximations presented in this section in �gure 4.1a. For high temperatures
all densities coincidence with the thermal equilibrium density while at temperatures
below the respective gap the thermal density drastically decreases while both densities
obtained from Boltzmann equation saturate at a certain o�set (x0

qp for the temper-
ature independent relaxation time approximation). O�set values are �t parameters
obtained by �tting the qubit relaxation rate (or relaxation time T1 to be precise) to
the experimental data. In �gure 4.1b we �t expression 4.11 for the qubit relaxation
rate to experimental data obtained in the experiment [33]. Since in the experiment
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4.1 Lumped Element Transmon

Table 4.1: Qubit parameters
Qubit ∆ [GHz] δE [GHz] EJ [GHz] EC [GHz]

Al 273 4.25 9.1 0.248
oxygen doped Al 425 5.16 11.1 0.3

the T1 = Γ−1
1 has been measured, we �t 1/Γ to the experimental data. At high tem-

peratures the rates for both qubits (red dots pure Al, blue doped Al) well follow the
rates obtained with the thermal equilibrium density. At lower temperatures both rates
saturate which can very well be �tted with the quasiparticle densities for temperature
independent relaxation times. We �nd x0

qp = 6 · 10−6 and 3.7 · 10−6 for the pure and
doped aluminum respectively. The dependence of the quasiparticle induced relaxation
rate on the gap can clearly be seen since the T1 time for the pure aluminum qubit with
smaller gap drops at lower temperatures than the qubit with larger gap.

(a) normalized quasiparticle density xqp (b) relaxation time T1 = Γ−11

Figure 4.1: (a) Normalized quasiparticle density. Dashed red (blue) lines represent
thermal equilibrium for Al (doped Al). Solid lines are the corresponding densities from the
Boltzmann equation with phonon scattering while orange (green) dashed lines emerge from
equation 4.15 for Al (doped Al). (b) The corresponding relaxation times with experimental
values taken from [33] (red and blue dots, lines are a guidance to the eye).

Finally we want to analyze the dependence of the qubit relaxation time on qubit
parameters, namely EJ , EC . In �gures 4.2c and 4.2 we plot qubit relaxation times in
dependence of the charging energy EC and the Josephson energy EJ . The �gures show
that decreasing EC as well as decreasing EJ has positive in�uence on the relaxation
time. Of course one has to keep in mind that the transmon only works in regions with
EJ � EC . But since the increase in T1 due to EC is stronger than due to EJ one can
easily achieve both goals, large ratio of EJ and EC and good T1 times. We �nd that the
exponential factor in the relaxation rate has small in�uence in the parameter regime of
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4 Relaxation and Dephasing for a Transmon Qubit

the qubit since on could expect exponentially suppressed relaxation times with smaller
EC but the opposite happens due to the appearance of EC in the denominator of the
square root leads to the strong increase of T1 with decreasing charging energy.

4.1.2 Dephasing

As we showed earlier dephasing depends on di�erent matrix elements than relaxation,
namely s00, s11, c00 and c11. If we take the transmon with its Hamiltonian symmetric
in the phase drop across the junction the matrix elements involving the sine drop
out and the dephasing rate depends only on the remaining cosine matrix elements.
For this special case of a symmetric Hamiltonian the dephasing rate in golden rule/
�rst order approximation is well de�ned and due to the small matrix elements of
for dephasing, see �gure 4.3, orders of magnitude smaller than the relaxation rate.
Therefore quasiparticle induced dephasing doesn't play an important role for transmon
qubits. But since we can calculate the dephasing for a transmon qubit for all di�erent
approaches - golden rule, self-consistent and non-Markovian - we can use it to compare
the di�erent approaches with each other. The important matrix element for dephasing
is

c2 =
1

4
(c11 − c00)2 =

1

4

EC
8EJ

e
−
√

EC
8EJ (4.16)

which is purely real. Hence the ratio between relaxation and dephasing matrix elements
is

c2

s2
01

=
1

4

√
EC
8EJ

, (4.17)

which ful�lls c2

s201
� 1 in the transmon regime. Hence we already know from equation

3.64 that dephasing will be way smaller than relaxation for the transmon. Nevertheless
this statement holds only as long as the divergent part of the dephasing rate ∼ s2

vanishes. As soon as we have a qubit with non symmetric Hamiltonian the dephasing
due to quasiparticle tunneling might become more important although matrix elements
for dephasing are small.

The rates for a transmon obtained from the di�erent approaches (gr - golden rule,
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4.1 Lumped Element Transmon

(a) T1 time vs EJ (b) T1 time vs EC

(c) T1 for a transmon versus charging energy EC and Josephson
energy EJ . A small charging energy leads to a strong increase in the
relaxation time. Larger EJ has the same but weaker effect.

Figure 4.2
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4 Relaxation and Dephasing for a Transmon Qubit

Figure 4.3: Transmon ratio c2/s201between matrix elements for dephasing and relaxation,
EJ = 9.1GHz

sc - self-consistent, nm - non Markovian) read

Γ2∗,gr = 2ε

∫ ∞
∆

dE(1− f(E))f(E)

(4.18)

Γ2∗,sc = 2ε
1

π

∫ ∞
∆

∫ ∞
∆

dEdE′
EE′ −∆2

EE′
n(E)n(E′)f(E′)(1− f(E))

× Γ2∗,sc

(E − E′)2 + Γ2
2∗,sc

(4.19)

J2∗,nm(t− t0) = 2ε
1

π(1 + EJ/∆)

∫ ∞
∆

∫ ∞
∆

dEdE′
EE′ −∆2

EE′
n(E)n(E′)f(E′)(1− f(E))

×
sin2(E−E

′

2 (t− t0))

(E − E′)2

(4.20)

with ε = 16EJc
2

π∆ � 1. We calculate the rates for a transmon with parameters as for
the pure aluminum transmon from previous section numerically. For that reason we
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4.1 Lumped Element Transmon

rewrite the integrals in dimensionless variables, yielding

Γ2∗,gr = 2ε∆

∫ ∞
1

dx(1− f(∆x))f(∆x)

(4.21)

Γ2∗,sc = 2ε
1

π

∫ ∞
1

∫ ∞
1

dxdy
xy − 1

√
x2 − 1

√
y2 − 1

f(∆x)(1− f(∆y))

× Γ2∗,sc

(x− y)2 + Γ2
2∗,sc/∆

2

(4.22)

J2∗,nm(t− t0) = 2ε
1

π(1 + EJ/∆)

∫ ∞
1

∫ ∞
1

dxdy
xy − 1

√
x2 − 1

√
y2 − 1

f(∆x)(1− f(∆y))

×
sin2(x−y2 ∆(t− t0))

(x− y)2

(4.23)

First we calculate the integrals for an equilibrium distribution function f(∆x) = 1/(1+
ex∆/kBT ) at a temperature of 300mK and compare the numerical results with the low
energy approximations from chapter 3. The resulting exponents J2∗,nm(t), Γ2∗,sc · t

Figure 4.4: Time dependent exponents J2∗,nm(t) (solid red), Γ2∗,sct (dashed blue) and
Γ2∗,grt (dotted green) for equilibrium distribution at 300mK.

and Γ2∗,gr · t are graphed in �gure 4.4. In contrary to the predicted behavior in the
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4 Relaxation and Dephasing for a Transmon Qubit

Table 4.2: Dephasing times T2∗ and relaxation time for the pure aluminum transmon
T1 [µs] T2∗,gr [µs] T2∗,sc [µs] T2∗,nm [µs]

T = 300mK 0.02 97.07 97.18 96.17

low energy approximation the non Markovian rate is linear in time t (the derivation
at larger t is likely to be a numerical error) and a �t with gnuplot yields J2∗(t) =
1.9046 ·10−8 ·(∆t) which yields a dephasing rate Γ2∗,nm = 10399/s. The self-consistent
and golden rule rate are 10295.5/s and 10301.92/s respectively. Therefore all three
rates are almost identical. Since we can de�ne a non Markovian dephasing rate we can
also calculate the corresponding pure dephasing times T2∗ . We sum up the resulting
dephasing times in table 4.2. As mentioned in 3 the low energy approximation fails
since the Fermi distribution is smeared out to much above the gap and we neglect to
much of the integral in that approximation. In �gure 4.5 we plot qubit dephasing times
obtained for the pure aluminum qubit from [33] (we changed the gap to ∆ = 150GHz).
The dephasing times emerging from the three di�erent approaches yield the same
result and reach from µs up to seconds. The dephasing times are large compared to
relaxation times for the same qubit implying that pure dephasing is negligible compared
to relaxation and the decoherence time T2 = (1/2T1 + 1/T2∗)

−1 is dominated solely by
relaxation for a transmon. This comes not as surprise. We have seen at the beginning
of this chapter, that the dephasing matrix element is small compared to the relaxation
matrix element. For the transmon the dephasing rate doesn't diverge even in the
golden rule approximation and hence we can expect it to be small. This might change
for qubits with non-symmetric Hamiltonian which have a divergent part s2 6= 0. In
this case dephasing can still play an important role and further analyzes are necessary
to check this for di�erent qubit types. The failure of the low energy approximation is
obvious as it overestimates the dephasing time by orders of magnitude compared to all
other rates.

4.2 Transmission Line Embedded Josephson Junction

In this section we will analyze a transmission line interrupted by a Josephson junction
at an arbitrary position of the transmission line. Of course the junction gives rise
to the Josephson e�ect and as we will show in this section one can use the whole
system as a transmon qubit, provided a suitable set of system parameters has been
chosen. Experimentally, the model consists of di�erent superconducting layers: one
layer, interrupted with a barrier, forming the transmission line, a feeding line at each
end of the transmission line, capacitively coupled to the transmission line, and �nally
two layers surrounding the whole setup, referred to as 'ground plates' see �gure 4.6a.
The feeding lines can be used to read-out and control the transmission line (transmon
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4.2 Transmission Line Embedded Josephson Junction

Figure 4.5: Pure dephasing times for the pure aluminum transmon with parameters taken
from [33] as function of temperature. Superconducting gap is 150GHz. The dephasing
times obtained from the different approaches match perfectly with each other and have
magnitudes much larger than the relaxation time T1 (dashed line). Solely the low energy
approximation for the self-consistent rate (solid orange) deviates from the rest predicting
a much higher dephasing time.

qubit). In this section we closely follow [34] where this system has been analyzed in
detail.

4.2.1 Basics

To derive a model for the system consisting of the transmission line, the Josephson
junction and the capacities coupling the transmission line to the control lines, we
divide the transmission line with total length 2d into small segments of length δx,
where δx is much smaller than the transmission line length, δx� 2d and much smaller
than typical wave lengths in the system, δx � λ, where λ typically lies well within
the microwave spectrum. Since typical transmission lines have a length in the range
of 1cm, the �ux φ will vary signi�cantly along the transmission line but with the
prerequisite δx � λ, we can approximate the �ux for each segment with a constant
φα,i, where α = l/r is for segment i on the left/ right side of the junction, see �gure
4.6b. Every segment is coupled with a capacity Ci = c(xi)δx to the ground plate and
with inductance Li = l(xi)δx to the next segment. Here, c(x) and l(x) are respectively
the capacity and inductance per unit length, which we will assume to be constant and
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ground

plate

Josephson

junction

feeding

line

(a) Sketch of a trasnsmission line embedded Josephson junction

| | | | | | | | | ||
−d −d+ δx · · · d x

χ

φl,1 φl,2 φl,N φr,N φr,2 φr,1

(b) Lumped element model

Figure 4.6: A transmission line with embedded Josephson junction

identical on both sides of the junction (a generalization is straightforward, see e.g.
[34]). According to section 1.1.1, the Lagrangian for the transmission line, the junction
and the coupling capacities can be written as sum of three parts [35], namely

L = Ltl + Ljj + Lin + Lout . (4.24)

Here, Ltl is the Lagrangian of the pure transmission line to the left and to the right of
the junction. For each side, according to �gure 4.6b, the Lagrangian is the sum of N
inductively coupled LC circuits:

Ltl =
∑
α=l,r


N∑
i=1

Ci
2
φ̇2
α,i −

N−1∑
i=1

(φi+1 − φi)2

2Li

 . (4.25)

Ljj in eq. 4.24 describes the Josephson e�ect due to the junction,

Ljj =
CJ
2

˙δφ
2

+ EJ cos(δφ/Φ0)

=
CJ
2

˙δφ
2 − 1

2LJ
δφ2 − Unl(δφ) ,

(4.26)

L−1
J = EJ/Φ

2
0. We explicitly separated the Josephson term into its linear part ∼ δφ2

which behaves just like a linear inductance with L = LJ and its non-linear part

Unl(δφ) = −EJ cos

(
δφ

Φ0

)
− EJ

2Φ0
δφ2 . (4.27)
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Here δφ is the �ux di�erence across the junction, δφ = φr,N−φl,N . The idea behind this
separation is to solve the linearized Lagrangian for its eigenmodes and than treat the
non-linear part as a perturbation which can be expressed in terms of the eigenmodes
of the linearized model. Therefore we will neglect the non-linear potential Unl for the
time being and introduce it later on as a perturbation, to analyze it's in�uence on
system behavior. The last terms of the Lagrangian 4.24, Lin/out represent the in- and
out ports of the transmission line,

Lin/out =
Cin/out

2
(φ̇l/r,1 − Vin/out)2 , (4.28)

where Vin/out are voltages applied respectively to the in and out port of the transmission
line and allow for control/ read-out of transmission line states. In addition, they will
provide a term similar to the gate charge ng in the CPB/ transmon Hamiltonian 1.27
in the transmission line Hamiltonian. Now, before using Euler-Lagrange equations to
derive the eofs for the transmission line system, we carry out the transition from the
lumped element model to a continuum model. To do so, we express the capacity and
inductance per segment with the capacity/ inductance per unit length multiplied by δx
and let δx go to zero. This yields the continuum limit Lagrangian for the transmission
line

Ltl[φl, φr] =

xj∫
−d

[
c(x)

2
φ̇2
l (x, t)−

(∂xφl)
2(x, t)

2l(x)

]
dx+

d∫
xj

[
c(x)

2
φ̇2
r(x, t)−

(∂xφ)2
r(x, t)

2l(x)

]
dx .

(4.29)
In latter expression, we introduced the �ux �elds φl/r for the left and right segment of
the transmission line and the junction position xj , which can but doesn't have to be
in the middle (xj = 0) of the transmission line. This freedom in changing the junction
position yields another degree in freedom in system design that can be used to optimize
system parameters according to the target application [34]. In the continuum limit,
the Josephson and the in/ out parts of the Lagrangian read

Ljj =
CJ
2

(φ̇r(xj)− φ̇l(xj))2 − 1

2LJ
(φr(xj)− φl(xj))2 − Unl(φr(xj)− φl(xj)) (4.30)

Lin/out =
Cin/out

2
(φ̇l/r(∓d)− Vin/out)2 , (4.31)

yielding boundary conditions for the left and right �ux �eld φl/r at the junction position
and in/ out ports. In absence of the junction and the ports, the �elds satisfy standard
wave equations on either side of the junction:

φ̈l/r(x, t)− v2φ′′l/r = 0 , (4.32)

with the phase velocity v = 1/
√
lc. At the junction, the current arriving from the left

side must be equal to the current through the junction and to the current leaving the
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junction on the right side. Due to the current conservation, the �elds have to obey the
following boundary condition at the junction position xj (see also 4.30):

1

l
φ′l(xj , t) =

1

l
φ′r(xj , t) = CJ(φ̈r(xj , t)− φ̈l(xj , t)) +

1

LJ
(φr(xj , t)− φl(xj , t)) . (4.33)

If we took into account the full junction potential, the current would be given by the
known Josephson relation I ∼ sin(δφ/Φ0) instead of above expression. Similar, the
current at the left and right end of the transmission line must either vanish if we assume
that no capacitative coupling exists or it must equal the current arising due to an AC
voltage applied to the ports:

φ̈l/r(∓d, t)∓
1

Cin/outl
φ′r/l(∓d, t) = V̇in/out(t) , Cin/out 6= 0 (4.34)

φα(∓d, t) = 0 , otherwise . (4.35)

The eof 4.32 together with boundary conditions 4.33 and respectively 4.34 or 4.35
respectively, completely describe the system dynamics. Due to the boundary conditions
4.33 and 4.34 there exists a set of eigenmodes for the system. We expand the solution
for a general �ux �eld in the basis provided by these eigenmodes

φα(x, t) =
∑
m

gα,m(x)fm(t) (4.36)

where fm(t) obeys the di�erential equation f̈m(t) +ω2
mfm(t) = 0 and gα,m is the space

dependent amplitude for mode m. The wave equation 4.32 imposes the governing
di�erential equation for the spatial eigenmodes gα,m(x)

g′′α,m(x) + k2
m gα,m(x) = 0 , km =

ωm
v
, (4.37)

which can be solved by the the ansatz [34]

gm(x) =

sin(km(x+ d)− ϕl), −d ≤ x ≤ xj
Am sin(km(x− d) + ϕr), xj < x ≤ d

. (4.38)

In the ansatz, we only specify the relative amplitude AM between the left and right side
but do not provide an overall amplitude such that the modes are not normalized but
will have a mode dependent mass, as we will see later. The phases ϕα are determined
by the homogeneous part (V̇α = 0) of boundary condition 4.34. They are given as

tan(ϕα) =
c

Cj

1

km
. (4.39)
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Current conservation through the junction (see eq. 4.33) �xes the relative amplitude
Am between the left and right �ux �eld to be

Am =
cos(km(xj + d)− ϕl)
cos(km(xj − d) + ϕr)

, (4.40)

while current current conservation between left side and junction yields a transcenden-
tal equation for the mode vector km similar to the transcendental equation �xing the
eigenmodes for a pure transmission line:

km =
l

Lj
(1− k2

m

k2
p

)
[
tan(km(xj − d) + ϕr)− tan(km(xj + d)− ϕl)

]
=

l

Lj
(1− k2

m

k2
p

)

[
sin(−2kmd+ ϕr − ϕl)

cos(km(xj + d)− ϕl) cos(km(xj − d) + ϕr)

]
. (4.41)

In latter equation, we introduced the 'plasma wave vector' kp of the Josephson junc-
tion, de�ned as kp = ωp/v with the junctions plasma frequency ωp = 1/

√
LJCJ =√

8EC,JEj . This transcendental equation can only be solved numerically, but a closer
look reveals some information about the expected solution. The expression on the right
hand side of eq. 4.41 is zero for km = kp suggesting that we can expect one eigenvalue
to be close to the junctions plasma frequency. Assuming the in�uence of the phases
ϕα to be small, we can expect solutions of the transcendental equation to be close to
the �interesting� points of the right hand side, namely zeros and divergences. This
yields two more sets of solutions, one given by the zeros of the sine in the nominator,
yielding km ≈ mπ

2d . These solutions are nothing more than the eigenmodes of the bare
transmission line with total length 2d. These modes usually yield �nite �ux values
at the junctions position and we can expect them to be in�uenced by the junction if
the plasma frequency is almost in resonance with the given eigenmode. The second
set of solutions provided by equation 4.41 has wave vectors close to the zeros of the
cosine terms in the denominator yielding solutions of the form km ≈ 2m+1

2
π

d±xj , with

m ∈ N . These solutions recover the eigenmodes of transmission lines with length d±xj
respectively. Since the corresponding waves always have nodes at the junction position
(again, assuming the in�uence of ϕ to be relative small), the junctions in�uence on
those modes should be small. Indeed, numerical solutions con�rm the suspected spec-
trum for a system without coupling (Cin/out = 0), see �gure 4.7. The eigenmodes of
the linearized system and their �rst derivate with respect to x obey an orthogonality
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4 Relaxation and Dephasing for a Transmon Qubit

Table 4.3: Parameters used for numerical calculations.
Parameter Value

l 5 · 10−7H/m
c 2 · 10−10F/m
CJ 2 · 10−12F/m
d 6 · 10−3m

relation slightly di�erent to the usual orthogonality relation for functions:

〈gmgn〉 =

∫ d

−d
cgm(x)gn(x)dx+ Cingm(−d)gn(−d)

+Coutgm(d)gn(d) + CJδgmδgn = Cmδmn

(4.42)

〈g′mg′n〉 =

∫ d

−d

1

l
g′m(x)g′n(x) +

1

LJ
δgmδgn = ω2

mMmδmn (4.43)

Here, δgm is the phase drop gm(x+
j )− gm(x−j ) at the junction and Cm is the e�ective

mass of mode m which has the dimension of a capacity and we will refer to it either
ass e�ective mass or total capacity of mode m. With these relations we are able to
decouple the di�erent eigenmodes in the linearized Lagrangian 4.24 and �nd

Llin =
∑
m

{
Mm

2
ḟ2
m − ḟmqg,m −

ω2
mMm

2
f2
m

}
(4.44)

where qg,m = (gm(−d)CinVin + gm(d)CoutVout) is a charge o�set due to applied gate
voltages similar to the CPB. From the Lagrangian we can easily derive the linearized
Hamiltonian

H =
∑
m

1

2Cm
(qm + qg)

2 +
ω2
mCm
2

f2
m . (4.45)

It doesn't come as a surprise that this Hamiltonian is just a sum of decoupled harmonic
oscillators with frequencies determined by the transcendental equation 4.41. The non
linear part of the potential will lead to a �nite coupling between di�erent modes with
a �ux drop δgm across the junction. Now, to take into account the non linear part,
we expand the argument of the non linear potential in the basis provided by the
eigenmodes,

Unl({fm}) = −Ej cos

∑
m

fm
δgm
Φ0

− 1

2LJ

∑
m

fmδgm

2

, (4.46)
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4.2 Transmission Line Embedded Josephson Junction

and �nd the Hamiltonian of the full system, expanded in the basis of eigenmodes of
the linearized model:

H =
∑
m

 1

2Cm
(qm + qg)

2 +
ω2
mCm
2

(
1− 1

ω2
mCmLJ

δg2
m

)
f2
m

− 1

2LJ

∑
n6=m

fmfnδgmδgn

− Ej cos

∑
n

fn
δgn
Φ0

 .

(4.47)

The Hamiltonian reveals the in�uence of the non- linearity. On one hand, the eigen-
frequencies experience a shift due to a phase bias ∼ δg2

m across the junction. On the
other hand, there is a coupling between di�erent modes, where we have linear coupling
∼ (2LJ)−1 and a coupling due to to the cosine term. It becomes clear from this Hamil-
tonian, that coupling only exists between modes that provide a �nite phase drop δgm
across the junction. Therefore it turns out to be useful to separate the modes that are
not in�uenced by the junction from those su�ering from the junctions in�uence. We
rescale the variables for latter modes according to

f̃m = fmδgm (4.48)

q̃m =
qm
δgm

(4.49)

C̃m =
Cm

δg2
m

(4.50)

and the Hamiltonian now reads

H = H0 +

•∑
m

 1

2C̃m
(q̃m + q̃g)

2 +
ω2
mC̃m
2

(
1− 1

ω2
mC̃mLJ

)
f̃2
m

− 1

2LJ

•∑
n6=m

f̃mf̃n

− Ej cos

 •∑
n

f̃n
Φ0

 ,

(4.51)

where H0 is the linear Hamiltonian of those modes that do not feel the junctions
in�uence which we will not discuss further while

∑•
m denotes the sum over all modes

in�uenced by the junction. We quantize the Hamiltonian of the in�uenced modes by
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4 Relaxation and Dephasing for a Transmon Qubit

introducing creation and annihilation operators of mode m:

am =

√
C̃mωm

2

(
f̃m + i

1

C̃mωm
(q̃m + q̃g)

)
(4.52)

a†m =

√
C̃mωm

2

(
f̃m − i

1

C̃mωm
(q̃m + q̃g)

)
(4.53)

We express the Hamiltonian with the so de�ned ladder operators and expand the
cosine up to the �rst non linear order (∼ f̃4). To simplify the results we apply the
RWA neglecting terms rotating faster than |ωm − ωn|. Within this approximation the
Hamiltonian can be expressed with Kerr nonlinearities Kmn and beam splitter like
interactions ζlmn, [34] (the work on the nonlinearities and so forth was done in this
paper, we only sum up their results at this place):

H = ω′m(a†mam +
1

2
)−

∑
m,n

1

2
Kmna

†
mama

†
mam

−
∑
m6=n

ζmmn(a†nam + a†man) +
∑

l 6=m6=n
ζlmn(a†l al +

1

2
)(a†man + a†nam) (4.54)

The nonlinearity induces a frequency shift ω′m = ωm−
∑

nKmn while the nonlinearities
are de�ned as

Kmm =
1

8LjΦ2
0

1

C̃mωm
=

EC,m
LJωm

(4.55)

Kmn = 2
√
KmmKnn (4.56)

ζlmn = (1− δlm/2)(K2
llKmmKnn)1/4 (4.57)

with the charging energy EC,m = e2/2Cm of mode m. Here the self-Kerr coe�cient
Kmm proportional to the charging energy EC,m is the anharmonicity within each mode

m itself, i.e. the deviation from an ideal harmonic oscillator with ladder operators a
(†)
m

while the coe�cients Kmn describe the inter-mode anharmonicity. As it becomes clear
from the Kerr nonlinearity 4.55 the resonator can be made strongly nonlinear by either
increasing the mode charging energies EC,m or decreasing the product LJωm which
means decreasing the Josephson energy or changing the junction position. Increasing
charging energy can for example be achieved either with decreasing the transmission
line length (since the total capacity of the line is the sum C ∼ 2lc+CJ +Ci+Co) or de-
creasing in/ out capacities or the Josephson junctions capacity, see �gure 4.8b and 4.9b
where we plot respectively transmission line capacity and detuning ωi+1 − 2ωi versus
transmission line length. The detuning reaches very high values with short transmis-
sion lines. With those modi�cations the resonator described with the Hamiltonian 4.51
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4.2 Transmission Line Embedded Josephson Junction

can be made so nonlinear that the transmission lines �rst fundamental mode lies far
above Junctions plasma frequency. In this case the lowest mode of the whole system
is more or less given by the plasma mode of the Josephson junction dressed by the
transmission line (ω̃p ≈

√
8EC,1EJ), see �gure 4.8. Since in that case higher modes

are comfortably far away from the �rst mode we can truncate the Hamiltonian to this
one mode yielding the e�ective Hamiltonian of a transmon qubit in parallel with an
additional inductance:

H = 4EC,1n
2 +

EL
2
ϕ2 − EJ cosϕ , (4.58)

with the number of Cooper pairs n = (q1 + gg)/2e, the charging energy EC,1 of the
lowest system mode, the phase drop ϕ = f̃1/Φ0 across the junction and the inductive

energyEL =
ω2

1
8EC,1

−EJ . From this point we proceed in the same way as for the lumped

element transmon and approximate the Hamiltonian 4.58 with an harmonic oscillator
yielding

H = 4EC,1n
2 +

1

2

ω2
1

8EC,1
ϕ2 (4.59)

with eigenfrequency ω1. Similar to the lumped element transmon we calculate the an-
harmonicity of the transmission line embedded Josephson junction system in the trans-
mon limit and �nd that the anharmonicity is scaled with a factor κ =

√
EJ/(EL + EJ) =

ω̃p/ω1:

α = − EJ
EL + EJ

EC,1 = −κ2EC,1 , (4.60)

with the plasma frequency ω̃P =
√

8EC,1EJ of the Josephson junction shunted with
the total capacity of the transmission-line-junction system. Since we have ν ≤ 1 the
anharmonicity of the in-line transmon is smaller than the anharmonicity of a corre-
sponding lumped element transmon with total capacity C̃1. But as we've seen in �gure
4.8 the ratio ω1/ω̃p quickly approaches one in parameter regimes where we can trun-
cate the full Hamiltonian to the �st mode such that the anharmonicity of the in-line
transmon (almost) equals the anharmonicity for a lumped element transmon with total
capacity C̃1. The relative anharmonicity of the in-line transmon reads

αrel =
−1

ω1
κ2EC,1

− 2
≈ −1√

8EJ/EC,1 − 2
(4.61)

which in the limit κ→ 1 equals the anharmonicity of the corresponding lumped element
transmon.

4.2.2 Relaxation

We calculate relaxation rates for the in-line transmon in the harmonic oscillator ap-
proximation. The rate is similar to the rate for a corresponding transmon with plasma
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frequency ω̃p =
√

8EJEC,1 scaled by the well known factor κ:

Γ1 = κ
2xqp
π

√
2 + δ1

δ1
ω̃pe
−EC,1/ω1 , (4.62)

with δ1 = ω1
∆ . We compare the in-line transmon derived from the transmission line

embedded Josephson junction with a lumped element transmon with identical Joseph-
son junction and charging energy. The ratio between the relaxation times of both
transmons is (T1,tl for the in-line and T1,le for the lumped element transmon)

T1,tl

T1,le
=

√
2 + δp
2 + δ1

δ1

δp

ω1

ωp
e
EC,1( 1

ω1
− 1
ωp

)
, (4.63)

while the ratio between the anharmonicity reads

α1,tl

α1,le
=
ω2
p

ω2
1

. (4.64)

In parameter regimes where the one-mode approximation for the transmission line sys-
tem is correct, e.g. κ ≈ 1, both ratios quickly approach one and lumped the in-line
transmon develops to the lumped element transmon. Going away from regimes with
κ ≈ 1 the ratio of the relaxation times increases exponentially in the frequency dif-
ference (∼ exp(EC,1(−ω1−ωp

ωpω1
)) while the anharmonicity ratio decreases only quadratic

in the ratio of the frequencies. Hence the increase in relaxation time succeeds the
loss in anharmonicity and this parameter regime could be of interest for qubits pro-
tected against quasiparticle induced decoherence. On the other hand, when departing
from the strong anharmonic regime, the one-mode approximation will fail at a certain
point. The critical parameter proo�ng the validity of the one-mode approximation is
the detuning Ω = δω12 − δω11 = ω2 − 2ω1 between the transition from one photon in
the �rst mode to two photons in the �rst mode, δω11 = ω1, and the transition of the
photon from the �rst to the second mode, δω12 = ω2 − ω1. We calculate the di�erent
parameters numerically for the parameters de�ned in 4.3. Numerically obtained values
for both ratios are graphed in �gure 4.9b and detuning in �gure 4.9b. As suspected
both ratios quickly approach one with decreasing transmission line length while the
detuning strongly increases. Here the one mode approximation is very good but at the
same time nothing is gain due to in-line design. On the other hand the relaxation time
ratio gets better for longer transmission lines (e.g. smaller nonlinearity) while the an-
harmonicity ratio gets worse. At a transmission line length about 0.01m the junctions
plasma frequency approaches the �rst fundamental mode of the transmission line and
the detuning has a deep drop as the �rst fundamental mode becomes the �rst mode of
the entire system while the junctions plasma frequency emerges into the second mode
of the system, see also �gure 4.8a and 4.7a. In this region the one-mode approximation
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4.2 Transmission Line Embedded Josephson Junction

isn't applicable anymore. Unfortunately the gain in relaxation time begins to exceed
the loss in anharmonicity not until this region is reached. Therefore the transmission
line length is no appropriate parameter to optimize the in-line transmon regarding
quasiparticle tunneling.
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4 Relaxation and Dephasing for a Transmon Qubit

(a) Eigenfrequencies vs EJ ] (b) Eigenfrequencies vs xJ

Figure 4.7: Lowest eingefrequencies of a transmission line with embedded Josephson
junction, parameters as given in table 4.3 with Cin/out = 0. The junction position for (a)
is xj = 0.5d (b) Cin/out = 2 · 10−12F . The numerically obtained values (solid lines) show
the behavior described in the text. There exist modes close to eigenmodes of transmission
liens with length 2d (dashed lines, modes showing anti-crossing behavior at the plasma
frequency) while other modes are close to eigenmodes corresponding to a transmission line
with length (1± xj)d (dashed blue line for instance). While far away from the junctions
plasma frequency ωp the modes are almost unperturbed by the junction and follow the
corresponding modes for the pure transmission line. In contrary when in resonance with
the plasma frequency modes are strongly influenced and try to follow the plasma frequency.
These modes show typical anti-crossing behavior. In (b) we see the influence of the
additional design parameter xJ on the eigenmodes for the case of a huge junction with
EJ = 314GHz (we chose such a high value since the influence of xJ lessens with smaller
Ej). For the modes close to eigenfrequencies of the pure transmission line (red and orange)
the position increases the anharmonicity compared to the linear transmission line while
for modes ∼ 1

1±xJ
the influence is dramatic since they fade into the remaining modes

at xJ = 1/0 (the dashed line for the analytical value perfectly matches the numerical
obtained values).
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4.2 Transmission Line Embedded Josephson Junction

(a) ωp

ω (b) C̃1

Figure 4.8: (a) First four eigenfrequencies of the system normalized to the dressed junc-
tion plasma frequency ω̃p =

√
EC,1EJ for varying transmission line length L = 2d and

junction position xJ = 0.5. With decreasing length the bare transmission line’s eigen-
frequencies lie far above the junctions plasma frequency while the ratio ωp/ω1 quickly
approaches one and the the first eigenmode of the combined system is just the dressed
plasma frequency of the junction. (b) Total capacity C̃1 for the first eigenmode together
with capacity Ctl of the bare transmission line and capacity CJ of the junction. For a
short transmission line the total capacity approaches a finite value slightly larger than the
junctions capacity which can be interpreted as an additional shunting capacity due to the
transmission line.

(a) T1,tl/T1,le and αtl/αle (b) Detuning ωi+1 − 2ωi

Figure 4.9: (a) Ratio between relaxation time T1,tl for the transmission line transmon
and the lumped element transmon, T1,le as well as the ratio between the corresponding
anharmonicity αtl and αle. (b) Detuning between different system eigenmodes. The
system can be treated as an effective transmon only in regions with large detuning between
mode ω1 and mode ω2 to avoid undesired transitions into the second mode of the system.
In regions with large detuning (a) shows that both ratios are close to one and the difference
between the lumped element and the in-line transmon are negligible.
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5 Chapter 5

Conclusion

We studied qubit decoherence due to single quasiparticle tunneling through a Josephson
junction where we put special focus on pure dephasing. From previous works it was
known that pure dephasing rates diverge in a golden rule approximation. Hence we
needed a systematic way to include higher orders of the tunneling Hamiltonian in
our calculations to overcome that divergence. In chapter 2 we developed a real time
diagrammatic technique to describe a quantum system coupled to several reservoirs
and applied it to a qubit coupled to quasiparticle degrees of freedom via single particle
tunneling. The diagrammatic technique enabled us to calculate qubit decoherence up
to arbitrary orders in the tunneling Hamiltonian.

In chapter 3 we calculated di�erent decoherence rates for a generic superconducting
qubit. At �rst our technique developed in chapter 2 was used to calculate relaxation
rates in second order of the coupling. Since this is the �rst non-vanishing contribution
we obtained results that are equivalent with golden rule rates for qubit relaxation. We
further simpli�ed the expressions for the golden rule rates by applying the low energy
approximation yielding a simple analytic form proportional to the total quasiparticle
density nqp. The approximation is valid for qubit energy splittings small compared to
the superconducting gap but large compared to the width of the quasiparticle distri-
bution function. In section 4.1.1 we compared our relaxation rates with experimental
data for di�erent transmon qubits. Three di�erent models for the distribution function
were used to calculate the quasi particle density: A equilibrium distribution which in-
cludes only thermally excited quasiparticles, a distribution obtained from a Boltzmann
equation with constant injection rate and �nally a distribution arising from a Boltz-
mann equation with electron-phonon relaxation and quasiparticle injection. The Fermi
distribution underestimates relaxation rates at low temperatures due to exponentially
suppressed particle number at low temperatures while experimental data show a satura-
tion at low temperature. In contrast to the equilibrium distribution both distributions
obtained with a Boltzmann equation inject excess quasiparticles into the system even
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at low temperatures and generate a saturation of the quasiparticle density. With those
distribution functions we achieved a good agreement between experiment and theory
although we admit that saturation in the relaxation rate does not necessarily have to
arise from excess quasiparticles.
We also applied the lowest order approximation to pure dephasing and noticed that

for superconducting qubits with a Hamiltonian symmetric in the phase drop across
the junction the golden rule rate converges. The resulting expression for the rate is
proportional to the integral over the distribution function. But since not all qubit
possess a symmetric Hamiltonian we re-normalized the second order approximation
with a method similar to the self-consistent Born approximation. By substituting the
free time evolution in the lowest order diagrams with the full time evolution we found
a self-consistent equation for the pure dephasing rate due to quasiparticle tunneling
which can be obtained from the golden rule rate by replacing the delta-function with
a Lorentzian with the width given by the dephasing rate. Up to this point all rates
were obtained within the Markov approximation of a memoryless bath. But since pure
dephasing happens in the low frequency region of the bath spectrum this assumption
does not necessarily hold and we approached qubit dephasing due to quasiparticle
tunneling from a di�erent side. With a re-de�nition of reservoir and tunnel Hamiltonian
we were able to calculate a non-Markovian 'rate' for dephasing. The non-Markovian
calculation yields a time dependence which is not per se a exponential decay with an
exponent linear in time.
We compared the three di�erent dephasing rates for a transmon in section 4.1.2.

For these calculations we use a Fermi distribution for the quasiparticles. The non-
Markovian rate, though non linear in t on �rst sight, reveals linear behavior for the
transmon and all three rates, golden rule, self-consistent and non-Markovian turned
out to be equivalent in the case of a transmon and equilibrium quasiparticles. The
resulting dephasing time T2∗ is much larger than the relaxation time for the same
qubit and hence is negligible in the decoherence time T2. This statement holds for
all qubits with a Hamiltonian symmetric in the phase across the junction since for all
these qubits the part of dephasing rate giving rise to the initially mentioned divergence
vanishes and the dephasing rate is dominated by the small qubit matrix element for
dephasing. For a qubit that does not belong to this class the behavior might be di�erent
and dephasing due to quasiparticles might become comparable to relaxation.
Finally we studied a Josephson junction embedded in a transmission line in section

4.2. We introduced a linearized model for the system, solved for the eigenmodes of
the linear model and expressed the non-linear part due to the junction in the basis of
the eigenmodes. It turned out that one eigenfrequency of the system always is close
to the junctions plasma frequency while the remaining modes are close to eigenmodes
of the bare junction. We found a range of parameters where the �rst mode of the
full system is given by the junctions plasma frequency dressed by the transmission
line while at the same time the �rst fundamental mode of the bare transmission line
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lies comfortable far above the lowest lying mode. In this strongly anharmonic case
we recovered the Hamiltonian for a transmon with a additional inductance due to
the transmission line. We analyzed this in-line transmon in regard of anharmonicity
and robustness against quasiparticle induced relaxation. In the parameter range we
analyzed the in-line transmon did not show an advantage compared to a standard
lumped element transmon.
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