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1 Chapter 1

Introduction

Classical computers quickly reach their limits when it comes to quantum mechanical or other problems
with an exponentially growing complexity. To overcome this limit, Richard Feynman proposed in 1982
to map computational problems on the eigenstates of quantum mechanical systems, rather than classical
states [1]. Today this idea is known as quantum computation. By that the computational state is not
only given by one sequence of the two computational states 0 and 1, but by the superposition of any
such sequences. Thus it is possible to not only try each possible result one by one but all in parallel,
gaining a exponential speed up in such problems is expected. While in the beginning the focus was
placed on solving quantum mechanical problems, as they obey the same rules as the computational
states, Peter Shor proved with his factorization algorithm that the principle of quantum computing can
also be used to speed up other mathematical problems [2].

In 2001 Farhi et al. proposed a new idea how quantum computation can be realized [3]. Instead
of using gates, elementary operations on the qubits, as Feynman suggested, they proposed to use the
adiabatic theorem for computation. Thereby the state is prepared in the ground state of a simple
Hamiltonian and then adiabatically transferred to a problem Hamiltonian in which the computational
problem is encoded. By the adiabatic transition, the state of the quantum computer stays in the
ground state throughout the transition such that the correct solution can directly be measured after
the transition is completed. While this method naturally is ideal for optimization problems the group
of Aharonov et al. showed in 2007 that the concept of the adiabatic quantum computer is, in principle,
capable of computing general problems [4].

However, both methods have a problem when it comes to a practical implementation. By the quantum
mechanical nature of the computational state, the quantum computer becomes extremely sensitive to
uncontrollable interactions with the environment. While for the universal quantum computer, based
on gates, there are ideas how to correct errors occurring from such interactions [5], there is no accepted
theory describing the adiabatic quantum computer. Furthermore it is unclear if the adiabatic quantum
computer can obtain a speed up compared to classical computers. For the adiabatic theorem to hold,
the duration of the transition must be much larger than the inverse of the minimal gap between the
ground and �rst excited state. But, in 2010 Altshuler et al. showed that for the Exact Cover 3 algorithm
and one speci�c adiabatic transition the minimal gap closes exponentially at the end of the transition
[6]. Thus, in this case the computation time needed to solve the problem grows exponentially, like
for classical computers. Although this does not exclude a possible speed up, as for other problems
or adiabatic transitions the gap might behave di�erently, it shows that detecting the speed up is
complicated, as it depends on the speci�c implementation of the quantum algorithm.
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1 Introduction

Despite of the problems in implementation, the Canadian company D-Wave announced in 2004 their
plan to build a quantum computer, based on the concept of the adiabatic quantum computer, and
claims that this concept is naturally robust against environmental in�uences [7]. Six years after the
announcement D-Wave presented in 2010 the D-Wave One, the self-claimed �rst commercially available
quantum computer, build up of 128 superconducting �ux qubits. In spite of all the marketing claims
D-Wave makes, the skepticism about the functionality and reliability of the device never died. Up until
today there is no explicit proof whether the D-Wave One is fundamentally quantum or merely performs
a calculation equivalent to that of a classical stochastic computer.

We structure the work the following way:
First, we provide in Chap. 2 the necessary background information how the D-Wave One is build

up, summarize the current discussion about the device and review the articles this work is based on.
In Chap. 3 we derive our model for the adiabatic quantum computer in the presence of noise. The
model is microscopically motivated, where all necessary parameters can be taken from experiments.
Furthermore we investigate the dynamics in lowest-order perturbation theory following from our model
for a single and two coupled qubits. After that, we apply in Chap. 4 the model in a simulation to a
system of 108 qubits with 1000 random sets of couplings to �nd the success probability in �nding the
ground state. Finally, we summarize in Chap. 5 the results from this thesis and shortly discuss the
next steps to gain further insight about the model.
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2 Chapter 2

Background

In this chapter we present an overview of the background information the later work is based on. First,
we introduce in Sec. 2.1 the idea behind the adiabatic quantum computer in more detail. Then, we
present in Sec. 2.2 the basic functionality of the superconducting �ux qubits and the structure if the chip
used in the D-Wave One. After that, we report in Sec. 2.3 on a model for macroscopic �ux tunneling
in a single superconducting �ux qubit and the corresponding experiment performed on the CCJJ rf-
SQUID used in the device. Both, the predictions of the model and data gained from the experiment
are in agreement. Finally we review in Sec. 2.4 the latest discussion about the D-Wave One, where we
concentrate on the part needed for this work.

2.1 The Adiabatic Quantum Computer

2.1.1 The Adiabatic Theorem

The Adiabatic Theorem follows from the study of slowly evolving quantum-systems over time. It
states, that for slowly varying Hamiltonians the instantaneous eigenstates will evolve continuously into
the corresponding instantaneous eigenstates at a later time. Where the di�erence between the initial
and �nal Hamiltonian can be huge, such that it cannot be treated perturbatively.

To derive the adiabatic theorem, let us consider a Hamiltonian H(χ(t)) that interacts with the
environment via a set of time-dependent, classical parameters χ(t) = (χ1(t), χ2(t), . . . ). Let us further
assume that the parameters χ(t) are slowly varying, smooth functions in time and that the Hamiltonian
H(χ(t)) has a discrete and non-degenerate spectrum. From the fact that the parameters χ(t) are
smooth follows that also the Hamiltonian must be smooth, meaning that its eigenstates and eigenvalues
are smooth functions in time. In the future we denote H(χ(t)) ≡ H(t) for convenience. At any time
we can �nd an instantaneous eigenbasis with

H(t) |n(t)〉 = En(t) |n(t)〉 and 〈m(t)|n(t)〉 = δmn (2.1)

where the index n represents a set of quantum numbers that determines the eigenstate. Without loss
of generality we can assume that E0(t) < E1(t) < . . . . Thereby the solution of the time-dependent
Schrödinger equation, using ~ = 1,

i∂t |Ψ(t)〉 = H(t) |Ψ(t)〉 (2.2)
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2 Background

is given by a linear combination of the eigenstates

|Ψ(t)〉 =
∑
n

cn(t)eiθn(t) |n(t)〉 , (2.3)

where

θn(t) = −
t∫

0

dt′ En(t′) (2.4)

is the generalized dynamic phase for time-dependent eigenvalues.
Inserting the ansatz Eq. (2.3) into the Schrödinger equation Eq. (2.2) leads to

i∂t |Ψ〉 = i
∑
n

(
ċn |n〉+ cn |ṅ〉+ icnθ̇n |n〉

)
eiθn !

=
∑
n

cn H |n〉︸ ︷︷ ︸
−θ̇n|n〉

eiθn , (2.5)

where the dot denotes time derivation and the time argument has been omitted (and will be in future)
for a better readability. From Eq. (2.4) it is easy to see that En = −θ̇n and thus the last term on
the LHS cancels the RHS. With this and after taking the inner product with a second eigenstate |m〉
follows

ċm = −
∑
n

cn 〈m|ṅ〉 ei(θn−θm) , (2.6)

which is a set of coupled di�erential equation for the coe�cients cm.
In Eq. (2.6) the matrix element 〈m|ṅ〉 is still unknown. We can �nd an expression for it by taking

the time derivation of Eq. (2.1), leading to

Ḣ |n〉+H |ṅ〉 = Ėn |n〉+ En |ṅ〉 , (2.7)

and taking the inner product with eigenstate |m〉

〈m|Ḣ|n〉+ 〈m|H|ṅ〉︸ ︷︷ ︸
Em〈m|ṅ〉

= En 〈m|ṅ〉+ Ėn 〈m|n〉 . (2.8)

For m 6= n this can be solved for 〈m|ṅ〉, leading to

〈m|ṅ〉 =
〈m|Ḣ|n〉
En − Em

. (2.9)

Substituting Eq. (2.9) into Eq. (2.6) we �nally get the coupled di�erential equation

ċm = −cm 〈m|ṁ〉 −
∑
n 6=m

cn
〈m|Ḣ|n〉
En − Em

ei(θn−θm) (2.10)

for the coe�cients cm.
When we now assume that the system was initiated in state |m〉, then the �rst term gives the

probability for the system to stay in state |m〉 while the second term gives the probability for the
system to jump to an other state |n〉. Note that up to this point the derivation is exact. At this
point we now make the adiabatic approximation by neglecting the second term in Eq. (2.10). This
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2.1 The Adiabatic Quantum Computer

approximation is justi�ed, as we assume that the parameters χ(t), and thus the Hamiltonian H, only
changes very slowly in time which leads to 〈m|Ḣ|n〉 ≈ 0.

By using the adiabatic approximation the di�erential equations for the coe�cients cm, Eq. (2.10),
become decoupled, leading to

ċm = −cm 〈m|ṁ〉 , (2.11)

which can directly be solved to

cm(t) = cm(0)e−iγm(t) , (2.12)

where

γm(t) = i

t∫
0

dt′ 〈m|ṁ〉 . (2.13)

is the geometric phase. It is worth to mention that by its de�nition the geometric phase γm is completely
real as

d

dt
〈m|m〉 = 〈ṁ|m〉+ 〈m|ṁ〉 = 2 Re 〈m|ṁ〉 !

=
d

dt
1 = 0 . (2.14)

Hence the states of the system gain an additional phase factor, as implied by the name geometric phase,
by the adiabatic evolution.

2.1.2 The Adiabatic Quantum Computer & Quantum Annealer

The Adiabatic Quantum Computer is a quantum optimization algorithm that is based on the adiabatic
evolution of a quantum system [8]. The idea behind it is pretty simple. Let us assume we have a
problem described by Hamiltonian HP. In general calculating the ground state of HP, analytically or
numerically on classical computers, is extremely hard if at all possible. To perform adiabatic quantum
computation we then take a simple starting Hamiltonian H0, prepare its ground state and adiabatically
transfer it to the problem Hamiltonian HP. As shown in Sec. 2.1.1, the adiabatic theorem ensures, if
the transition is performed slow enough, that the system will always stay in its instantaneous ground
state. Thus, after the transition the state of the adiabatic quantum computer is given by the ground
state of the problem Hamiltonian HP and can directly be measured. In principle this method is capable
of solving any mathematical problem that can be solved by an universal quantum computer based on
gates [4].

More formally, the adiabatic quantum computer is described by the Hamiltonian

H = A(t)H0 + B(t)HP (2.15)

where A(t) and B(t) are classical parameters denoted as χ(t) in Sec. 2.1.1. We choose the parameters
in such a way that A(0) � B(0) and A(tf ) � B(tf ), where tf denotes the time at the end of the
transition. For simplicity, let us assume that A(t) and B(t) are linear and run from 0 to 1 or vice versa,
i. e. that the Hamiltonian is given by

H =

(
1− t

tf

)
H0 +

t

tf
HP . (2.16)

The crucial point for the implementation of the adiabatic quantum computer is, how large tf has to be
chosen such that the adiabatic theorem still holds.
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2 Background

We can estimate tf by using the second term of Eq. (2.10), which gives the probability of the system
to change its state. Because we initiate the state in the ground state of the starting Hamiltonian H0,
the initial conditions for the coe�cients cm are given by

cm(0) =

1 for m = 0

0 for m 6= 0
. (2.17)

From the initial condition also follows, that the time derivative of the coe�cients, for m 6= 0, and thus
the probability for the excited states to be populated, is

ċm ∝
1

E0 − Em
. (2.18)

Thus it is su�cient to concentrate on the transition between the ground and the �rst excited state, as
they are most likely to occur. When we substitute Eq. (2.16) into Eq. (2.10) and further assume that
the eigenvalues are time-independent, and thus θn = Ent, we get

ċ1 =
〈0|Ḣ|1〉
E0 − E1

ei(E0−E1)t =
1

tf

〈0| − H0 +HP|1〉
E0 − E1

ei(E0−E1)t , (2.19)

which can be directly integrated leading to

c1 ∝
1

tf

〈0| − H0 +HP|1〉
(E0 − E1)2

. (2.20)

As a result we can now de�ne an upper bound c̄1 for the system to leave the ground state, given by

c̄1 ∝
1

tf∆min

E
∆min

, (2.21)

where E = max
0≤t≤tf

〈0| − H0 +HP|1〉 is the maximal overlap and ∆min = min
0≤t≤tf

|E0−E1| the minimal gap

between the ground state and the �rst excited state. For typical physical systems the maximal overlap
and the minimal gap are of the same order of magnitude, O(E) = O(∆min), and thus E/∆min ≈ 1.
From this follows that the transition can be assumed to be adiabatically when

c̄1 =
1

tf∆min
� 1 (2.22)

or equivalent, when

tf �
1

∆min
. (2.23)

This result directly gives an account to the fact that there are di�erent energy scales in the system.
By the adiabatic transition the energy of the system is not conserved but changes with

ω0 ∝
1

tf
. (2.24)

Using Eq. (2.24) the condition for the adiabatic theorem to hold, Eq. (2.23), can be written as

ω0 � ∆min . (2.25)
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2.2 The D-Wave One

(a) (b)

Figure 2.1: Sketch of (a) a simple rf-SQUID and (b) a CCJJ rf-SQUID, used in the D-Wave One.
Critical currents at the Josephson junction are denoted Ii and the corresponding phases ϕi. The
inductance of the superconducting loop is given by Lq. For the CCJJ rf-SQUID this is a e�ective
quantity given by the inductance of the main and the CCJJ loop. Parameters of the qubit can be
controlled by external �uxes represented by the phases ϕxi .

From this follows that the adiabatic theorem holds once the energy scale given by the adiabatic tran-
sition is much smaller than the energy scale given by the spectrum of the system.

Although the D-Wave One implements the algorithm of the adiabatic quantum computer, D-Wave
uses the term quantum annealer, instead of adiabatic quantum computer, for their device. This is
because in the discussion above we omitted any coupling to the environment, besides the parameters
A(t) and B(t) which were assumed to be perfect. In reality however, there is always noise disturbing
the adiabatic quantum computer. In the case of the D-Wave One this noise is very strong, which
leads to coherence times of the order of O( ns) � O(µs) the length of the transition. Thus, there is
no entanglement of the states, which is needed for the adiabatic quantum computer, throughout the
transition in the D-Wave One. Nevertheless D-Wave states that their device is naturally robust against
coupling to the environment and decided, to avoid confusion, to call it a quantum annealer.

2.2 The D-Wave One

The "Processor" of the D-Wave One is a chip containing CCJJ rf-SQUID qubits. In this section we
shortly review the most important properties of the chip. For a full discussion see [9] and the citations
within.

The simplest realization of an �ux qubit is the rf-SQUID shown in Fig. 2.1a and is made up by a
superconducting loop with one Josephson junction in it. In this case the phase across the junction is
the same as the phase change across the loop, i. e. ϕI = ϕq. Thus its Hamiltonian can be written as

H =
Q2
q

2Cq
+ V (ϕq) (2.26a)

7



2 Background

Figure 2.2: Sketch of a typical double-well potential found in �ux qubits. Between the states
with the lowest energy in both wells is a energy splitting ε. The energy di�erence between the
lowest and �rst excited states inside each well is of the order of the plasma frequency ωp. In the
case when ε � ωp only tunneling between the lowest states of the two wells, with the tunneling
amplitude ∆, have to be considered.

where the potential is given by

V (ϕq) = Uq

[
1

2
(ϕq − ϕxq )2 − β cos(ϕq)

]
(2.26b)

with

β =
2πLqIq

Φ0
. (2.26c)

Here Qq is the charge, Cq the capacitance, Lq the inductance and Iq the critical current of the qubit.
Furthermore the phase of the qubit is given by ϕq, an externally applied phase, by applying an external
�ux, by ϕxq and the �ux quantum by Φ0.
If now the qubit is designed the way such that β > 1 and the external �ux is tuned such that ϕxq ≈ π

the potential energy V (ϕq) forms a double well potential, as shown in Fig. 2.2, where the potential
barrier increases with increasing β. Inside each of the wells the lowest states are separated to the
excited states by an energy of the order of the rf-SQUID plasma frequency ωp = 1/

√
LqCq. Thus if

the energy of the qubit is � ωp only the lowest states in both well can be occupied. In this regime the
Hamiltonian Eq. (2.26a) can be approximated by

Hq = −1

2
(εσz + ∆σx) (2.27)

where ε is the energy splitting and ∆ the tunneling amplitude through the potential barrier between
both states. Hereby both, ε and ∆, are functions of the intrinsic parameters of the qubit, e. g. the
inductance Lq or the critical current Iq.
This dependency of the intrinsic parameters makes it impractical to build large-scale devices from

rf-SQUID qubits as the intrinsic parameters and with this the properties of the qubit are �xed at
fabrication. But from this also follows that the properties of the qubit are sensitive to small variations
during fabrication. Thus it is nearly impossible to fabricate a large-scale chip, that has rf-SQUID
qubits with identical properties. Furthermore, implementation of an AQC requires the ability to tune
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2.2 The D-Wave One

the tunneling amplitude ∆ from being the dominant term in Eq. (2.26a) to be negligible small during
the computation. But this is not possible for an rf-SQUID qubit. Thus the practical use of such a
rf-SQUID qubit is limited.

To overcome the problems at fabrication the compound-compound Josephson junction (CCJJ) rf-
SQUID �ux qubit, as shown in Fig. 2.1b, was developed. When we compare the two designs we see
that the single Josephson junction in the rf-SQUID was replaced by an CCJJ-loop, containing a major
loop and two minor ones, denoted as left (L) and right (R) loop, with two Josephson junction each.
With this now the critical current Iq, �xed by the properties of the Josephson junction in the rf-SQUID,
is now determined by the properties of the CCJJ-loop and thus becomes tuneable with the external
phases ϕxL and ϕxR, i. e.

Iq = IL cos
ϕxL
2

+ IR cos
ϕxR
2

(2.28)

where IL,R = I1
L,R + I2

L,R is the sum of the critical currents of the Josephson junctions in the left and
right loop respectively. In addition to the CCJJ-loop the CCJJ rf-SQUID also contains a new small
loop with two Josephson junctions, called an inductance tuner (L tuner). Therefore the loop is designed
the way that ILT cosϕxLT /2� Iq, where ILT is the net critical current of the loop and ϕxLT an external
phase applied to the loop. In this regime the phase change at the L tuner can be neglected. If one
additionally assumes that the inductance of the L tuner wiring itself can be neglected then the overall
inductance of the qubit is given by

Lq = L0
q +

Φ0

2πILT cosϕxLT /2
(2.29)

where L0
q is the intrinsic inductance of the qubit.

Using the changes discussed above the overall complexity of the circuit grows and fabrication becomes
more di�cult. But at the same time we gain more control, by applying external magnetic �uxes, over
the qubit. As shown in Eq. (2.28) now the critical current of the qubit can be controlled via the two
static phases ϕxL and ϕxR. Hereby the phase ϕxR is chosen and then ϕxL is adjusted to compensate the
variation from fabrication and thus balance the value of the critical current for multiple qubits. For
the inductance Lq the same can be done via the static phase ϕxLT . Doing so the energy splitting ε and
tunneling amplitude ∆ become basically functions of the two phases ϕxq and ϕxccjj . Thus, by choosing
ϕxq and ϕxccjj to be time-dependent, they can be used to implement the annealing schedule needed for
the implementation of the AQC.

Knowing how the qubits work let us now have a look at the layout of the chip used in the D-Wave
One. The chip is made up of several unit cells each containing 8 qubits. Inside one of those unit cells
there are four qubits aligned horizontally and four vertically. The qubits couple pairwise to each other.
Whereby the horizontally aligned qubits couple to all of the vertically aligned ones and the other way
round. Fig. 2.3 shows a sketch of one of the unit cells. The chip then contains a grid of 4× 4 of those
unit cells. The unit cells are coupled to each other by coupling each qubit to the corresponding qubit
of the neighboring unit cells, e. g. in Fig. 2.3 q0 is coupled to the corresponding q0's of the unit cell
above and below the shown one.

This structure dictates the way the qubits can couple with each other, which has in�uence on the
implementation of the simulation later on. From the structure of the chip follows directly that each
qubit can be coupled to a maximum of 6 other qubits, e. g. q0 can couple to the four horizontally aligned
qubits plus the corresponding two qubits from the unit cell above and below. Furthermore when two
qubits couple to each other then any qubit coupled to one of those two qubits cannot couple to the

9
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Figure 2.3: Sketch of the structure of one unit cell of the chip used in the D-Wave One. Each
loop (circled by the blue box) stand for one qubit, denoted by q0, . . . , q7. The qubits are pairwise
coupled when they intersect (red circles). The dotted lines at the edge indicate the qubits of the
unit cells next to one depicted here.

other one. For example q0 and q4 couple to each other. While q0 also couples to the other horizontally
aligned qubits, q5, q6 and q7, q4 couples to the vertically aligned ones, q1, q2 and q3, thus there is no
intersection between both sets.

2.3 Flux tunneling in the presence of noise

The potential of �ux qubits has the form of a double-well potential, as shown in Fig. 2.2. In this
potential, the states located in each well are separated by a large energy barrier of the order of the
plasma frequency ωp, while the tunneling amplitude ∆ is small, ∆ � ωp. In the regime of low energies,
only the lowest states inside both wells can be occupied. Thus, the �ux tunneling rate between the
two wells experiences a resonant peak whenever the energy splitting ε between the lowest states inside
each well becomes small, ε � ωp. The dynamics of the system can then be described by the transition
rates for tunneling between the lowest states, |0〉 and |1〉. To derive the transition rates we follow [10].

10



2.3 Flux tunneling in the presence of noise

In the regime of low energies in the presence of noise the qubit can be described by the Hamiltonian

H = HS +HB +Hint , (2.30)

where HB is the bath Hamiltonian and

HS = −1

2

(
εσz + ∆σx

)
(2.31a)

Hint = −1

2
σzX (2.31b)

are the qubit and interaction Hamiltonian respectively. In Eq. (2.31) ε and ∆ are �xed parameters
describing the energy splitting and the tunneling amplitude between the two states of the qubit and X
is an operator on the environment. When the environment is in thermal equilibrium at temperature
T , the spectral density function of the noise operators is given by

S(ω) =
1

2π

∞∫
−∞

dt eiωt 〈X(t)X(0)〉 , (2.32)

where 〈. . .〉 denotes the trace over all states of the environment.

In the incoherent regime ∆ � W � ωp, where W is the noise-induced resonance width, the �ux
tunneling rate Γ can be calculated by using the tunneling term V = ∆σx/2, from Eq. (2.31a), as
perturbation. Thus the lowest-order transition rates can be obtained using Fermi's Golden rule

Γi→f = 2π
∣∣〈i|V |f〉∣∣2 δ(Ei − Ef) =

∞∫
−∞

dt 〈i(t)|V |f(t)〉 〈i(0)|V |f(0)〉 , (2.33)

where |i〉 and |f〉 denote the initial and �nal state of the total unperturbed system and, Ei and Ef
the corresponding eigenenergy. The time evolution of these states, in the interaction picture, can be
written as

|i(t)〉 = U(t)eiεσzt/2 |i(0)〉 , (2.34)

where U(t) = T exp[i/2 σz
∫ t
−∞ dτ X(τ)] with T denoting time ordering. After substituting Eq. (2.34)

into Eq. (2.33) and summing over all initial and �nal states of the environment we get Γ(ε) ≡ Γ1→0(ε) =
Γ0→1(−ε) with

Γ(ε) =
∆2

4

∞∫
−∞

dt eiεt 〈U−†(t)U+(t)U+
†(0)U−(0)〉 , (2.35)

where U±(t) = T exp[±i/2
∫ t
−∞ dτ X(τ)]. The correlator in Eq. (2.35) can be approximated, using

Gaussian statistics, by expanding the operators U±(t) up to second order in X, averaging the result
and exponentiating it back. Doing so we get

〈U−†(t)U+(t)U+
†(0)U−(0)〉 = exp

 t∫
0

dτ

0∫
−∞

dτ ′ 〈X(τ)X(τ ′)〉

 . (2.36)
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2 Background

In this expression the noise correlator can be expressed, using X(t) = eiHBtXe−iHBt, by the spectral
density reducing Eq. (2.35) to

Γ(ε) =
∆2

4

∞∫
−∞

dt eiεt exp

 ∞∫
−∞

dω S(ω)
e−iωt − 1

ω2

 . (2.37)

In the case, when the noise is strongly peaked at low-frequency the exponent eiωt can be expanded
up to second order and Eq. (2.37) becomes

Γ(ε) =

√
π

8

∆2

W
exp

[
−(ε − εp)2

2W 2

]
, (2.38)

where

W 2 =

∫
dω S(ω) (2.39a)

εp = P
∫

dω
S(ω)

ω
. (2.39b)

where P denotes principal value integration. Thus the noise with a signi�cant low-frequency part
leads to an Gaussian line-shape. Furthermore, we see that the noise not only broadens the resonance
peak but also shifts it by a non-vanishing bias εp and thus splits the �rst resonance peak into two,
for the two di�erent directions of tunneling. Since the resonance width W and the energy bias εp
in Eq. (2.39) are, respectively, given by the symmetric and antisymmetric part of the noise, the two
quantities are connected via the �uctuation-dissipation theorem. Thus for the strongly peaked low-
frequency noise, where all relevant frequencies are small on the scale of the temperature 1/β and thus
tanh(βω/2) ≈ βω/2, the energy bias is given by

εp =
1

2
βW 2 . (2.40)

The model derived above was extended in [11]. There, besides the strongly peaked low-frequency
part SLF (ω) also a broadband high-frequency part SHF of the spectral density was allowed, with
SLF (ω) � SHF (ω) for all relevant frequencies. Writing S(ω) = SLF (ω) + SHF (ω) and expanding the
exponential eiωt up to second order for the low-frequency part, Eq. (2.37) becomes

Γ(ε) =
∆2

4

∞∫
−∞

dt ei(ε−εp)t−W 2t2/2 exp

[∫
dω SHF (ω)

eiωt − 1

ω2

]
. (2.41)

For the high-frequency part the noise spectral density can be expressed by the noise spectral function

SHF (ω) =
J(ω)

1− e−βω
. (2.42)

Furthermore the spectral function can be expressed for an Ohmic environment by

J(ω) = ηωe−|ω|/ωHF , (2.43)
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2.4 Discussion about the D-Wave One

where η is a dimensionless parameter characterizing the strength of the noise and ωHF is the cuto� of
the high-frequency part. Substituting Eqs. (2.42) and (2.43) into Eq. (2.41) yields to

Γ(ε) =
∆r

4

∞∫
−∞

dt ei(ε−εp)t−W 2t2/2

[
i sinh

t− i/ωHF
β

]−η
, (2.44)

where ∆r = (1/βωHF )η/2∆ is the renormalized tunneling amplitude. MRT measurements performed
on a single �ux qubit showed that the measured MRT rate coincides perfectly with Eq. (2.44) while
Eq. (2.38) gives a good approximation for low energies [11].

2.4 Discussion about the D-Wave One

Although the skepticism about the functionality and reliability of the D-Wave One never died the
discussion about it reached a new height, when the preprint of [12] was published in April 2013. In
this article experiments on a D-Wave One with 108 superconducting �ux qubits where performed.
The benchmark was chosen to be the ability of �nding the ground state of an Ising spin glass with
Hamiltonian

HIsing = −
∑
i<j

Jijσ
iσj −

∑
i

hiσ
i , (2.45)

where σi = ±1 are binary variables, Jij is the coupling between the ith and jth spin and hi a local �eld.
Each Ising variable was mapped on the σz of a qubit and thus the quantum mechanical Hamiltonian,
with the transverse �eld needed for the adiabatic transition, reads

H = −A(t)
∑
i

σix − B(t)

∑
i<j

Jijσ
i
zσ

j
z +

∑
i

hiσ
i
z

 , (2.46)

where A(t) and B(t) are the parameters of the annealing schedule. The parameters of the annealing
schedule slowly change in time and were chosen in such a way that A(0)� B(0) at the beginning and
A(tf )� B(tf ) at the end of the annealing schedule.

In the experiment then 1000 di�erent random instances, sets of Jij = ±1, were selected and the
local �elds set to zero, hi = 0. For each instance the annealing schedule was repeated 1000 times,
counting the number of times in which the ground state was found. From that the success probability
per instance was calculated. In Fig. 2.4 the histogram of the success probability of the D-Wave One
obtained in the experiment is shown. There we can see that the success probability distribution has
a bimodal structure with two peaks at zero and one. In addition to the experiment on the D-Wave
One the experiment was also simulated using two di�erent classical algorithms. The �rst algorithm is
simulated annealing (SA), a Monte Carlo algorithm for classical annealing, and the second simulated
quantum annealing (SQA), a quantum path integral Monte Carlo algorithm. Both simulations showed a
di�erent distribution of the success probability. While SA had a unimodal distribution, the distribution
of SQA was bimodal with two peaks at zero and one, similar to the distribution of the D-Wave One.
When the result from the D-Wave One was compared instance by instance with the one from SQA,
it showed that both had a high correlation. In particular the same instances that had a low (high)
success probability on the D-Wave One also had a low (high) success probability on SQA. From this
correlation it was concluded that the D-Wave One must show quantum behavior.

13



2 Background

Figure 2.4: Histogram of the success probability of �nding the ground state in 1000 di�erent
instances of an Ising spin glass with 108 spins of the D-Wave One. The success probability shows
a bimodal distribution.

Shortly after the article discussed above was published, the group of Smolin et al. published the
preprint of [13] in which they criticize the conclusion from the di�erent success probability distribution
to the quantum nature of the D-Wave One. In particular they stated that classical and quantum
annealing cannot be compared with each other as both are of di�erent nature. Simulated annealing
proceeds by choosing a random initial state. Thus every run has di�erent starting conditions and thus
follows di�erent trajectories. In contrast to classical annealing, quantum annealing always starts in the
same ground state. From this follows that, in the ideal picture, the quantum annealer always follows
the same trajectory and thus that there are only two possibilities, either it �nds the ground state or it
does not. This property can be directly seen in the bimodality of the success probability distribution.
Thus they reason that the bimodality is more a sign for the reproducability than the quantumness of
the D-Wave One.

To show that also classical models can lead to a bimodal success probability distribution, the group of
Smolin et al. proposed the simple, classical SSSV-model, named after the authors of [14]. In this model
the quantum mechanical spins from Eq. (2.46) are replaced by classical "compass needles" leading to
the classical Hamilton function

H(t) = −A(t)
∑
i

cos θi − B(t)

∑
i<j

Jij sin θi sin θj +
∑
i

hi sin θi

 . (2.47)

With this model the experiment on the D-Wave One was simulated in [14] using the same instances as
in the experiment.1 The simulation also lead to a bimodal distribution like the D-Wave One and the
SQA. Also the direct comparison of the simulation with the device showed correlations equivalent to
the one between the device and SQA. From this Smolin et al. concluded that, although their model is
most likely too simple to describe the D-Wave One completely, that classical models cannot be ruled
out and thus that the results presented in [12] are no proof for the quantumness of the device.

Later, in September 2014, a group around Matthias Troyer and Daniel Lidar found in [16] that both
models, SQA and SSSV, do not describe the D-Wave One. Therefore they developed new measures,

1The instances used in the experiment in [12] had been published in [15] as a response to the �rst article of the group
of Smolin et al. .
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2.4 Discussion about the D-Wave One

besides the success probability distribution, on how to distinguish the results obtained from the device
and the simulations, namely the spectrum of excited states and the found subset of the, in general
degenerate, ground state. Both models, SQA and SSSV, cannot perfectly describe the observed prop-
erties found in the D-Wave One for these two measures. Furthermore they found that the SSSV-model
and SQA correlate strongly with each other for these new measures, which can be explained as the
SSSV-model can be derived as semi-classical limit of SQA. In their discussion they concluded that
most likely the two models, SSSV and SQA, do not describe the D-Wave One. But they also stated
that their analysis can have several potential loopholes. For example the Gaussian noise model used
in the simulations could be too simplistic and thus that a better model for the noise could improve the
correlation between the D-Wave One and SQA or the SSSV-model. Overall the question whether the
D-Wave One experiences large-scale quantum e�ects remains open.
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3 Chapter 3

Model

In this chapter we derive our model for coupled qubits inside a quantum annealer with strong noise.
Therefore, we derive and discuss its dynamics for a single qubit in Sec. 3.1. After that, we expand the
model and discuss it for two coupled qubits in Sec. 3.2. Finally, we present the transition rates for the
general case of N coupled qubits in Sec. 3.3 without further discussion.

3.1 Single Qubit

Our model is based on the Hamiltonian Eq. (2.31). The di�erence is that the qubit no longer is in a
�xed environment but inside a quantum annealer. This means that ε and ∆ are no longer constant in
time but rather given by A(t) and B(t), the parameters of the annealing schedule. With this Eq. (2.31a)
reads

HS = −1

2

(
A(t)σx + hB(t)σz

)
(3.1)

where we additionally introduced h, a control knob to scale the energy. This small change makes a
big di�erence as the annealing schedule is chosen such that at the beginning A(0) � B(0) and at the
end A(tf ) � B(tf ). So at the beginning of the annealing schedule, if we ignore the noise, the A-term
dominates the Hamiltonian Eq. (3.1) and thus its eigenstates are given in a σx-basis. When we now
look at the end of the annealing schedule the B-term dominates and the eigenbasis is in the σz-basis.
But that also means that in between the two terms swap their meaning. While at the end the B-term
gives the energy and the A-term the tunneling amplitude, same as in [10], it is the other way round at
the beginning.
In order to be able to keep track of the basis the system is in throughout the whole annealing time,

we transform the system and describe it by the Pauli matrices τ̂ . The Pauli matrices are chosen in
such a way that the energy is always given by the τz-term and the tunneling amplitude always by
the τx-term. At the beginning this transformation leads to the substitutions σx → τz and σz → −τx,
where the minus sign is needed to preserve the commutation relations. This describes nothing else but
a rotation of the Pauli vector σ̂ by an angle of θ = π/2 in the xz-plane.

Up to this point we have only discussed the beginning and the end of the annealing schedule. Now
let us extend the model to all times during the annealing schedule. Therefore we de�ne a new time-
dependent basis τ̂ , rotated by an angle θ about the y-axiswith respect to the original basis σ̂ i. e.

τ̂ = R−1σ̂ (3.2)
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where R−1 is the inverse rotation matrix about the y-axis given by

R−1 =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 . (3.3)

The rotation angle θ is limited to θ ∈ [0, π/2] and in general is a function of time θ = θ(t) given by the
parameters of the annealing schedule. Applying the rotation in Eq. (3.2) results in the substitution

σx → cos θτx − sin θτz

σz → sin θτx + cos θτz .
(3.4)

Although the exact time dependency of θ is still unknown, we can see that we can reproduce the
behaviour above when we set the boundary conditions θ(0) = π/2 and θ(tf ) = 0. Nevertheless we must
not forget that up until now we have considered our system to be disconnected from the environment.
Hence the picture might change if we allow the environment to couple to the qubit.
Let us now study our model in more detail. Therefore we make the ansatz

H = HS +HB +Hint , (3.5)

where HS is the system Hamiltonian Eq. (3.1), HB is the bath Hamiltonian and Hint is the interaction
Hamiltonian of the system with the bath Eq. (2.31b), and insert the substitution Eq. (3.4). After
sorting the terms for the new Pauli matrices the system and interaction Hamiltonian changes to

HS = −1

2

(
∆τx + ετz

)
(3.6a)

Hint = −1

2

(
sin θτx + cos θτz

)
X (3.6b)

where

ε(θ) = −A sin θ + hB cos θ (3.7a)

∆(θ) = A cos θ + hB sin θ . (3.7b)

In Eq. (3.6b) we can see another interesting new property of our system compared to [10], as our system
now contains not only a longitudinal but also a transverse coupling to the bath.
Our ansatz still depends on the unknown bath Hamiltonian. To get rid of it we transform to the

interaction picture. Therefore we assume the bath to be in thermal equilibrium at temperature T and
thus its Hamiltonian is independent of time. With this the unitary transformation can be written as

U(t) = eiHBt (3.8)

and the Hamiltonian becomes

HI = UHU † + iU̇U †

= −∆

2
τx −

ε

2
τz −

1

2
(sin θτx + cos θτz)XI(t)

(3.9)

where XI(t) = U(t)XU †(t) is a bath operator in the interaction picture. In order to keep the notation
clean let us drop the index I for the interaction picture again.

18



3.1 Single Qubit

To describe the dynamics of the system let us �rst ignore the transverse coupling in Eq. (3.9) and
have a look at the noise term. By ignoring the transverse coupling the noise has its major contribution
in the original basis, i. e. when θ = 0. In this basis the energy is given by ε = B and the tunneling
amplitude by ∆ = A. Thus the strength of the noise term is determined by S(ω = B), where S(ω) is
the noise spectral density. Hence when we look at the beginning of the annealing schedule the noise
strength is given by S(0). In [11] it was shown that the noise on a qubit is strongly peaked at ω = 0
and thus it is save to say that ∆ � S(0) � ωp at the beginning. When time progresses the energy
rises and thus S(ε) becomes smaller. But at the same time also the tunneling term becomes smaller.
Thus we assumed that ∆ � ε + S(ε) � ωp throughout the annealing schedule. From this follows
that the τz-terms dominate and thus that the tunneling term can be taken to be a small perturbation.
Furthermore, as ε + S(ε) � ωp, the occupation of excited states in the wells are strongly suppressed
and the dynamics of the system can be reduced to the two lowest states even in the presence of noise.
Therefore the �ux tunneling rates Γ can then be calculated in lowest-order perturbation theory in the
tunneling term V = ∆τx/2 analog to [10].
Starting from Fermi's Golden rule

Γi→f = 2π
∣∣〈i|V |f〉∣∣2 δ(Ei − Ef) =

∞∫
−∞

dt 〈i(t)|V |f(t)〉 〈f(0)|V |i(0)〉 (3.10)

where |i〉 (|f〉) denote the initial (�nal) state of the total unperturbed system, e. g. |i〉 = |iB〉 |1〉, with
eigenenergy Ei (Ef ). The time evolution of these unperturbed states is given by

|i(t)〉 = T exp

 i

2

t∫
−∞

dt′
(

cos θX(t′)τz + ετz

) |i(0)〉 = U(t)eiετzt/2 |i(0)〉 . (3.11)

Here U(t) = T exp[i/2 τz cos θ
∫ t
−∞ dt′ X(t′)] is the time evolution operator where T denotes time

ordering. At this point we took the rotation angle θ, and with that also the energy ε(θ), to be constant
in time. This assumption is justi�ed as ε and θ only change on the time scale given by the annealing
schedule which is much slower than the relaxation processes of the system, which are of interest here.
The transition rates are then given by the sum over all possible initial (with equilibrium density matrix
ρ) and �nal states of the bath. Inserting Eq. (3.11) in Eq. (3.10), using τz |0〉 = |0〉 , τz |1〉 = − |1〉, and
summing over the bath states leads to

Γ1→0(ε) =
∑
iB ,fb

ρ

∞∫
−∞

dt 〈i(t)|V |f(t)〉 〈f(0)|V |i(0)〉

=
∆2

4

∞∫
−∞

dt eiεt 〈U †−(t)U+(t)U †+(0)U−(0)〉

(3.12)

where 〈· · ·〉 = TrB{ρ · · · } is the partial trace over the bath states and U±(t) = T exp[±i/2 cos θ
∫ t
−∞ dt′ X(t′)].

The correlator in Eq. (3.12) can be calculated in the Gaussian approximation by expanding the time
evolution operator U±(t) up to the second order in X, averaging the result and exponentiating it back.
This gives

〈U †∓(t)U±(t)U †±(0)U∓(0)〉 = exp

cos2 θ

t∫
0

dt′
0∫

−∞

dt′′ 〈X(t′)X(t′′)〉

 . (3.13)
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In this approximation the sign in U±(t) does not make a di�erence. Thus we can de�ne the �ip rate
ΓF(ε) ≡ Γ1→0(ε) = Γ0→1(−ε). Remembering that in the interaction picture X(t) = eiHBtXe−iHBt the
integrals on the RHS in Eq. (3.13) can be rewritten to

t∫
0

dt′
0∫

−∞

dt′′ 〈X(t′)X(t′′)〉 =
∑

nB ,mB

ρn

t∫
0

dt′
0∫

−∞

dt′′ 〈nB|X(t′)|mB〉 〈mB|X(t′′)|nB〉 (3.14)

=
∑

nB ,mB

ρn
∣∣〈nB|X|mB〉

∣∣2 t∫
0

dt′
0∫

−∞

dt′′ e−i(Em−En)t′ei(Em−En)t′′ (3.15)

=

∞∫
−∞

dω
∑

nB ,mB

ρn
∣∣〈nB|X|mB〉

∣∣2 δ(ω − (Em − Em)
) e−iωt − 1

ω2
(3.16)

=

∞∫
−∞

dω

2π
S(ω)

e−iωt − 1

ω2
(3.17)

where En is an eigenenergy of the Bath eigenstate |nB〉, ρn the equilibrium probability density and S(ω)
the noise spectral density. Inserting Eq. (3.17) into Eq. (3.12) the rates �nally become

ΓF(ε) =
∆2

4

∞∫
−∞

dt e−iεt exp

cos2 θ

∞∫
−∞

dω

2π
S(ω)

e−iωt − 1

ω2

 (3.18)

which, without the cosine, is one result from [10].
The result from Eq. (3.17) can even further be rewritten. Therefore let us express the noise spectral

density by

S(ω) =
J(ω)

1− e−βω
(3.19)

with the noise spectral function J(ω) and the inverse temperature β. Inserting Eq. (3.19) into Eq. (3.17)
and splitting the integral for negative and positive frequencies leads to

∞∫
−∞

dω

2π
S(ω)

e−iωt − 1

ω2
= −

∞∫
0

dω

2π

J(ω)

ω2

(
1− e−iωt

1− e−βω
− 1− eiωt

1− eiβω

)
. (3.20)

After reducing the fractions to a common denominator, expressing the complex exponent by sine and
cosine, and sorting some terms the �nal result becomes

− J(t) ≡ −
∞∫
−∞

dω

2π
S(ω)

e−iωt − 1

ω2
=

∞∫
0

dω

2π

J(ω)

ω2

(
(1− cosωt) coth

βω

2
+ i sinωt

)
(3.21)

the typical result from P (E)-Theory [17]. And thus the �nal transition rate reads

ΓF(ε) =
∆2

4

∞∫
−∞

dt e− cos2 θ J(t)e−iεt . (3.22)
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Up until now we have neglected the transverse coupling in Eq. (3.9). So let us now discuss what
e�ects it causes. Therefor let us again have a look at the strength of the noise �rst. The transverse
coupling has its main contribution in the fully rotated basis, i. e. when θ = π/2. In this basis the
energy is given by ε = A and the tunneling amplitude by ∆ = B. So now the noise strength is given
by S(ω = A). But that means, in combination with the noise being strongly peaked at low frequencies,
that at the beginning S(ε)� ε. Thus the transverse coupling term can now be taken as perturbation.1

So we can again use Fermi's Golden rule Eq. (3.10) but this time the perturbation is given by the
coupling term in the interaction Hamiltonian i. e. V = sin θτxX(t)/2. With this we get

ΓD(ε) ≡ Γ1→0(ε) =
∑
iB ,fb

ρ

∞∫
−∞

dt 〈i(t)|V |f(t)〉 〈f(0)|V |i(0)〉 (3.23)

=
sin2 θ

4

∞∫
−∞

dt
∑
iB ,fB

ρ 〈iB|X(t)X(0)|iB〉 eiεt (3.24)

=
sin2 θ

4
S(ε) (3.25)

=
sin2 θ

4

J(ε)

1− e−βε
. (3.26)

where we inserted Eq. (3.19) in Eq. (3.25) at the last step. Analog to Eq. (3.26) the decay rate for the
transition 0→ 1 can be calculated to

Γ0→1(ε) = ΓD(−ε) = e−βεΓD(ε) (3.27)

where we have used the Fluctuation-Dissipation Theorem in the last step.
Further we know from basic decoherence theory that the o�-diagonal elements of the density matrix

of a two level system for pure transverse coupling are given by

ρ10(t) = ρ10(0) exp

[
−

ΓD(ε) + ΓD(−ε)
2

|t|

]
e−iεt . (3.28)

But when we Fourier transform this into energy space we see that this simply resolves into a renormal-
ization of the energy

ε→ ε+ i
ΓD(ε) + ΓD(−ε)

2
. (3.29)

Thus we de�ne the line broadening ΓW as

ΓW(ε) =
1

2

(
ΓD(ε) + ΓD(−ε)

)
(3.30)

=
1

2

(
1 + eiβε

)
ΓD(ε) (3.31)

=
sin2 θ

8
J(ε) coth

βε

2
(3.32)

1The argument breaks down for later times. But as we assume that the system is only at the beginning of the annealing
schedule in the fully rotated basis the error made by this assumption should be small.
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and renormalize the energy in Eq. (3.22) analog to Eq. (3.29). So the �ip rate now reads

ΓF(ε) =
∆2

4

∞∫
−∞

dt e− cos2 θ J(t)e−iεte−Γ
W

(ε)|t| . (3.33)

With the discussion above the total rate for single �ip events is given by the sum of the decay and
�ip rate i. e.

ΓSF(ε) = ΓD(ε) + ΓF(ε) . (3.34)

Both parts of Eq. (3.34) depend on the noise spectral function J(ω), which still has to be modeled.
In [11] measurements on a single �ux qubit have been performed. There it was shown that the noise
consists of two Ohmic parts, where one of the parts is strongly peaked at low frequencies (LF) and the
other is broadband at high frequencies (HF). So we use an ansatz with the sum of two Ohmic spectral
functions with a Lorentzian cuto�

J(ω) = ω

(
ηLF

ωLF
ω2
LF + ω2

+ ηHF
ωHF

ω2
HF + ω2

)
(3.35)

where ηi is the dimensionless coupling strength and ωi the cuto� frequency.
Now let us numerically evaluate the rates. Therefore we need to determine some plot parameters.

For the calculation we normalize them to the maximal energy given by the annealing schedule i. e. such
that 5GHz = 1 [12]. With this ηHF = 0.41 ≈ 0.5 and kBT = 21mK kB ≈ 0.5GHz = 0.1 can be taken
from [11]. Furthermore we assumed that the low frequency noise couples much stronger to the qubit
than the high frequency noise and thus ηLF = 5 and ηHF = 0.5 were chosen. For the cuto� frequency
we took ωLF = 0.1 and ωHF = 10.
In Fig. 3.1 the �ip rate ΓF, Eq. (3.33), is plotted as a function of energy ε and rotation angle θ. It

is nice to see, that the rate at the beginning has a broad peak for positive energies at small angles and
slowly moves back to energies around zero and large angles. The double peak structure at ε ≈ 0 is
due to the line broadening ΓW. It has its maximal contribution when θ = π/2 and only depends on
the annealing schedule via the tunneling amplitude ∆. Because of ∆(θ = π/2) = B its impact in the
beginning is minimal and slowly grows with the simulation time. Finally one can see in the plots that
at the end of the schedule the �ip rate becomes exactly zero at θ = 0 independent of the energy ε. This
is important as at the end of the annealing schedule the state of the qubits has to be in the original
basis, i. e. θ(tf ) = 0, and the state has to be frozen in a given state, i. e. the transition rate is zero.
The decay rate ΓD, Eq. (3.26), is shown in Fig. 3.2. In contrast to the �ip rate the decay rate does

not directly depend on the annealing schedule. This resembles our assumption from above, that the
e�ects causing the noise take place on a time scale much faster than the annealing schedule. Thus
the qubit sees a static noise background and has a constant decay rate on the time scale given by the
annealing schedule. The plot shows that the decay rate has, as expected, a peak at ε ≈ 0 and drops
o� exponentially for negative while reaching a plateau for positive energies. As the decay rate only
depends on the rotation angle θ via its prefactor its dependency is easy to understand. Due to the
prefactor the decay rate, just as the �ip rate at t/tf = 1, vanishes for θ = 0. This arises directly from
our model as the origin of the decay rate is the transverse coupling in the the interaction Hamiltonian
Eq. (3.6b) which only appears after leaving the original basis i. e. when θ 6= 0.
Finally the total rate for single �ip events Eq. (3.34) is shown in Fig. 3.3 and does not come with a

further surprise. The only interesting fact to see is that both, the �ip and decay rate, are of the same
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3.1 Single Qubit

Figure 3.1: Plot of the �ip rate Eq. (3.33) as a function of ε and θ for a) t/tf = 0, b) t/tf = 0.25,
c) t/tf = 0.5 and d) t/tf = 1 with parameters β = 10, ηLF = 5, ωLF = 0.1, ηHF = 0.5, ωHF = 10
and, h = 1 and assuming a linear annealing schedule i. e. A = 1− t/tf and B = t/tf .

order of magnitude and thereby both have to be considered when we want to determine the optimal
rotation angle.
To do so lets recall that in general the rotation angle θ is expected to be a function of time depending

on the annealing schedule i. e. the parameters A(t) and B(t). Furthermore transition rates, in lowest
order, have the general form

Γ = g2

∞∫
−∞

dt eγ|t|ei∆Et ∝ g2

γ
(3.36)

where g is the matrix element connecting the states and γ is the lifetime of the state [18]. While the
preferred basis is given where g/γ has its minimum. Unfortunately both quantities are hard to come by,
especially when one considers systems with more than one qubit. In order to get an impression on how
the angle behaves we decided to take the angle θmin, where the total transition rate Γtot out of a given
state has its minimum as the preferred angle. For the single qubit case the total rate is simply given
by the single �ip rate i. e. Γtot = ΓSF. In Fig. 3.4 the angle θmin is plotted versus the normalized time
t/tf , with annealing time tf , assuming a linear annealing schedule i. e. B(t) = t/tf ,A(t) = 1 − B(t).
The plots show that the two cases when the qubit is in state |1〉, where it lowers its energy by the
transition, and when it is in |0〉, where it raises its energy by the transition, have a di�erent behaviour.
If it is in |0〉 the qubit prefers the σz-basis during the whole annealing schedule while if it is in state
|1〉 it starts out in the σx-basis and then jumps at t/tf ≈ 0.3 to the σz-basis.
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Figure 3.2: Plot of the decay rate Eq. (3.26) as a function of ε and θ with parameters β =
10, ηLF = 5, ωLF = 0.1, ηHF = 0.5, ωHF = 10 and h = 1.

The reason for this behaviour can already be presumed in Fig. 3.3 when one remembers that ε is not
an independent variable but rather depends on θ as given in Eq. (3.7a).

Let us �rst concentrate on the case, when the qubit is in state |0〉 with energy −ε. Then the energy
−ε starts purely positive and the rate is dominated by the plateau of the decay rate. Thus in order to
minimize the total rate, the decay rate has to be minimized, which is equivalent to go to θ = 0. At this
point the �ip rate has a �nite but small value. When time progresses several things happen. First at
θ = π/2, where ∆ = B, the �ip rate increases while the energy −ε moves to 0 and thus approaching
the peak of the decay rate. At the same time at θ = 0, where ∆ = A, the �ip rate slowly decreases and
−ε moves to −1 and thus even further away from the vanishing peak. Adding those e�ect up leads to
the fact that the single �ip rate has its minimum at θ = 0 throughout the annealing time.

On the other hand, when the qubit is in state |1〉 the corresponding energy ε starts purely negative
and thus in the region of the exponential decrease in the decay rate. Thus the �ip rate dominates
when minimizing the total rate. But in contrast to the decay rate the �ip rate has its minimum at the
beginning at θ = π/2. When time progresses exactly the same e�ects as in the |0〉 case take place. But
in our case this now means that the rate in the rotated basis at θ = π/2, in which we are in, slowly
increases while the rate in the original basis slowly decreases. At some point both have the same value
and the state �ips from the rotated to the original basis i. e. from θ = π/2 to θ = 0.

This behaviour can be seen in more detail in Fig. 3.5. There one can also see, that the actual value
of the tunneling amplitude ∆ does not play a role in the discussion. More important is the sign of the
energy ε, which determines whether the rate has to be minimized via the decay or the �ip rate.
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3.2 Two Qubits

Figure 3.3: Plot of the single �ip rate Eq. (3.34) as a function of ε and θ for a) t/tf = 0,
b) t/tf = 0.25, c) t/tf = 0.5 and d) t/tf = 1 with parameters β = 10, ηLF = 5, ωLF = 0.1, ηHF =
0.5, ωHF = 10 and, h = 1 and assuming a linear annealing schedule i. e. A = 1−t/tf and B = t/tf .
The black dashed (dotted) line is the energy ε (−ε) de�ned in Eq. (3.7a) for the case when the
qubit is in state |1〉 (|0〉) at the given time.

3.2 Two Qubits

Now let us extend our model for a case with two qubits. To describe the qubits we again use the ansatz
Eq. (3.1) and couple the qubits with a coupling constant J12 which we allow to be J12 = ±1. Thus our
Hamiltonian in the interaction picture reads

H = −A(t)

2
(σ1
x + σ2

x)− B(t)

2
(h1σ

1
z + h2σ

2
z + J12σ

1
zσ

2
z)−

1

2
σ1
zX1(t)− 1

2
σ2
zX2(t) (3.37)

where σix,z denotes Pauli matrices and Xi the noise operator acting on the i-th qubit. As for the single
qubit case we we change to the new basis depending on the annealing schedule. Because both qubits
could prefer a di�erent basis set during the process we introduce an angle θi which denotes the rotation
angle of the ith qubit. After applying the basis transformation the Hamiltonian can be written in the
following form

H = H1 +H2 +H12 . (3.38)

Here Hi is of the form of the single qubit Hamiltonian Eq. (3.9) with the di�erence that Hi also has a
contribution from the coupling. This contribution can be added to the energy and tunneling amplitude
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(a) (b)

Figure 3.4: Plots of the minimal rate Γmin
SF and the corresponding angle θmin when the system

is in state (a) |1〉 and, (b) |0〉. The data was calculated using Eq. (3.34) with a linear annealing
schedule, i. e. B = t/tf and A = 1−B, and the parameters β = 10, ηLF = 5, ωLF = 0.1, ηHF = 0.5,
ωHF = 10 and, h = 1.

respectively and thus

ε(θ)→ ε(θi) +
B

2
Jij cos θi cos θjτ

j
z ≡ εi + ε̃iJijτ

j
z (3.39a)

∆(θ)→ ∆(θi) +
B

2
Jij sin θi cos θjτ

j
z ≡ ∆i + ∆̃iJijτ

j
z , (3.39b)

where i, j = 1, 2, i 6= j and εi and ∆i as de�ned in Eq. (3.7), has to be substituted. In addition to the
diagonal part we �nd H12 which comes from the mixing term of the transformation in the interaction
and reads

H12 = −B

2
J12 sin θ1 sin θ2τ

1
xτ

2
x ≡ −

M12

2
τ1
xτ

2
x . (3.40)

It describes the situation when both qubits �ip at the same time.
Now let us take a look at the dynamics of the system. For single �ip events the overall structure

of the Hamiltonian did not change. Therefore we can directly take the results from Sec. 3.1 and
only have to consider the substitution in Eq. (3.39). From this follows that the energy as well as the
tunneling amplitude now depend on the state of the second qubit and the coupling constant. Hence
the transition rates can now have two di�erent values, as Jij τ̃

j
z = ±1 where τ̃ jz is the eigenvalue of the

j-th spin. Considering this the transition rates for single �ip events now read

ΓiF,± =
(∆i ± ∆̃i)

2

4

∞∫
−∞

dt e− cos2 θi J(t)e−i(εi±ε̃i)te−
Γ
W

(εi±ε̃i)
2

|t| (3.41)

ΓiD,± =
sin2 θi

4

J(εi ± ε̃i)
1− e−β(εi±ε̃i)

(3.42)

and

ΓiSF,± = ΓiD,± + ΓiF,± (3.43)
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Figure 3.5: Comparison of the energy ε and tunneling amplitude ∆ as a function of the rotation
angle θ (bottom) and the �ip and decay rate as a function of energy ε (top). In the rate plots the the
blue (green) lines represent the case when the qubit is in state |0〉 (|1〉) at θ = 0 (solid) and θ = π/2
(dashed). The vertical lines in the rate plots give the energy at θ = 0 and θ = π/2 respectively.
The three columns show di�erent times at (a) the beginning of the schedule (t/tf = 0.1) (b) near
the jump in the |1〉 case (t/tf = 0.3) and (c) at the end of the schedule (t/tf = 0.9). Further
parameters are β = 10, ηLF = 5, ωLF = 0.1, ηHF = 0.5, ωHF = 10 and, h = 1. The annealing
schedule was assumed to be linear i. e. A = 1− t/tf and B = t/tf .
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where the index ± distinguishes the two cases Jij τ̃
j
z = ±1.

Having determined the dynamics of single �ip events let us now take a look at the double �ip
Hamiltonian H12, where both qubits decay simultaneously. Therefore we go back to Fermi's Golden
rule

Γ1→0
1→0

=
∑
iB ,fB

ρ

∞∫
−∞

dt 〈i(t)|V |f(t)〉 〈f(0)|V |i(0)〉 (3.44)

and assume that both qubits are coupled to independent baths, i. e. |iB〉 = |i1B〉 |i2B〉 and ρ = ρ1 ⊗ ρ2.
With this we get

Γ1→0
1→0

=
M2

12

4

∞∫
−∞

dt 〈1(t), 1(t)|τ1
xτ

2
x |0(t), 0(t)〉

×
∏
i=1,2

〈U i−
†
(t)U i+(t)U i+

†
(0)U i−(0)〉 (3.45)

where we can recognize the bath correlator from the single qubit case and thus can recycle the result
from Eqs. (3.17) and (3.21). To calculate the matrix element of the system states let us �rst have a look
at the arti�cial case where only the �rst qubit evolves in time and the coupling constant is J12 = +1.
With those assumptions the time evolution of the states are

|1(t), 1〉 = ei(ε1+ε̃1)τ1
z t/2 |11〉 = e−i(ε1−ε̃1)t/2 |11〉 (3.46)

|0(t), 0〉 = ei(ε1+ε̃1)τ1
z t/2 |00〉 = e+i(ε1+ε̃1)t/2 |00〉 (3.47)

and thus the matrix element becomes

〈1(t), 1|τ1
xτ

2
x |0(t), 0〉 = 〈11|e−i(ε1+ε̃1)τ1

z t/2τ1
xτ

2
xei(ε1+ε̃1)τ1

z t/2|00〉 (3.48)

= ei(ε1−ε̃1)τ1
z t/2ei(ε1+ε̃1)τ1

z t/2 (3.49)

= eiε1t . (3.50)

Here we can see that the term arising from the interaction between the two qubits cancels. This will
also happen in the other cases. The only things that may change are the global sign in the exponent,
by changing the state of the �rst qubit, or the sign in front of ε̃, by changing the state of the second
qubit or the coupling, in Eq. (3.49). Nevertheless the term arising from the coupling between the two
qubits always cancels. This makes perfectly sense as the contribution of the interaction depends on the
relative orientation between the to qubits. But when they �ip simultaneously the relative orientation
stays the same and thus its contribution cancels when taking the di�erence of the initial and �nal
energy. Of course this behaviour changes if there are other spins coupling to the two �ipping ones.
Then those additional spins will have a contribution to the energy di�erence via the coupling term.
When we now enter the thoughts above in Eq. (3.45) the double �ip rate becomes

ΓDF ≡ Γ1→0
1→0

=
M2

12

4

∞∫
−∞

dt e−i(ε1+ε2)te−(cos2 θ1+cos2 θ2) J(t) . (3.51)

This expression still lacks a line broadening we introduced in the single qubit case. So we repeat our
magic trick and assume, because the two baths of the qubits are independent, that the line broadening
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is simply given by the sum of the line broadening of both individual qubits. With this we get the �nal
form for the double �ip rate

ΓDF =
M2

12

4

∞∫
−∞

dt e−(cos2 θ1+cos2 θ2) J(t)e−
1
2

(sin2 θ1Γ1
W

+sin2 θ2Γ2
W

)|t|e−i(ε1+ε2)t . (3.52)

Having determined the rates, let us now see how the rotation angle behaves, when we minimize the
transition rate. Therefore we need the total transition rate given by

Γtot = Γ1
SF + Γ2

SF + ΓDF . (3.53)

Furthermore, as we are interested in the properties of an Ising spin glass used in [12], we set h1 = h2 = 0.
All other parameters are kept the same as in Sec. 3.1.

In Fig. 3.6 the minimal angles θmini for all occurring cases are shown. The two cases when the state
is |01〉 were omitted as they show exactly the same behaviour as Figs. 3.6c and (d) only the two angles
θmin1 and θmin2 are swapped, which is nice as it shows us that it does not matter how we label our qubits.
With the same e�ect the occurrence of the two global minima in Fig. 3.6a can be explained. The only
di�erence here is that both qubits are in the same state and thus changing the labels at both qubits
resolve to the same state. So two minima appear with the same, but swapped angles.

A precise description why the angles behave like this cannot be done unless an analytically solvable
form of Eq. (3.53) or a way to visualize the numerical result is found. For this further investigation is
needed. Nevertheless lets collect some observations. First of all the behavior is somewhat similar to the
single qubit case. Meaning that at the beginning (t/tf = 0) the angle starts at minimal energy εi + ε̃i,
i. e. at θmini = π/2 if the qubit is in |1〉 or θmini = 0 otherwise, and always becomes θmini = 0 at the end
(t/tf = 1). Even during the annealing time (0 < t/tf < 1) the angle prefers to be θmini ∈ {0, π/2}.
The only two exceptions where θmini also has other values than 0 and π/2 are the angles in Fig. 3.6a
and θmin1 in Fig. 3.6d. These cases are also the only ones where at least one qubit is in state |1〉 and
Jij τ̃

i
z τ̃
j
z = +1. Furthermore one can see that the double �ip rate ΓDF can be neglected in most of the

cases. Due to its prefactor M12 ∝ sin θ1 sin θ2 it can only have values other than zero if and only if
both angles are not zero. Thus only in Figs. 3.6a and (b) it can contribute.

Most of the weird behaviour has its origin in setting hi = 0 and introducing the coupling between
the qubits. By that the energy becomes

εi + ε̃i = −A sin θi + B cos θi cos θjJij τ̃
j
z . (3.54)

This has some far-reaching consequences compared to the single qubit case. First of all the sign in
front of the B-term, which was �xed in the single qubit case, now can vary depending on the sign of
Jij τ̃

j
z . With this the qubits can now reach new energies. To visualize this new behaviour in Fig. 3.7 the

possible energies were plotted above the single �ip rate ΓSF Eq. (3.34). This could be part to explain
the linear decay of θmin1 in Fig. 3.6d as its energy corresponds to the dashed white line in Fig. 3.7.
Furthermore by coupling the two qubits the second qubit can turn o� the B-dependency completely, if
θminj = π/2, and thus pin the energy for θmini = 0 to zero. Those changes are rather small but have a
dubious impact. If we look at the jump in Fig. 3.6c for example. Here the jump happens at τ/tf ≈ 0.4
so the energies right before the jump are given by ε1 + ε̃1 = −A ≈ −0.6 and ε2 + ε̃2 = 0 while directly
after the jump they become εi + ε̃i = +B = 0.4 for both qubits. So at the jump of the angle also the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Plots of the minimal rate Γmin
tot and the corresponding angles θmini when the system

is in state (a) |11〉 with Jij = +1, (b) |11〉 with Jij = −1, (c) |10〉 with Jij = +1, (d) |10〉
with Jij = −1, (e) |00〉 with Jij = +1, and (f) |00〉 with Jij = −1. Using the parameters
β = 10, ηLF = 5, ωLF = 0.1, ηHF = 0.5, ωHF = 10 and, hi = 0 and a linear annealing schedule.
The crosses in (a) show times where there was no unique minimum.
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Figure 3.7: Plot of the single �ip rate Eq. (3.34) as a function of ε and θ for a) t/tf = 0,
b) t/tf = 0.25, c) t/tf = 0.5 and d) t/tf = 1 with parameters β = 10, ηLF = 5, ωLF = 0.1, ηHF =
0.5, ωHF = 10 and, h = 1 and assuming a linear annealing schedule i. e. A = 1−t/tf and B = t/tf .
The black dashed (dotted) line is the energy ±(−A sin θ + B cos θ) and the white dashed (dotted)
line the energy ±(−A sin θ − B cos θ) at the given time.

energy has an instantaneous and dramatic jump. It is needless to mention that this does not work very
well with our assumption of an adiabatic environment.
But there is even more. By setting hi = 0 and adding the interaction not only the energy but also

the tunneling amplitude changes its behaviour and now becomes

∆i + ∆̃i = A cos θi + B sin θi cos θjJij τ̃
j
z . (3.55)

So the tunneling amplitude, just as the energy, can �ip the sign in front of the B-term as well as
turn o� the B-dependency completely. While changing the sign, if limited to θmini ∈ {0, π/2}, does
not have any in�uence as the tunneling amplitude only appears as square, turning o� the the B-
dependency has. Therefore let us have a look at Fig. 3.6b before the jump happens. Here both angles
are θmin1 = θmin2 = π/2 so the tunneling amplitude becomes exactly zero and thus the �ip rate has no
in�uence at all. Furthermore when we look at the beginning of Fig. 3.6c where θmin1 = π/2 and θmin2 = 0
the tunneling amplitudes of both qubits show reverse behaviour, i. e. ∆1 + ∆̃1 = B while ∆2 + ∆̃2 = A.
Finally let us have a look on the e�ect of the double �ip on the behavior of the angles. As mentioned

earlier only in Figs. 3.6a and (b) the double �ip rate has values other than zero. For those two cases
the minimal angles θmini , ignoring the double �ip rate ΓDF, are plotted in Fig. 3.8. In both cases the
in�uence on the value of the total rate is rather small. But one can see, that in both cases the time
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(a) (b)

Figure 3.8: Plots of the minimal rate Γmin
tot , ignoring the double �ip rate ΓDF, and the corre-

sponding angles θmini when the system is in state (a) |11〉 with Jij = +1, (b) |11〉 with Jij = −1.
Using the parameters β = 10, ηLF = 5, ωLF = 0.1, ηHF = 0.5, ωHF = 10 and, hi = 0 and a linear
annealing schedule. The crosses in (a) show times where there was no unique minimum.

in which θmin1 = θmin2 = π/2 is signi�cantly shorter when considering the double �ip rate. This makes
perfectly sense as the double �ip rate ΓDF has its global minimum at ΓDF(θi = 0) = 0 and some �nite,
positive value otherwise. Thus its impact can only be to drive the minimum of the total rate to its
minimum, i. e. to θ = 0. Furthermore one can see that in Fig. 3.8a the phase where there is no unique
minimum (nearly) vanishes. Thus the ambiguity is a consequence of the double �ip. The exact reason
why this happens cannot be explained unless one �nds a way to visualize Eq. (3.53) and thus further
research is needed.

3.3 N Qubits

Let us now generalize our model discussed in Secs. 3.1 and 3.2 for N coupled qubits. The coupling
constant between two qubits is denoted by Jij . We allow the qubits to be (anti-) ferromagnetic Jij = ±1
or not coupled Jij = 0. Furthermore the coupling must be symmetric Jij = Jji, i. e. both qubits "see"
the same coupling between each other, and the diagonal term must vanish Jii = 0, i. e. the qubits are
not coupled to themselves. With those assumptions the Hamiltonian in the interaction picture reads

H =
∑
i

−A(t)

2
σix −

B(t)

2

hiσiz +
1

2

∑
j

Jijσ
i
zσ

j
z

− 1

2
σizXi(t)

 (3.56)

where the additional factor 1/2 in front of the coupling term compensates double counting. When we
now apply the basis transformation

σix → cos θiτ
i
x − sin θiτ

i
z (3.57a)

σiz → sin θiτ
i
x + cos θiτ

i
z . (3.57b)

the Hamiltonian can be written

H =
∑
i

Hi +
1

2

∑
ij

Hij (3.58)
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where Hi is the single �ip Hamiltonian discussed in Sec. 3.1 and Hij the double �ip Hamiltonian
discussed in Sec. 3.2, i. e.

Hi = −∆i + ∆̃i

2
τ ix −

εi + ε̃i
2

τ iz −
1

2
(sin θiτ

i
x + cos θiτ

i
z)Xi(t) (3.59a)

Hij = −Mij

2
τ ixτ

j
x (3.59b)

with

εi = −A(t) sin θi + hi B(t) cos θi ε̃i = B(t)
∑
j

Jij cos θi cos θjτ
j
z (3.60a)

∆i = A(t) cos θi + hi B(t) sin θi ∆̃i = B(t)
∑
j

Jij sin θi cos θjτ
j
z (3.60b)

Mij = B(t)Jij sin θi sin θj . (3.60c)

The dynamics resulting from the Hamiltonian Eq. (3.58) can be separated into two e�ects. On one
hand there are single �ip events originating from the single �ip Hamiltonian Hi. Their transition rates
can be calculated analog to Sec. 3.1 and result to

ΓlSF = ΓlD + ΓlF (3.61)

where

ΓlD =
sin2 θl

4

J(εl + ε̃l)

1− e−β(εl+ε̃l)
(3.62)

is the noise induced decay rate, with spectral function J(ε), and

ΓlF =
(∆l + ∆̃l)

2

4

∞∫
−∞

dt e− cos2 θl J(t)e−
1
2

Γl
W
|t|e−i(εl+ε̃l)t ≡ (∆l + ∆̃l)

2

4

∞∫
−∞

dt γlF(t) (3.63)

is the system induced �ip rate where

ΓlW =
sin2 θl

8
J(εl + ε̃l) coth

β(εl + ε̃l)

2
(3.64)

is the line broadening originating from the transverse coupling of the noise to the qubit. On the other
hand there are double �ip events originating from the double �ip Hamiltonian, as its name suggests,
�ipping two qubits simultaneously. The transition rate to simultaneously �ip the l-th and m-th qubit
can be calculated analog to Sec. 3.2 and results to

ΓlmDF =
M2
lm

4

∞∫
−∞

dt γlFγ
m
F e−2iJlm sin θl sin θmτ̃ lz τ̃

m
z t (3.65)

where γF is the integrand of the �ip rate in the single �ip case. The extra factor in Eq. (3.65) com-
pensates the loss of the coupling term of the two �ipping qubits. This is necessary as the orientation
of the two qubits, and with this the contribution to the energy, stays the same when both are �ipped
simultaneously.
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4 Chapter 4

Simulation

In this chapter we report on the simulation we made with the goal to reproduce the result from [12] with
our model. Therefore, we �rst introduce the Kinetic Monte Carlo Method in Sec. 4.1, which we used
for the simulation. Then, in Sec. 4.2 we describe the deviations of the model used in the simulation
from the model derived in Chap. 3. After that we discuss the implementation of the program used to
do the simulation in Sec. 4.3. In this connection we concentrate on the methods we used to keep the
computational complexity down and sketch the structure of the program only shortly. Finally, we present
the results we obtain from the simulation in Sec. 4.4.

4.1 The Kinetic Monte Carlo Method

The Kinetic Monte Carlo Method (KMC) is a numerical method to solve master equations [19]. In this
�eld it competes against the widely-used Metropolis algorithm. Although both algorithms provide a
numerical solution to master equations, the ideas behind them are rather di�erent.

With the Metropolis, algorithm the trajectory of a system is given by con�gurations at equidistant
time steps. At each step, the transitions from the given to a new con�guration are considered. Those
transitions are accepted with the probability given by the corresponding transition rate. But that also
means that transitions can be rejected and thus there is a probability to have the same con�guration
at two succeeding steps. This probability increases when the transition rates decrease such that many
failed tries are needed till a transition is accepted and thus slows down the algorithm.

In contrast to the Metropolis algorithm, the KMC algorithm is based on a waiting time image, i. e. the
trajectory is built up by assigning a waiting time τ to the initial con�guration of the system. After
waiting, the system is ensured to make the transition to a new con�guration, where the transition that is
executed is chosen with the probability given by the corresponding transition rate. Then a new waiting
time τ ′ is assigned to the new con�guration and the whole procedure repeats. The di�erence to the
Metropolis algorithm is that the waiting time τ is not constant but a random function of the transition
rates. Therefore, at every time step a probability distribution of the waiting time is constructed such
that no rejection occurs. By this, the waiting time increases when the transition rates decreases. Thus,
in the regime of small transition rates, only few steps have to be executed, making the algorithm very
e�cient.

The procedure of the KMC has its downside when the transition rates are time-dependent. In this
case the Metropolis algorithm can easily be expanded by assuming the transition rates to be piecewise
constant on the interval ∆t between two steps, where the error made by this assumption becomes
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smaller for smaller ∆t. For the KMC this method does not work as the waiting time is an unbounded
random function. With this, the transition rates between the arrival and departure in one state can
di�er, and thus the transition rates can not be assumed to be constant throughout the waiting time.
So the distribution of waiting times has to be chosen with care such that it considers the time evolution
of the transition rates.

4.1.1 Determination of the waiting time distribution

To determine the waiting time distribution, let us assume that the considered system has a discrete
range of states. Then its dynamics is described by the master equation

ṗi(t) =
∑
j

(
Γj→i(t)pj(t)− Γi→j(t)pi(t)

)
(4.1)

with time-dependent probabilities pi(t) to �nd the system in state i, and transition rates Γi→j(t) from
state i to j. Furthermore, let us de�ne the total transition rate for leaving state i

Ωi(t) =
∑
j

Γi→j(t) . (4.2)

To calculate the waiting time, we now consider the system to be in state i at a given time t. Then
qi(t+ τ |t) gives the probability for the system to stay in state i after waiting for the time τ , i. e. that
no transition has taken place. Its time dependence can directly be taken from Eq. (4.1) and is given by

q̇i(t+ τ |t) = −Ωi(t + τ)qi(t+ τ |t) . (4.3)

This equation can directly be integrated and leads, with starting condition qi(t|t) = 1, to

qi(t+ τ |t) = exp

− t+τ∫
t

dt′ Ωi(t
′)

 . (4.4)

At this point, it is useful to de�ne the dimensionless time scales

si =

t∫
0

dt′ Ωi(t
′) , (4.5)

where the index i again denotes all possible states of the system. The di�erent time scales for each
state are necessary as, in general, each state has di�erent escape channels and, by that, is associated
with di�erent total rates. For physical systems the transition rates have a real, positive and �nite value.
Thus, we can de�ne an upper bound for the dimensionless time scale

s
(∞)
i ≡ lim

t→∞
si = lim

t→∞

t∫
0

dt′ Ωi(t
′) . (4.6)

Now recall that we are interested in the trajectory the system takes during time evolution. So
the result can only be without ambiguity if the trajectory leads to a state in which the system will
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4.1 The Kinetic Monte Carlo Method

remain frozen, i. e. for which the waiting time is in�nite. In Eq. (4.4), we have already calculated the
probability that no transition takes place in a time interval from t to t+ τ . When we now assume that
the system, at t = 0, is initiated in state i, then

q∗i (0) ≡ lim
τ→∞

qi(τ |0) = lim
τ→∞

exp

− τ∫
0

dt′ Ωi(t
′)

 = e−s
(∞)
i (4.7)

gives the probability of the system being frozen forever in state i. From this, we can also see that the

system can only then be frozen in state i if s
(∞)
i is �nite. Thus the transition rates must ful�ll the

condition

lim
t→∞

tΩi(t) = 0 . (4.8)

In general, the transition rates depend on the given state. Thus, in general, not all states satisfy
Eq. (4.8) but only a certain subset of states. This does not pose a problem as long as there is at least
one state that can get frozen. Otherwise the simulation has no unambiguous result.

Similarly, we can consider the case when the system arrives in state i after a certain time t. Then
the probability to become frozen in state i can be calculated analog to Eq. (4.7) and reads

q∗i (si) = lim
τ→∞

qi(t+ τ |t) = e−(s
(∞)
i −si) . (4.9)

Again the system can only become frozen if s
(∞)
i is �nite and thus Eq. (4.8) holds for the transition

rates. From Eq. (4.9), we can also conclude that, if s
(∞)
i is �nite, the probability to become frozen

grows with time and even becomes unity in the limit t→∞ as

lim
t→∞

q∗i (si) = lim
t→∞

e−(s
(∞)
i −si) = e−(s

(∞)
i −s(∞)

i ) = 1 . (4.10)

This is a direct consequence of the condition for the transition rates in Eq. (4.8), which states that the
total transition rate Ωi(t) must go to zero for t → ∞. Thus, for increasing time, the probability that
the system undergoes a transition decreases.

Consequently, the waiting time for the system to be in state i after arriving there at time t, including
the possibility of the state to become frozen, can be generated the following way. Take a random
number u uniformly distributed in the interval (0, 1]. If u < q∗i (si) the system becomes frozen in state
i. Otherwise wait for time τ such that u = q(t+ τ |t). Usually it is more useful to invert Eq. (4.9) and
write the condition in a slightly di�erent but equivalent form. Then the procedure reads.

• Take a uniformly distributed random number u ∈ (0, 1].

� If

− lnu > s
(∞)
i − si(t) (4.11)

the system becomes frozen in state i.

� Otherwise, if

− lnu ≤ s(∞)
i − si(t) , (4.12)
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the system stays in state i for the waiting time τ , determined by

− lnu = si(t + τ)− si(t) =

t+τ∫
t

dt′ Ωi(t
′) , (4.13)

before it makes the transition to state j determined by the transition rates Γi→j .

Although Eq. (4.8) requires the total transition rates to be time-dependent, it can often be assumed
to be constant during the waiting time. In this case te integral in Eq. (4.13) can be solved directly,
leading to

τ = − lnu

Ωi
. (4.14)

When this assumption can be made, the method is called the time-independent Kinetic Mote Carlo.

4.1.2 Numerical calculation of the waiting time

Although the condition that determines the waiting time, Eq. (4.13), looks simple the calculation
of it in practice is quite complicated and can only be done analytically for transition rates with a
simple structure. But there is an accurate approximation that can be used without increasing the
computational complexity too much. This approximation is, similar to the Metropolis algorithm, based
on the discretization of time in intervals In with a �xed length ∆t

In = [tn−1, tn) (4.15)

where tn = n∆t with n ∈ N. Therefore, the interval length ∆t has to be chosen in such a way that the
transition rates Ωi can be approximated as constants in each of the intervals, i. e. the condition

∂tΩi(t)∆t� Ωi(t) (4.16)

must hold. With this we can assign the constant value

Ωn
i ≡ Ωi(tn) (4.17)

to the total transition rates in the respective interval In. Note that Ωn
i can also be de�ned di�erently,

e. g. at the center of the interval or as mean value of the rates. When condition Eq. (4.16) is ful�lled,
the di�erent de�nitions only have a negligible in�uence on the value and even coincide in the limit
∆t→ 0.
With the de�nitions above, we can now discretize the integral in Eq. (4.13). To this end, let us

assume that t ∈ In. Then, there are two possibilities either the upper limit is in the same interval or it
is not. If t+ τ ∈ In the integral can easily be solved as the transition rate is constant on the interval,

t+τ∫
t

dt′ Ωi(t
′) = τΩn

i , (4.18)

and thus

τ = − lnu

Ωn
i

. (4.19)
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In the other case, when t+ τ /∈ In, we split the integral and get

t+τ∫
t

dt′ Ωi(t
′) = (tn − t)Ωn

i +

t+τ∫
tn

dt′ Ωi(t
′) (4.20)

where the �rst term on the RHS is the area in interval In and the second is the excess area outside In.
The same procedure can then be applied to the integral in the second term until we reach interval Il
with t+ τ ∈ Il and thus have split the integral into a sum of rectangles.
This directly suggests an iterative method to calculate the waiting time. As before, let us assume

that we arrived in state i at a time t. Then we de�ne a waiting time

τ0 = − lnu

Ωn
i

. (4.21)

If τ0 < tn − t, it follows that τ0 + t ∈ In, and thus that the waiting time is given by τ = τ0. Otherwise,
area exceeding interval In is given by (τ0− (tn− t))Ωn

i , and thus the length of the rectangle in the next
interval is

u1 = (τ0 − (tn − t))
Ωn
i

Ωn+1
i

. (4.22)

Using this, we can de�ne a new waiting time

τ1 = u1 + (tn − t) = (τ0 − (tn − t))
Ωn
i

Ωn+1
i

+ (tn − t) . (4.23)

If now τ1 < tn+1 − t the waiting time is given by τ = τ1. Otherwise the length in the next interval is
given by

u2 = (τ1 − (tn+1 − t))
Ωn+1
i

Ωn+2
i

, (4.24)

and with that the waiting time is

τ2 = u2 + ∆t+ (tn − t)

= u2 + (tn+1 − t)

= (τ1 − (tn+1 − t))
Ωn+1
i

Ωn+2
i

+ (tn+1 − t) . (4.25)

If now τ2 < tn+2 − t the waiting time is given by τ = τ2. Otherwise, this procedure is repeated until it
reaches τl < tn+l − t where

τl = (τl−1 − (tn+l − t))
Ωn+l−1
i

Ωn+l
i

+ (tn+l−1 − t) (4.26)

and the waiting time is given by τ = τl. A simple example of this procedure is given in Fig. 4.1. In
this example the rescaling procedure to the next interval is needed.
In the previous discussion, we have always assumed that there is a τl with τl < tn+l − t. Of course,

this is not the case when the system gets frozen in state i. In this case, there is no such limit, and
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(a) (b)

Figure 4.1: Example of a waiting time assignment in which the rescaling procedure is needed. The
red line indicates the total transition rate Ωi and the black lines give its approximated constant
values Ωn

i (Ωn+1
i ) in interval In (In+1). The blue shaded areas are both equal to the given value of

the integral i. e. − lnu. In part (a) the value of τ0 is given by Eq. (4.21). As it lies in interval In+1

the rescaling procedure is needed. The Area of the integral in In is then given by (tn − t)Ωn
i and

the excess area is (τ0 − (tn − t))Ωn
i . In part (b) the quantity u1 is the length of the basis of the

rectangle with the same area as the excess area. Thus τ1 is given by the sum of the basis length
of the rectangles from both In and In+1 i. e. τ1 = u1 + (tn − t). As τ1 is smaller than tn+1 the
iteration would have stopped and the waiting time would be given by τ1.

the evaluation would run up to the limit l → ∞ which would be very costly in computation time.
Therefore, it is more e�cient to de�ne a maximal simulation time tf and stop the simulation once
t + τl > tf . Then, the system is assumed to be frozen in the state it had at time t. In doing so we
introduce an additional error, as the state the system is frozen in does not have to be the state the
system would have been frozen in in the limit t → ∞. But if tf is chosen the way that Ωi(tf ) ≈ 0 for
all possible states i, the error made is small and can be neglected.

4.1.3 The Kinetic Monte Carlo Algorithm

The discussion from Secs. 4.1.1 and 4.1.2 leads to the following algorithm:

1. At time t = 0, initiate a state i according to the initial probability distribution pi(0).

2. Set up a list of all possible transitions in state i.

3. Calculate the cumulative transition rates Rn(t) =
∑n

j Γi→j(t), where n = 1, 2, . . . , N and N is
the total number of transitions from state i. In this notation RN = Ωi.

4. Calculate the waiting time τ with

− lnu =

t+τ∫
t

dt′ RN (t′) , (4.27)

e. g. by using the method introduced in Sec. 4.1.2. Here, u is a random number with u ∈ (0, 1].
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5. If t+ τ > tf stop the simulation. Otherwise:

• Take a new random number u′ ∈ (0, 1].

• Carry out event n where Rn−1(t + τ) < u′RN (t + τ) ≤ Rn(t + τ).

• Update the time to t+ τ .

• Go back to step 2.

In general, the algorithm can have a big speed up by bookkeeping. For example, the transition rates
usually depend on the energy di�erence between the states i and j. If there are several states j that have
the same energy di�erence towards state i, then the transition rate only has to be calculated once per
time step and then can be assigned to all transitions with the same energy di�erence. Unfortunately,
there is no general way to do the bookkeeping but one has to review each given physical problem
individually.

4.2 Model

For the simulation the model we use di�ers slightly from the model described in Chap. 3. This has
two reasons. On the one hand the model was developed while doing the simulation, before growing
complexity forced us to go back to the smaller toy models described in Chap. 3. On the other hand
the simulation is very costly in computation time. Thus, some assumptions had to be made to keep
the computation time down.

For the simulation, we assume that the control knobs {hi} = 0 for all qubits. By this, the energy
in σz-basis is only given by the coupling between the qubits. Furthermore, the exact time dependence
for the rotation angles {θi} is unknown. Thus, we assume that the basis of all qubits is rotated by the
same angle {θi} = θ(t). For this common rotation angle we use two models for the time dependency.
In the �rst model, we assume that the environment only couples weakly, such that system Hamiltonian
dominates. Thus the state is given in the τz-basis and is initiated in the ground state, i. e. all qubits
are in state |0〉. In this model, the we assume the rotation angle to behave linear in time, i. e.

θ(t) =
π

2

(
1− t

tf

)
. (4.28)

In the other model we assume that the coupling to the environment dominates the total Hamiltonian.
This means that the qubits are in a σz-basis, corresponding to θ(t) = const. = 0, throughout the
simulation. From that also follows that the state at the beginning is not given by the ground state but
is purely random.

Because the numerical integration of Eq. (3.63) and Eq. (3.65) would have been too costly in com-
putation time for the simulation, we simplify the spectral function J(ω) and ignore the broadband
high-frequency part of it. By only considering the strongly peaked low-frequency part of the noise, we
can now approximate the spectral function J(t) in Eq. (3.21), analog to [10], by expanding the exponent
in it up to second order. By doing so the spectral function J(t) becomes

− J(t) = −
∞∫
−∞

dω

2π
S(ω)

e−iωt − 1

ω2
≈ −εpt−

W 2

2
t2 (4.29)
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with

εp = P
∫

dω
S(ω)

ω
(4.30a)

W 2 =

∫
dω S(ω) . (4.30b)

where P denotes principal value integration.
Inserting Eq. (4.29) into the �ip rate Eq. (3.63), leads to

ΓlF =
(∆ + ∆̃l)

2

4

∞∫
−∞

dt e−
Γl
W
2
|t|e−

W2t2

2
cos2 θei(ε+ε̃l−εp cos2 θ)t , (4.31)

where we use the assumptions {θi} = θ and {hi} = 0 from above. Thus, the angle θ, the energy ε, and
the tunneling amplitude ∆ are now identical for all qubits and we can omit the index from now on.
Now Eq. (4.31) can be solved analytically which leads to

ΓlF = −
√
π

8

(∆ + ∆̃l)
2

W cos θ
Re
(

(erf(x)− 1)ex
2
)
, (4.32a)

where

x =

√
2
(

ΓlW + 2i(ε + ε̃l − εp cos2 θ)
)

4W cos θ
. (4.32b)

At this point, we can also see the meaning of εp andW from Eq. (4.30). When we go to the original basis,
i. e. set θ(t) = 0, the line broadening ΓlW vanishes and Eq. (4.32) simpli�es to a Gaussian lineshape

ΓlF =

√
π

8

∆2

W
exp

[
(ε̃l − εp)2

2W 2

]
. (4.33)

which allows us to identify εp with a noise-induced energy o�set and W with a noise-induced resonance
width.
Analog to the �ip rate, the double-�ip rate ,Eq. (3.65), can be approximated yielding to

ΓlmDF =
M2
lm

4

∫ ∞
−∞

dt e−
1
2

(Γl
W

+Γm
W

)|t|e−W
2t2 cos2 θei(εlm−2εp cos2 θ)t (4.34a)

where

εlm = 2ε + ε̃l + ε̃m − 2 sin2 θJlmτ̃
l
z τ̃
m
z (4.34b)

is the total energy di�erence between the initial and �nal state. This integral has the same structure
like the one of the �ip rate, and thus can be performed straightforwardly, leading to

ΓlmDF = −
√
πM2

lm

4W cos θ
Re
(

(erf(x)− 1)ex
2
)
, (4.35)

where

x =
ΓlW + ΓmW + 2i

(
εlm − 2εp cos2 θ

)
4W cos θ

. (4.36)
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(a) (b)

Figure 4.2: Illustrations of the annealing schedules used in the simulation. Plot (a) shows the
idealized linear schedule and (b) the one measured in a D-Wave One.

The structure of the decay rate Eq. (3.62) and the line broadening Eq. (3.64) does not change. But by
applying the new assumptions they now read

ΓlD =
sin2 θ

4

J(ε + ε̃l)

1− e−β(ε+ε̃l)
(4.37)

ΓlW =
sin2 θ

8
J(ε + ε̃l) coth

β(ε + ε̃l)

2
. (4.38)

In addition to the restricting changes from above, we extend the model used in the simulation. This
means that, in addition to the linear annealing schedule

A(t) = 1− t

tf
and B(t) =

t

tf
, (4.39)

used in Chap. 3, we also consider one measured in the D-Wave One [20]. Both schedules are illustrated
in Fig. 4.2. Furthermore, we add a classical annealing phase at the end of the annealing schedule.
This is justi�ed since, at the end of the annealing schedule, the tunneling amplitude ∆ ≈ A → 0 and
thus the �ip rate ΓF is small, but at the same time we still have a �nite temperature in the system.
Therefore, at the end, the thermal excitations dominate and thus the annealing behaves classical. In
this case, we propose the transition rates to be given by

ΓlCA = 1− 1

eβεl + 1
, (4.40)

i. e. the probability that an energy eigenstate is un-occupied in the Fermi-Dirac statistics.

4.3 Implementation

At the end of Sec. 4.1 it was already mentioned that the KMC algorithm can have a major speed up by
bookkeeping. In this section we now present the methods used for our model to keep the computational
cost down. First, we concentrate on the simplest case, when we are in the original basis throughout the
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annealing schedule, i. e. when θ(t) = 0. In this case, the transition rates are given by Eq. (4.33), where
the only quantity that is not-identical for all qubit is the energy contribution from the interaction term,
i. e.

ε̃l = B(t)
∑
j

Jlj τ̃
l
z τ̃
j
z . (4.41)

In this expression the parameter B(t), from the annealing schedule, again is identical for all qubits.
Thus we de�ne a simulation energy

El =
∑
j

Jlj τ̃
l
z τ̃
j
z (4.42)

for each qubit.1 But this simulation energy only has a limited range of possible values. By limiting
the coupling to Jij = ±1 and having eigenvalues τ̃ iz = ±1 we know, that the simulation energy must
be an integer, i. e. E ∈ Z. Furthermore, from the structure of the chip used in the D-Wave One and
discussed in Sec. 2.2, we know that each qubit can only be coupled to a maximum of Nmax

links = 6 other
qubits. Thus, the simulation energy must be in El ∈ [−6, 6]. When we combine both facts, we get that
the simulation energy can have a maximum of 2Nmax

links + 1 = 13 values. But from this follows, as the
simulation energy is the only non-identical value in the transition rate, that there are only 13 di�erent
values for the transition rates per time step. So in a worst case scenario, only 13 values have to be
calculated. Then those values only have to be assigned to the qubits with the corresponding simulation
energy. Doing this one can expect a major speed up compared to the straightforward solution, where
one calculates the transition rate individually for each of the N = 108 qubits per time step.
Another way to safe computation time is at the calculation of the simulation energy itself. Within

the KMC the system transfers into a new state, de�ned by the transition rates, at every time step.
Applied to our model, for θ(t) = 0, that means that at each time step one of the qubits is �ipped, as
we have only de�ned single-�ip rates in this case. Therefore at every step only the qubit that is �ipped
and the ones coupled to it change their energy, while for all other qubits it stays the same. Hence one
can save computation time by computing the simulation energy once at the beginning of the simulation
and then only updating the energy during the simulation for the qubits for which it has changed. This
method is very e�cient as these updates are easy to compute. For the �ipping qubit we �nd

E′l =
∑
j

Jlj τ̃
l′
z τ̃

j
z = −El , (4.43)

and for the coupled ones

E′j = Ej − 2Jlj τ̃
l
z τ̃
j
z , (4.44)

where the unprimed quantities are the ones before and, the primed ones after the transition. Thus,
in worst case, one only has to make Nmax

links + 1 = 7 easy operations, change of one sign and add ±2,

depending on the sign of Jlj τ̃
l
z τ̃
j
z , for every coupled qubit. Compared to the straightforward way, where

the states are stored in a vector, and the coupling in a matrix, and the energy is obtained by matrix
multiplication at every step, this method is expected to be way more e�cient.
The �nal method to save computation time is directly connected with the calculation of the waiting

time τ discussed in Sec. 4.1.2. In this method the time is divided into small intervals in which the
transition rates can be approximated to be constant. Thus when using the time dependent version of

1Note that, as we de�ned our annealing schedule the way that B(tf ) = 1, the simulation energy satis�es El = ε̃l(tf ).
Thus, El also gives automatically the energy of the l-th qubit at the end of the annealing schedule. With this, the
total energy is simply given by the sum over all simulation energies.
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the KMC algorithm, we can assume the transition rates to be constant within one of those intervals.
But when the transition rates can be assumed to be constant, they only have to be calculated once per
interval. With this we get a speed up in the regime of large transition rates and thus small waiting
times, since, in this regime, several simulation steps can lie within one interval.

The methods described above can, with some small changes, also be applied to the more general
model when θ(t) 6= 0. In this case, the single- and double-�ip events have to be examined individually.
First let us concentrate on the single-�ip events. Here, the arguments with the transition rates being
constant in a time interval and the way the simulation energy is computed and updated still hold
and thus can directly be taken from the discussion above. Thus only the number of possible di�erent
transition rates and the way they are distinguished changes.
By allowing the rotation angle to have values θ(t) 6= 0 our model now contains, in addition to the �ip

rate, a decay rate Eq. (4.37) and a line broadening Eq. (4.38). For both, with the assumptions made in
Sec. 4.2, the only non-identical quantity is the qubit energy. Unfortunately, the energy now does not
only has a contribution from the coupling but also one from the annealing schedule, i. e.

ε + ε̃l = −A(t) sin θ + B(t) cos2 θ
∑
j

Jlj τ̃
j
z , (4.45)

using the de�nitions from Sec. 3.3. Furthermore, at the derivation, we de�ned the decay rate to be

Γl1→0(ε + ε̃l) = Γl0→1(−(ε + ε̃l)) ≡ ΓlD(ε + ε̃l) , (4.46)

which can be re-written, using the de�nition of the eigenvalues, i. e. τz |0〉 = |0〉 and τz |1〉 = − |1〉,
yielding to

ΓlD(ε + ε̃l) = ΓlD(−τ̃ lz(ε + ε̃l)) . (4.47)

Inserting Eq. (4.45) into the argument of the RHS, we get the energy used in the calculation

− τ̃ lz(ε + ε̃l) = A(t) sin θτ̃ lz − B(t) cos2 θ
∑
j

Jlj τ̃
l
z τ̃
j
z = A(t) sin θτ̃ lz − B(t) cos2 θEl (4.48)

where we used the de�nition of the simulation energy, Eq. (4.42), in the last step. Thus, in the general
model when θ 6= 0, the energy not only depends on the simulation energy but also on the state of
the qubit itself. Hence we have NE = 2(2Nmax

links + 1) = 26 possible di�erent values for the energy and
therefore also for the decay rate and the line broadening.
The same, but with a slightly di�erent argument, holds for the �ip rate. For the �ip rate, the energy

is not the only non-identical quantity, but it also depends on the contribution of the coupling to the
tunneling amplitude

∆̃l = B(t) sin θ cos θ
∑
j

Jlj τ̃
j
z . (4.49)

With a simple trick, we can bring this contribution in a form similar to the energy. To this end we
multiply Eq. (4.49) by τ̃ lz

2 = 1, and get

B(t) sin θ cos θ
∑
j

Jlj τ̃
j
z τ̃

l
z

2 = B(t) sin θ cos θElτ̃
l
z . (4.50)

Thus, in order to determine the tunneling amplitude, the same cases as for the energy have to be
distinguished. But from that also follows that the �ip rate is determined by the same NE = 26 cases
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like the decay rate and the line broadening. Hence, all single-�ip events depend on the same 26 di�erent
cases and thus the same strategy as in the simple case can be used.
Having determined the methods for the single-�ip events, let us now concentrate on the double-�ip

events, where things get kind of nasty. The double-�ip events are fully described by the double-�ip
rate in Eq. (4.35). So let us take a look on the di�erent components non-identical for all qubits. First
of all there is the matrix element

Mlm = B(t)Jlm sin2 θ . (4.51)

Here only the coupling Jlm = ±1 is non-identical but as the matrix element only appears squared, the
over-all factor M2

lm is again identical for all qubits. Next, there is the sum of the two line broadening
terms. From the discussion above, we already know that each single line broadening depends on the
energy, and thus can have NE = 26 di�erent values. Furthermore, as we are interested in the sum,
the order of the two term does not play a role. Therefore it is su�cient to compute pair of energies
only once, e. g. the pairs (1, 2) and (2, 1) give the same result. Overall this gives (NE + 1)NE/2 = 351
di�erent possible values for the sum of the two line broadening terms. Finally, there is the total energy
di�erence εlm, Eq. (4.34b). Luckily, the situation here is (almost) identical to the discussion for the
two line broadening terms. The only di�erence is that next to the sum of both energies, for which the
same arguments as above hold, there is the term to compensate the loss of the coupling between the
two �ipping qubits, which can have two di�erent values, Jlmτ̃

l
z τ̃
m
z = ±1.2 Altogether there are a total

of NΓ
DF

= (NE + 1)NE = 702 di�erent possible values for the double-�ip rate.
When we now, naively, compare the total number of possible values with N = 108, the number of

qubits, we see that there are more possibilities than qubits, Therefore, naively, no speed up can be
expected by doing the bookkeeping. However the the naive way does not describe the correctly. First
of all the number of qubits is the wrong quantity to compare with. In contrast to the single-�ip rate,
the double-�ip rate must be calculated for each coupling in the system, not for each qubit. Thus the
quantity to compare with is the total number of couplings N tot

links = 255 in the system.
Furthermore, the analysis above is a worst case scenario. The number of qubits coupled to each

qubit, for example, has been assumed to be the maximum number Nmax
links = 6, which is not true for

most qubits, e. g. because they are at the edge of the chip or they are coupled to a broken or not used
qubits. If we use the average Nav

links = 4.7 ± 1.2 instead of the maximum number of couplings we get
Nav

Γ
DF
≈ 450 possibilities, a number much closer to the number of couplings. But this is still not the

average situation we expect to happen in a simulation as it still assumes that the simulation energies are
uniformly distributed over the possible values. However they are, especially at later times, cumulating
at lower energies and thus reducing the number of possibilities further. Altogether we assume the
bookkeeping, for double-�ip events, to have a net speed up larger than the overhead needed to do the
bookkeeping.
For the double-�ip case, we also have to adjust the way the energies are updated. Here, we have to

remember that the energy contribution by the coupling of the two �ipping qubits stays the same before
and after the �ip. When we consider this, the new energy for the �ipping qubits is given by

E′l = −El + 2Jlmτ̃
l
z τ̃
m
z . (4.52)

In the case of the qubits coupled to the �ipping ones previous discussion still holds and we can use
Eq. (4.44). Of course this cannot be done in general. But the structure of the chip used in the D-Wave

2Note that the di�erent eigenvalues τ̃
l/m
z are already considered in the discussion for the energies. Thus it would be

su�cient to only consider the coupling Jlm = ±1 to distinguish the extra cases. But as both, the coupling Jlm and
Jlmτ̃

l
z τ̃
m
z , can have two di�erent values it does not make a di�erence which criteria we use to distinguish the two cases.

So we choose Jlmτ̃
l
z τ̃
m
z as it makes the implementation a little nicer.
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4.3 Implementation

One, as described in Sec. 2.2, prevents any qubit to be coupled to both �ipping ones. Thus only the
energy contribution from one coupling has to be considered when updating the energy of the coupled
qubits.

The discussion above shows that there are two basic mechanisms to safe computation time. On
the one hand by updating the energy and on the other hand by keeping track of the values of the
transition rates that have already been computed. This directly suggests to base the simulation on two
main classes, we call them State and RateList, each taking care of one of the mechanisms. For the
implementation we use C++, in the C++11 standard, as programming language.

Hereby, the main job of the class State is to hold and update all necessary information about the
current state of the state, including to update the energy with the method described above. For this,
it contains a std::vector, from the C++ Standard Library, with one instance of Site per qubit. The
Site class is used to store the internal id of the qubits used to access other information about the
qubit not stored in Site, the current energy, and the links to other qubits, i. e. the information to
which qubit with which coupling constant the qubit is coupled. This does not include the current
state of the qubit. This information is moved to an extra class SpinChain which is based on an
instance of boost/dynamic_bitset from the Boost libraries [21]. The main reason we do this is for
convenience as the boost/dynamic_bitset allows bitwise operations, like std::bitset, which simpli�es
the random initiation, needed for the θ(t) = 0 case, as well as setting the size at run time, like
std::vector<bool>, which gives the �exibility to run systems with a di�erent number of qubits without
the need to recompile.

At initiation of the class State we make use of the helper class Lattice. The main job of class
Lattice, besides initiating the class State, is to read the instance �les [15], i. e. the �les where the
information about the coupling between the qubits is stored in, and to process the information to the
form needed in the State class. We move the �le operation out of the State class as for each run a
new instance of State is needed. Thus, by moving the �le operation into the class Lattice, we keep
the number of �le operations to a minimum, as then each instance �le only has to be read once. In
addition to this, the State class contains an extra std::vector storing all couplings existing in the
system. This duplicate information about the coupling is stored, because it is most convenient when the
information is provided di�erently for di�erent situations. For computing and updating the energy, it is
most convenient to have the information about the coupling for each single qubit individually. Therefore
this information is stored in Site. But for double-�ip events we need to compute the corresponding
transition rate for each single coupling in the system. If the information was only stored in Site one
would have to iterate through all instances of Site, and the couplings within, and exclude double-
counting at every step. Therefore it is more e�cient to "waste" some memory instead and store the
information separately. With this, the iteration has to be done only once at initiation. For computing
the double-�ip rate, it is then su�cient to iterate once through this new std::vector.

The job of the second base class RateListis to compute the transition rates and to do the respective
bookkeeping as described above. Therefore, the transition rates are de�ned as member functions of
RateList. At initiation, a function pointer is set to the corresponding member function and accessed via
the parenthesis operator. The parenthesis operator also takes care of the bookkeeping. To distinguish
the cases described above, it is overloaded several times with the arguments needed to calculate the
transition rates in the di�erent cases. The information whether a given case has already been calculated
is again stored in an instance of boost/dynamic_bitset, and the corresponding value in a std::vector.
When the parenthesis operator is called, it �rst checks if the given case is already computed. If
not, it computes the value, stores it in the std::vector and returns it otherwise it simply returns
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(a) (b)

Figure 4.3: Histogram of the probabilities of �nding the ground state of 1000 di�erent spin
glass instances with N = 108 spins for strong coupling to the environment, i. e. θ(t) = 0. For the
simulation we use the time-independent KMC, a temperature of kBT = 0.1, and (a) the linear
and (b) the measured annealing schedule. Both plots show a unimodal distribution of the success
probabilities.

the corresponding value from the std::vector. At the beginning of each step or every time the
simulation leaves one time interval, if using the time-dependent version of KMC described in Sec. 4.1,
the boost/dynamic_bitset is reset, i. e. all elements set to false. At this point, the time-dependent
parameters, i. e. the parameters of the annealing schedule A(t) and B(t), and the rotation angle θ(t),
are updated as well. To do this we make use of another helper class called Schedule. The reason we
move the schedule to an extra class is that the measured schedule, shown in Fig. 4.2b, is stored in a
�le. Thus, by transferring the schedule to a helper class, like for the class Lattice, we keep the number
of �le operations to a minimum and have to read the �le only once per simulation. Finally, we rely
on the Faddeeva-Package [22] to compute the error function for complex arguments in Eqs. (4.32) and
(4.35).
With the base classes described above, we implement the time-dependent KMC algorithm described in

Sec. 4.1.3. To generate the needed random numbers we use an instance of the Mersenne Twister 19937
pseudo-random number generator from C++ Standard Library, i. e. std::mt19937. Furthermore, we
parallelized the execution such that each run runs in its own thread, using std::thread. Finally, we
use boost/filesystem and boost/program_options to conveniently create a directory for the result
�les and passing command line options to the program.

4.4 Result

In this section we present the results we get from the simulation. For the simulation we use the same
1000 di�erent sets of couplings {Jij} = ±1, called instances, as have been used in [12] and published
in [15]. We repeat the simulation for each instance 100 times, called runs, count the number of runs
where the ground state was reached and determine the success probability of �nding the ground state.
To compute the correct ground state energy, we use the Spin Glass Server at the university of Cologne
[23].
Applying the method described above to the model with strong coupling to the environment, i. e. when
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(a) (b)

Figure 4.4: Correlation of the probabilities of �nding the ground state of 1000 di�erent spin glass
instances with N = 108 spins for strong coupling to the environment, i. e. θ(t) = 0 between the
D-Wave One and (a) the linear and (b) measured annealing schedule from the simulation shown
in Fig. 4.3. The color scale indicates the number of instances found in one pixel of the plots.

θ(t) = 0, we get the success probability distribution shown in Fig. 4.3. In both cases, for the linear and
measured annealing schedule, we get a unimodal distribution, similar to the classical simulated anneal-
ing (SA) in [12]. The analogy to SA becomes more clear when we compare the success probability from
the simulation with the one from the experiment on the D-Wave One for each instance individually,
which has been done in Fig. 4.4. There we can see a step in the correlation near the peak of the success
probability distribution like for SA.

The shift of the peak of the probability distribution can directly be explained by the model. For
θ(t) = 0, the only transition rate is given by the �ip rate, Eq. (4.32), ΓlF ∝ ∆2 = A2(t). From this
follows, that the transition rate for the measured schedule, where A(t) becomes zero at t/tf ≈ 0.6, drops
much faster to zero then for the linear schedule, where A(t) only becomes zero at t = tf . But that also
means that the KMC algorithm makes less steps and thus �ips less spins for the measured schedule.
This is also a result from the simulation, where on average the simulation makes N lin,kBT=0.1

steps ≈ 180 000

steps for the linear but only Nmeas,kBT=0.1
steps ≈ 20 000 for the measured schedule.

When we increase the temperature we get right the opposite e�ect. By increasing the temperature,
from kBT = 0.1 to kBT = 0.3, the average number of steps increases a lot, N lin,kBT=0.3

steps ≈ 880 000 for

the linear and Nmeas,kBT=0.3
steps ≈ 120 000 for the measured annealing schedule, while at the same time

the probability of �nding the ground state drops, Fig. 4.5. Here is the case of the measured annealing
schedule, Fig. 4.5, of special interest, as its success probability drops basically to zero. But, a closer
look at the result shows that the simulation still minimizes the energy, even when it does not �nd
the ground state. By taking the average di�erence of the energy received from the simulation Esim

and the ground state energy EGS of the corresponding instance, i. e. ∆Eav = average(Esim − EGS),
we �nd that the average result is with ∆Eav

meas = 34.2 ± 14.9 about 10% larger than the ground state
energy, EGS ∈ [−308,−358] for the given instances, but also has a large spread. We interpret this
result that, by increasing the temperature, thermal excitations become more important and thus that
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(a) (b)

Figure 4.5: Histogram of the probabilities of �nding the ground state of 1000 di�erent spin
glass instances with N = 108 spins for strong coupling to the environment, i. e. θ(t) = 0. For the
simulation we use the time-independent KMC, a temperature of kBT = 0.3, and (a) the linear and
(b) the measured annealing schedule.

the randomness in the spin con�guration rises.
Note, that for the model of strong coupling to the environment, i. e. when θ(t) = 0, the transition

rates only change slowly in time. Especially, at t = 0 the transition rates have a rather large value
constant in energy. Thus it is su�cient to use the time-independent version of the KMC algorithm.
This can be con�rmed in Fig. 4.6, where the result of the simulation with the same parameters as in
Fig. 4.3a but with the time-dependent version of the KMC is shown. The results of both methods
correlate strongly, which can be seen in Fig. 4.6b.

For the model of weak coupling, i. e. when θ(t) = π/2(1 − t/tf ), the time-independent KMC can
no longer be used. In this case, the single-�ip rate ΓlF ∝ ∆2

l ∝ cos θ2 and the double-�ip rate ΓDF ∝
M2
lm ∝ B2(t) are either zero or very small at the beginning of the simulation. Therefore, if the time-

independent KMC is used, the �rst time step becomes extremely large and even exceeds the simulation
time tf .
In addition to the change to the time-dependent KMC we now also add the classical annealing, with

transition rate Eq. (4.40), at the end of the simulation. Thereby, we choose the classical annealing to
start at the time of the last step in the quantum KMC, i. e. at the time of the last transition of the
state before the simulation time tf was reached. In Fig. 4.7 the result of the simulation is shown. There
we can see, that, similar to the case of the measured annealing schedule at temperature kBT = 0.3,
the simulation fails almost every time. When we again take a look at the average di�erence of the
energy received by the simulation Esim and the ground state energy EGS of the corresponding instance,
i. e. ∆Eav = average(Esim − EGS), which yields ∆Eav

lin = 12.7± 8.4 for the linear and ∆Eav
meas = 8.7± 7

for the measured annealing schedule, we can once again see that the energy gets minimized, albeit it
does not �nd the ground state. Thus there is too much randomness in the spin con�guration.
Moreover, the weak coupling model shows am interesting e�ect when we increase the temperature.

While in the strong coupling model an increase in temperature causes the peak of the success probability
distribution to shift to lower probabilities, the weak coupling model shows the opposite e�ect. Here
an increase from kBT = 0.1 to kBT = 0.3 causes the average number of steps to grow by the factor
≈ 3.5 and also shifts the peak of the success probability to higher probabilities. In Fig. 4.8 the result
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(a) (b)

Figure 4.6: (a) Histogram of the probabilities of �nding the ground state of 1000 di�erent spin
glass instances with N = 108 spins for strong coupling to the environment, i. e. θ(t) = 0. For the
simulation we use the time-dependent KMC, a temperature of kBT = 0.1, and the linear annealing
schedule. (b) Correlation between the time-dependent KMC from (a) and the corresponding time-
independent KMC from Fig. 4.3a. Both simulations show a high correlation.

of the simulation with temperature kBT = 0.3 is shown, where especially the result of the measured
annealing schedule is of interest as it shows a similar, unimodal result like the strong coupling model
at kBT = 0.1.
When we compare the result of this case instance by instance with the result of the D-Wave One,

shown in Fig. 4.9a, we see again a step in the correlation like for the weak coupling limit and the SA
in [12]. In contrast to this the direct comparison of the weak, at kBT = 0.3, and the strong coupling
to the environment model, at kBT = 0.1, shown in Fig. 4.9b, shows a strong correlation. This is quite
surprisingly as the number of steps in the weak coupling limit is, with Nweak

steps ≈ 90 000 + 7000, where
the second number gives the number of steps of the classical annealing, about �ve times higher than
the number of steps in the strong coupling limit. Therefore the energy dependency of the transition
rates must be smaller. The reason for this is unknown and needs further investigation.
Finally let us investigate what in�uence the classical annealing has on the success probability. The

result of the simulation with the measured annealing schedule at kBT = 0.3 without classical annealing,
Fig. 4.10a, shows again a unimodal distribution with the peak shifted to lower probabilities. The fact
that the peak is only shifted can also be seen in its strong correlation to the simulation of the strong
coupling model at kBT = 0.1 in Fig. 4.10b. A similar behaviour can be seen for the other cases, e. g. for
the linear annealing schedule, but, as the peaks are too far at low probabilities, the e�ect is less visible.
Thus the classical annealing has no qualitative e�ect on our results.
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(a) (b)

Figure 4.7: Histogram of the probabilities of �nding the ground state of 1000 di�erent spin glass
instances with N = 108 spins for weak coupling to the environment, i. e. θ(t) = π/2(1 − t/tf ).
For the simulation we use the time-dependent KMC with classical annealing at the end of the
simulation, a temperature of kBT = 0.1, and (a) the linear and (b) the measured annealing schedule.

(a) (b)

Figure 4.8: Histogram of the probabilities of �nding the ground state of 1000 di�erent spin glass
instances with N = 108 spins for weak coupling to the environment, i. e. θ(t) = π/2(1 − t/tf ).
For the simulation we use the time-dependent KMC with classical annealing at the end of the
simulation, a temperature of kBT = 0.3, and (a) the linear and (b) the measured annealing schedule.
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(a) (b)

Figure 4.9: Correlation of the probabilities of �nding the ground state of 1000 di�erent spin glass
instances with N = 108 spins between the simulation in the weak coupling limit at temperature
kBT = 0.3, from Fig. 4.8b, and (a) the D-Wave One and (b) the simulation in the strong coupling
limit at temperature kBT = 0.1, from Fig. 4.3b. The color scale indicates the number of instances
found in one pixel of the plots.

(a) (b)

Figure 4.10: (a) Histogram of the probabilities of �nding the ground state of 1000 di�erent spin
glass instances with N = 108 spins for weak coupling to the environment, i. e. θ(t) = π/2(1−t/tf ).
For the simulation we use the time-dependent, KMC without classical annealing, at temperature
kBT = 0.3, and the measured annealing schedule. (b) Correlation between the result from (a) and
the simulation in the strong coupling limit at temperature kBT = 0.1, from Fig. 4.3b. The color
scale indicates the number of instances found in one pixel of the plot.
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Discussion

We started this work with the motivation to better understand the behaviour of a D-Wave quantum
annealer. As for isolated qubits the eigenbasis would change during the adiabatic evolution, we set
a focus on the in�uence of the environment on the choice of the eigenbasis. Therefore we developed
a microscopically motivated model in which all required parameters can be taken from experiments
already performed on the �ux qubits used in the D-Wave One. In our model, the qubit eigenbasis
is rotated by an angle θ towards the eigenbasis in an static environment. We derived its dynamics
using lowest-order perturbation theory and investigated the behaviour of the rotation angle θ over time
for a single and two coupled qubits. In both cases we see that the rotation angle behaves di�erently
depending on the state the qubit is in. When the qubit is in the ground state the eigenbasis is given by
the original, unrotated basis, while when it is in the excited state the basis starts fully rotated and, at a
given time, jumps to the original basis. This jump is problematic as it happens instantaneously and is
accompanied with a jump in the qubit energy and thus contradicts the expected adiabatic behaviour.
Furthermore we used a simpli�ed version of the model to simulate its capability of �nding the ground

state of an Ising spin glass with 108 spins, using the Kinetic Monte Carlo method. In the simulation
we investigated the same 1000 random sets of coupling as has been used in [12] and published in [15].
In contrast to our �ndings from the single and two qubit case, we modeled the rotation angle θ in the
simulation to be either in the original, unrotated basis throughout the simulation or to start in the fully
rotated basis and change linear in time to the original basis. Furthermore we considered two models
for the annealing parameters A(t) and B(t). The �rst is the linear schedule, where A(t) decreases and
B(t) increases linearly in time, and the second are measured values from a D-Wave One.
The simulation shows that all considered parameters were able to minimize the energy of the Ising

spin glass, although the probability of �nding the ground state varied strongly with the choice of
parameters. Overall, the success probability of �nding the ground state has a unimodal distribution
and also shows in the instance by instance comparison strong similarity to the classical simulated
annealing algorithm. In addition to this both models for the rotation angle show a high correlation.
In conclusion, the simulation shows that the simpli�ed form of our model reproduces the result of

the classical annealing algorithm and thus does not explain the output of the D-Wave One. However,
several simplifying assumptions were made which later proved to be too simplistic. In this context,
especially the choice of the qubit eigenbasis, i. e. the behavior of the rotation angle θ, is of interest as
here our simplifying assumption di�er most from the �ndings in the toy models. Thus, further e�orts
are needed to better understand its behaviour for larger numbers of qubits. With this we hope to �nd
more realistic models for the rotation angle which can be used in the simulation.
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