Karlsruher Institut für Technologie

Übungen zur Modernen Theoretischen Physik I – English Sheet SS 14

Prof. Dr. Gerd Schön	Blatt 7
Andreas Heimes, Dr. Andreas Poenicke	Besprechung 18.06.2014

1. Time-Evolution

We consider the Hamiltonian

$$\hat{H} = -\frac{\hbar\omega_0}{2}\hat{\sigma}_z \tag{1}$$

in the basis of the two states $\{|0\rangle, |1\rangle\}$. At the time instant t = 0 the state

$$|\psi\rangle = \alpha \left|0\right\rangle + \beta \left|1\right\rangle \tag{2}$$

with $|\alpha|^2 + |\beta|^2 = 1$ is initialized. Furthermore $\hat{\sigma}_i$ (i = x, y, z) are the Pauli-matrices of sheet 6 exercise 3.

- (a) [1 Point] Determine $|\psi(t)\rangle$ for times t > 0 and calculate $\langle \psi(t) | \hat{\sigma}_y | \psi(t) \rangle$.
- (b) [1 Point] Calculate $\hat{\sigma}_y^H(t)$ in the Heisenberg-picture and derive $\langle \psi(0) | \hat{\sigma}_y^H(t) | \psi(0) \rangle$. Compare your result with the one you obtained in (a).
- (c) [1 Point] It is given that at time instant t = 0 the state (2) is prepared. At $t = \tau_1$ the observable $\hat{\sigma}_x$ is measured. What are the possible values and the corresponding probabilities?
- (d) [1 Point] After the measurement in (c) we measure $\hat{\sigma}_x$ again at a later time $\tau_2 > \tau_1$. What are the possible values and the corresponding probabilities?

2. Probability-Distribution and characteristic Function

(3 Points)

(4 Points)

The so-called characteristic function is defined by

$$F(z) = \langle e^{izA} \rangle \,, \tag{3}$$

where $\langle \cdots \rangle$ is the expectation value corresponding to the state $|\psi\rangle$.

- (a) [1 Point] Show that the expectation values of arbitrary powers of \hat{A} , i.e. $\langle \hat{A}^n \rangle$ with $n \in \mathbb{N}$, can be obtained by differentiating with respect to z.
- (b) [1 Point] Show that the probability to measure a_i during the measurement of \hat{A} is given by

$$P(a_i) = \int \frac{dz}{2\pi} e^{-iza_i} F(z).$$
(4)

(c) [1 Point] A two-level-system $\{|0\rangle, |1\rangle\}$ is prepared in the ground-state $|\psi\rangle = |0\rangle$ and the observable $\hat{A} = \hat{\sigma}_x$ with the possible values a_m is measured. Derive the characteristic function and calculate $P(a_m)$.

3. Virial-Theorem

(3 Points)

Similar to classical mechanics the Virial-theorem gives a relation between the expectation value of the kinetic energy $\langle \hat{T} \rangle$ and the expectation value of the potential energy $\langle V \rangle$. For stationary states

$$\left\langle \hat{T} \right\rangle = \left\langle \frac{\hat{\mathbf{P}}^2}{2m} \right\rangle = \frac{1}{2} \left\langle \hat{\mathbf{X}} \nabla V(\hat{\mathbf{X}}) \right\rangle.$$
 (5)

This relation will be derived in the following subexercises:

(a) [1 Point] Show that in one dimension and for a stationary state

$$\langle [\hat{H}, \hat{X}\hat{P}] \rangle = \langle \hat{H}\hat{X}\hat{P} - \hat{X}\hat{P}\hat{H} \rangle = 0, \tag{6}$$

by directly calculating the expectation value of the right hand side of (6)).

- (b) [1 Point] Then first calculate the commutator in (6), before you evaluate the expectation value, in order to prove the Virial-theorem (5).
- (c) [1 Point] The potential V(X̂) is given by V(X̂) = λX̂ⁿ, n ∈ ℝ.
 Derive a relation between ⟨T̂⟩ and ⟨V⟩.
 Apply the Virial-theorem for the case of a harmonic oscillator in order to calculate the quotient of the expectation values for the kinetic energy and potential energy, ⟨T̂⟩ / ⟨V⟩.