Karlsruher Institut für Technologie

"Ubungen zur Modernen Theoretischen Physik I - English Sheet -

Prof. Dr. Gerd Schön	Blatt 5
Dr. Andreas Poenicke, Andreas Heimes	Besprechung 28.05.2014

1. Linear and quadratic Stark effect

We focus on the two energetically lowest eigenstates $|1\rangle$ und $|2\rangle$ of the double-well potential of exercise 2c) sheet 3:

$$\left\langle x \left| \hat{\mathcal{H}}_0 \right| x \right\rangle = H_0(x) = -\frac{\hbar^2}{2m} \partial_x^2 + V(x) \qquad \text{mit} \qquad V(x) = \begin{cases} \infty & |x| > b\\ v_0 \delta(x) & |x| \le b. \end{cases}$$

In position representation these states are given by

$$\psi_i(x) \equiv \langle x|i\rangle = \begin{cases} A_i \sin(k_i[b+x]) & -b < x < 0\\ B_i \sin(k_i[b-x]) & 0 \le x < b\\ 0 & \text{otherwise} \end{cases}$$

with $A_1 = B_1$ and $A_2 = -B_2$. (Here, it is not necessary to calculate the constant wave numbers k_1 and k_2 .)

- (a) [0.5 points] Determine the coefficients A_i by the normalization condition $\langle i|i\rangle = 1$ for i = 1, 2.
- (b) [1 point] Now we consider an applied electric field $\vec{E} = \mathcal{E}\hat{e}_x$. The Hamiltonian is given by

$$\langle x|\hat{\mathcal{H}}|x\rangle = H(x) = H_0(x) + q\mathcal{E}x.$$
(1)

Calculate the matrix elements $h_{ij} = \langle i | \hat{\mathcal{H}} | j \rangle$, i, j = 1, 2 and show that in the basis

$$|1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad |2\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$
(2)

the Hamiltonian can be written as

$$\hat{\mathcal{H}} = \begin{pmatrix} E_1 & d\mathcal{E} \\ d^*\mathcal{E} & E_2 \end{pmatrix}.$$
(3)

Hints:

- Use that $\psi_{1,2}(x)$ are eigenfunctions of $H_0(x)$ with eigenvalues $E_{1,2}$.
- It is not necessary to evaluate the integral $\int_0^b \sin(k_1 x) \sin(k_2 x) x dx$. Replace it by a constant $C(k_1, k_2)$.
- (c) [1 point] Calculate the eigenvalues and (unnormalized) eigenvectors of $\hat{\mathcal{H}}$. Evaluate the eigenvalues in the limit of:
 - (i) weak field $|d|\mathcal{E} \ll E_2 E_1$ [Hint: $\sqrt{1+x} = 1 + \frac{x}{2} + \cdots$],
 - (ii) strong field $|d|\mathcal{E} \gg E_2 E_1$.

(2.5 points)

2. Functions of operators

- (a) [0.5 points] Calculate $e^{\hat{\sigma}_z}$, with $\hat{\sigma}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- (b) [1 point] Show that in case of a time-independent operator \hat{A}

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{\hat{A}t} = \hat{A}e^{\hat{A}t} = e^{\hat{A}t}\hat{A}.$$

Additionally calculate $\frac{\mathrm{d}}{\mathrm{d}t} \left(e^{\hat{A}t} e^{\hat{B}t} \right)$, with \hat{A} and \hat{B} beeing time-independent.

(c) [1 point] Show that for an arbitrary time-dependent operator $\hat{A}(t)$ in general

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{\hat{A}(t)} \neq \frac{\mathrm{d}\hat{A}(t)}{\mathrm{d}t}e^{\hat{A}(t)}.$$
(4)

Which is the condition for both sides of Eq. 4 to be equal?

3. Hermitian conjugates and commutator algebra

- (a) [0.5 points] Calculate the Hermitian adjoint of $\hat{X}\hat{P}_x$ and $i[\hat{X}^2, \hat{P}_x]$.
- (b) [1 point] Given that \hat{G} is Hermitian, show that for $\hat{F} = e^{i\hat{G}}$ the relation $\hat{F}^{\dagger} = \hat{F}^{-1}$ holds.
- (c) [0.5 points] Show that $[\hat{A}\hat{B},\hat{C}] = \hat{A}[\hat{B},\hat{C}] + [\hat{A},\hat{C}]\hat{B}.$
- (d) [1 point] <u>Prove</u>, that in case [[A, B], A] = 0 the relation [Âⁿ, B̂] = nÂⁿ⁻¹[Â, B̂] is true (n ∈ N).
 With that, calculate [P̂, X̂ⁿ].

4. Position and momentum representation

Starting in momentum representation

$$\hat{P}|p\rangle = p|p\rangle$$
 with $u_p(x) \equiv \langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar}$, (5)

show that in position representation the momentum operator \hat{P} can be written as

$$\langle x|\hat{P}|\psi\rangle = \frac{\hbar}{i}\frac{\partial}{\partial x}\psi(x).$$

Next week there will be the first exam:

Wednesday, 04.06, 14:00-16:00.

According to the first letter of the surname, the distribution is as follows,

A-R: Gerthsen-Hörsaal S-Z: Gaede-Hörsaal

Please bring your student-ID. It is not necessary to register in order to attend. You are allowed to bring a double-sided and handwritten DIN A4 paper to the exam.

(2.5 points)

(2 points)

(3 points)