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I. INTRODUCTION

Recently, the theoretical and experimental efforts in the field of Condensed Matter Physics have focused on the
investigation of insulating materials which exhibit topologically non-trivial properties [1–5, 7–14, 17–22, 43]. Topo-
logical materials had been already predicted in the past [23, 24] but were only recently realized in the laboratory
with the discovery of two-dimensional (2d) topological insulators [25] which respect time-reversal symmetry (T ). The
latter 2d systems are insulating in the bulk and exhibit helical edge modes confined in the vicinity of the boundary
separating them from the vacuum. These edge modes are called helical because depending on the direction of their
motion, they are characterized by a specific spin polarization or more generally chirality. As we will discuss later,
chirality constitutes a quantum number which labels these edge eigen-states. On each edge, there exists a single pair
of these modes with opposite spin projection or chirality (see Fig. 1). The latter is reflected in the following energy
dispersion Eσ(k) = σk, with σ = ±1 (blue,red in Fig. 1) denoting the two different values of chirality. The most
important feature of these edge modes is that they are protected due to the topologically non-trivial content of the
system, which originates from the strong spin-orbit interaction. The latter implies that these modes will persist even
in the presence of disorder as long as T -symmetry is not violated. The presence of topologically protected helical
modes leads to the quantum spin Hall effect (QSHE). This situation is similar to the quantum Hall effect (QHE)
[26], where the Hall transport is mediated from chiral, instead of helical edge modes, due to the presence of a strong
external magnetic field B which selects only one of the two spin polarizations (chiralities) that we have in the case
of helical edge modes. Essentially, the chiral edge modes are described by the dispersion Eσ(k) = σk with only a

single chirality present per edge, i.e. σ = +1 (σ = −1). Which of the two allowed chirality values will persist, is a
matter of the orientation of the applied magnetic field B.

FIG. 1: Left: Helical edge modes in a two-dimensional topological insulator preserving T -symmetry, as for instance the
situation encountered in HgTe/CdTe quantum well structures [25]. Right: Chiral edge modes appearing in the usual quantum
Hall effect case. Only one spin-polarization is accessible due to the presence of the external magnetic field which is applied
perpendicular to the plane and violates T -symmetry. Figure taken from X.-L. Qi et al., Phys. Rev. Lett. 102, 187001 (2009).

The discovery of topological insulators shed light on the connection of topologically non-trivial bulk systems and the
appearance of protected edge modes, but more importantly, nurtured further advancements linking the topologically
non-trivial properties with of symmetries. In fact, an important concept emerged, according to which: Different

systems share a number of similar properties if they are characterized by the same symmetries. One of these properties
or physical quantities can be for instance the Hall conductivity. As a matter of fact, apart from the usual setup
exhibiting the QHE, one can also find completely different systems which are characterized by a quantized Hall
conductivity [18, 19, 24]. In the latter case, no external magnetic field is applied and consequently no Landau levels
are involved. For these reasons the related quantum Hall phenomenon is termed quantum anomalous Hall effect
(QAHE). The only requirement for any QAHE system, is to violate the same symmetries as in the case of the usual
QHE. This is the only constraint for obtaining a quantized Hall conductivity as in QHE. In fact, in this case, only
the Hall conductivity is guaranteed to behave in a similar way, while other properties of these QAHE materials can
be completely different compared to the usual QHE setup. In this manner we can distinguish two types of physical
quantities: a. the ones that depend on the details of the single-partice Hamiltonian and b. the ones that depend only
on the symmetries which characterize the system. The latter are the most important, since they are robust against
any deformation of a given Hamiltonian and are called topological invariants. The word “topological” encodes further
information. It implies that these quantities which can be common for completely different systems and are linked to
symmetry, crucially depend on the dimensionality (d) of the system. From the above we may directly infer that any
candidate QAHE system has to be two-dimensional (spatial dimensionality d = 2) and should violate intrinsically
T -symmetry [27] (e.g. due to ferromagnetic dopants) which is effected in the usual QHE case by the applied magnetic
field.
Following the discussion above, we conclude that based solely on the symmetry properties of a system, we are in

a position to predict if it can be characterized by a set of topological invariant quantities such as a quantized Hall



3

FIG. 2: Up: The usual QHE setup. The Hall current is transported due to the chiral edge modes which appear when the
bended (due to presence of the confining potential) Landau levels cross the Fermi energy. Figures taken from wikipedia. Down:
QAHE based on ferromagnetically doped topological insulator. Figure taken from the recent experiment [27].

conductivity. As a matter of fact, any single-particle Hamiltonian belongs to a particular symmetry class [1, 11, 12],
depending on whether it preserves or violates a specific set of symmetries. For each one of these symmetry classes, there
can be a topological invariant depending on the dimensionality. In order to study the related topological invariant, e.g.
Hall conductivity, that characterizes the corresponding symmetry class we may study a single representative system
that belongs to the class. Of course, the investigation of the representative system is useful only for understanding
the topological properties of systems belonging to the same symmetry class, since no information concerning the
non-topological features can be generalized. Similarly to the case of the QHE, for which the existence of a non-zero
topological invariant (the Hall conductivity which is a bulk property) implies the presence of topologically protected
bound states confined at the boundaries of the system, we expect topologically protected boundary solutions for all

the “bulk” Hamiltonians for which we can define some kind of topological invariant quantity Ñ . This generalization
is termed “bulk-boundary” correspondence (or index theorem) and it dictates that: For two materials with values

Ñ and Ñ ′ for the corresponding topological invariant related to the given symmetry class, there should exist a number

of |Ñ − Ñ ′| topologically protected modes confined in the vicinity of the boundary separating the two materials.

For the case of the QHE, the presence of chiral edge modes can be understood via the theory of electromagnetism.
The boundaries separate the topological material, which is experiencing a finite external magnetic field, from the
vacuum where the magnetic field is zero. Nonetheless, the vacuum can be also considered as a topological system with
zero-Hall conductivity σ′

xy = 0. Essentially, based on electromagnetism and the boundary condition for the magnetic

field n × (B − B
′) = Jbound (n the unit vector normal to the boundary), a boundary current Jbound has to appear

in order to satisfy the constraint that the electromagnetic field is zero in the vacuum. In the case that our material

borders some other material (not vacuum) with quantized Hall conductivity σ′
xy = Ñ ′e2/h, it is clearly understood

that the continuity of the electromagnetic field would impose the appearance of |Ñ − Ñ ′| solutions living at the
boundary separating the two materials. The bulk-boundary correspondence generalizes this continuity principle of
the electromagnetic field and the unavoidable appearance of boundary currents discussed above, to other topological
invariant quantities and related “currents” that have to appear at the “boundaries” separating two materials with

values Ñ and Ñ ′ for the corresponding topological invariant.
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II. SYMMETRIES AND TOPOLOGICAL CLASSIFICATION

In order to topologically classify single-particle Hamiltonians, we have to go through the symmetries that categorize
the latter in the ten symmetry classes [1, 11, 12]. Generally, within the quantum mechanical description, a symmetry
transformation acts on the wavefunction in the following manner

φ′(r) = Ôφ(r) , (1)

where Ô corresponds to the symmetry transformation operator. For instance if we want to translate the system by
a along the direction defined by the unit vector n, i.e. r′ = r + an, we must act with the translation operator
t̂na = e−ian·p̂/~, where p̂ defines the momentum operator. It is straightforward to see that for an infinitessimal
translation a, we have

φ′(r) = e−ian·p̂/~φ(r) ≃ (1− ian · p̂/~)φ(r) = (1− an ·∇)φ(r) ≃ φ(r − an) . (2)

Note that the particular transformation property was expected, since we can equivalently write that

φ′(r + an) = φ(r) ⇒ φ′(r′) = φ(r) . (3)

In a similar fashion, a rotation by an angle θ about an axis with direction n would be effected using the following

rotation operator R̂n
θ = e−iθn·L̂/~, where L̂ = r̂ × p̂ defines the angular momentum operator. If the wavefunction

φ(r) is instead a spinor φ̂(r), then a rotation will be generated by the total angular momentum Ĵ = L̂ + Ŝ. For a

spin-1/2, we have Ŝ = ~σ/2, where σ define the Pauli matrices. Since we know the transformation properties of the

wave-function, we can readily determine the transformation of any operator Â, by requiring that the matrix elements
remain the same. Specifically, we have:

∫
dr φ∗(r)Â′φ(r) =

∫
dr [φ∗(r)]

′
Â [φ(r)]

′ ⇒
∫

dr φ∗(r)Â′φ(r) =

∫
dr φ∗(r)Ô†ÂÔφ(r) ⇒ Â′ = Ô†ÂÔ . (4)

Of course for the particular description of our wavefunction (defined in coordinate space r), we may also view the
position vector r as an operator r̂. In this way we may indeed verify that for a translation t̂na we obtain from the
operator formula

r̂′ = (t̂na )
† r̂ t̂na = eian·p̂/~ r̂ e−ian·p̂/~ = r̂ + an , (5)

as expected. Nonethelesss, all the above transformations belong to the space group tranformations (translations and
point group) and all share two common characteristics. The first is that in a completely disordered system they will
be all broken. The second is that they are all unitary, i.e. they do not additionally effect complex-conjugation. Note

that if we consider the complex number z, the effect of a unitary transformation will provide z′ = Ô†
u z Ôu = z while

for an anti-unitary we have z′ = Ô†
a z Ôa = z∗. In fact one can introduce the complex conjugation operator K̂ which

only effects complex conjugation and satisfies K̂2 = Î. In this manner, any anti-unitary operator can be written as

a product of a unitary operator and K̂. A familiar example of an anti-unitary operator, is of course time-reversal T̂
which has the following action on the following basic operators

T̂ † r̂ T̂ = +r̂ , T̂ † p̂ T̂ = −p̂ , T̂ † Ĵ T̂ = −Ĵ . (6)

With the help of K̂, we can write the time-reversal operator in the following way

T̂ = eiπŜy/~K̂ . (7)

For spin-1/2 fermions, like electrons, we have Ŝy = ~σy/2 and consequently T̂ = iσyK̂. Notice that T̂ 2 = −Î which

is characteristic for systems with half-integer spin. In contrast, for systems with integer spin, we obtain T̂ 2 = Î.
In the first case, the negative sign yields Kramers’ degeneracy, i.e. every state is doubly degenerate and the two
states are connected by time-reversal symmetry. For instance for electrons in the absence of a magnetic field, the
states with spin-up and spin-down are degenerate. For the second case, time-reversal operator resembles to the usual

complex-conjugation operator K̂. In this case, the presence of time-reversal symmetry which squares to identity,
implies that the Hamiltonian can be rewritten in an appropriate basis as a real matrix-operator.
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The most significant feature of anti-unitary symmetries is that in contrast to the unitary ones, they can be still
preserved even in disordered systems. For every system with no unitary symmetries present, i.e. we cannot find

an operator Ô satisfying [Ĥ(p̂, r̂), Ô] = 0, there exist only two anti-unitary symmetries: a generalized time-reversal

symmetry with operator Θ̂ and a generalized charge-conjugation symmetry with operator Ξ̂, which if they are present
they satisfy the following relations:

Θ̂†Ĥ(p̂, r̂)Θ̂ = +Ĥ(p̂, r̂) ⇒
[
Ĥ(p̂, r̂), Θ̂

]
= 0 , (8)

Ξ̂†Ĥ(p̂, r̂)Ξ̂ = −Ĥ(p̂, r̂) ⇒
{
Ĥ(p̂, r̂), Ξ̂

}
= 0 . (9)

Observe that for a system with both symmetries present one can define a new symmetry which is called: chiral

symmetry, with a unitary operator Π̂ ≡ Ξ̂Θ̂ which satisfies

Π̂†Ĥ(p̂, r̂)Π̂ = −Ĥ(p̂, r̂) ⇒
{
Ĥ(p̂, r̂), Π̂

}
= 0 . (10)

Nonetheless, a Hamiltonian can have a chiral symmetry without the necessary presence of a time-reversal symmetry
and a charge-conjugation symmetry. Note also that chiral symmetry is not a unitary symmetry with the usual sense,

since it anti-commutes with the Hamiltonian. By taking into account the sign of Ξ̂2 and Θ̂2, one can define the ten

symmetry classes mentioned earlier, which are presented in the following table:

FIG. 3: The ten symmetry classes categorized using Θ̂2 = ±Î(±1), Ξ̂2 = ±Î(±1) for the cases in which the respective

symmetries Θ̂ and Ξ̂ are present. If Π̂ is present (not-present) we just have 1(0). The spatial-dimensionality is given by d.
With Z(integer) and Z2(±1) we denote the cases where a topological invariant quantity can be defined. For the rest of the
cases we cannot define a topological invariant for the given dimensionality. Note that there exist a periodicity, the so-called
“Bott” periodicity, with respect to the dimensionality d, i.e. d+ 8 → d. Figure taken from [18].

III. QUANTUM ANOMALOUS HALL EFFECT IN A JACKIW AND REBBI-LIKE MODEL

Here we present a simple model exhibing non-trivial topological properties. We will consider both one- and two-
dimensional cases. In d = 1 this model is akin to Jackiw and Rebbi model proposed in 1976 [28] in the context of high
energy physics, addressing the 1d-Dirac equation in the presence of solitons. Later it was revisited by Su, Schrieffer
and Heeger (SSH model) for studying solitons in polyacetylene [29]. By extending this model to d = 2, we obtain a
model exhibiting the QAHE due to emergence of chiral edge modes, which follows Haldane’s earlier proposal [24].
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A. 1d model - zero-energy bound states with fixed chirality

We will now consider the following 1d-Dirac type of Hamiltonian

Ĥ(p̂x, x) = vp̂xσy +M(x)σz , (11)

which describes electrons in a Rashba spin-orbit coupled wire in the additional presence of an inhomogeneous magnetic
field. Here the most important property is that the magnetic profile is chosen to satisfy the following boundary
conditions (Fig. 4):

M(x→ ±∞) = −M , M(x) < 0 for x ∈ (−∞, x1) ∪ (x2,+∞) and M(x) > 0 for x ∈ (x1, x2) . (12)

FIG. 4: A general inhomogeneous magnetization profile which leads to zero-energy solutions confined at the boundary points
x1,2 separating areas where the magnetization chages sign.

Essentially the particular profile dictates that the magnetization is characterized by two domain walls at the points
x1, x2. Each domain wall corresponds to a solitonic configuration of the magnetization field, where we interpolate
from a solution with sign(M) = +1 to a solution with sign(M) = −1. Below we will show that the particular
Hamiltonian supports zero energy edge states localized at the domain walls, which play the role of boundaries for the
areas with different sign of magnetization. Let us first determine the symmetries of the Hamiltonian above. First

we can find an anticommuting matrix Π̂ = σx which leads to a chiral symmetry. Furthermore, we find a generalized

time-reversal symmetry Θ̂ = K̂. This also implies the presence of a generalized charge conjugation symmetry with

Ξ̂ = σxK̂. Since Θ̂2 = Î and Ξ̂2 = Î, the table of the symmetry classes of Fig. 3 yields that the symmetry class of the
system is BDI. The same table tells us that for d = 1 we can in principle define a Z topological invariant. At some
other point we will see how we can define this invariant. For now it is clear that since we are in position to define a
topological invariant, it implies that the above Hamiltonian constitutes a candidate for a system exhibiting some non-
trivial topological properties. These properties are clearly linked to the zero-energy states that we will show that exist.

Based on the existence of chiral symmetry we have the following property: for every solution of the Hamiltonian

φ̂ν(x) with eigen-energyEν , we will find another solution with eigen-energy−Eν , which is given by Π̂φ̂ν(x) = σxφ̂ν(x).
This is easy to show by assuming that

Ĥ(p̂x, x)Π̂φ̂ν(x) = ĒνΠ̂φ̂ν(x) ⇒ − Π̂Ĥ(p̂x, x)φ̂ν(x) = ĒνΠ̂φ̂ν(x) ⇒ Ĥ(p̂x, x)φ̂ν (x) = −Ēν φ̂ν(x) ⇒ Ēν = −Eν .(13)

If there exists a non-degenerate zero-energy solution, then Eν ↔ −Eν and the same holds for the eigen-vectors

φ̂ν(x) ↔ Π̂φ̂ν(x), implying that the zero-energy solutions constitute eigenstates of the chiral symmetry operator

Π̂ = σx.

Let’s now solve the above Hamiltonian for the following stepwise magnetic profile (Fig. 5):

M(x) = −M + 2MΘ(x− x1)− 2MΘ(x− x2) , (14)

where we assume that x2 − x1 → ∞. For each region s = l,m, r, the magnetic moment is constant Ml = Mr = −M
and Mm = +M and therefore we can Fourier transform and solve the corresponding partial translationally invariant
Schrödinger’s equations

Ĥs(k) = v~kσy +Msσz , s = l,m, r. (15)



7

FIG. 5: A stepwise magnetization profile which leads to zero-energy solutions confined at the boundary points x1,2 separating
areas where the magnetization chages sign.

However for these systems the wave-vector k is not a good quantum number anymore, since translational invariance is
broken. Nonetheless, the energy is still a good quantum number. This implies that for the particular system instead
of having E(k) we instead have ks(E) for s = l,m, r. Using the arising relativistic energy spectrum, which has the
form

E = ±
√
(v~ks)2 +M2

s , (16)

we find that for a specific energy E, the corresponding ks’s are given by

v~ks = ±
√
E2 −M2

s . (17)

However, since for the particular selection M2
s =M2 for s = l,m, r we simply have for all regions that

v~ks = ±
√
E2 −M2 . (18)

Since we are looking for zero energy states, we set E = 0 which leads to the following equation per segment

(v~kσy +Msσz) φ̂0,s(k) = 0 ⇒ (v~k + iMsσx) φ̂0,s(k) = 0 ⇒ (v~k + iσMs) φ̂
σ
0,s(k) = 0 ⇒ v~ks,σ = −iσMs , (19)

where the quantum number σ = ±1 labels the eigen-vectors of the σx matrix. We directly confirm that the zero-energy
solutions of the particular model constitute eigen-vectors of the chiral symmetry operator. Now that we have found
the expression for the zero-energy solutions for each segment, we use the wave-function matching technique in order
to find the zero-energy solution defined in whole space. We write for every segment:

φ̂0,s(x) = cs,+e
+Ms

v~
x 1√

2

(
1
1

)
+ cs,−e

−Ms
v~

x 1√
2

(
1

−1

)
, (20)

while we also have to satisfy the boundary conditions φ̂0,l(x → −∞) = φ̂0,r(x → +∞) = 0. This yields the following
expression for the wave-functions

φ̂0,l(x) = cl,−e
+ M

v~
x 1√

2

(
1

−1

)
,

φ̂0,m(x) = cm,−e
− M

v~
x 1√

2

(
1

−1

)
+ cm,+e

+ M
v~

x 1√
2

(
1
1

)
,

φ̂0,r(x) = cr,+e
− M

v~
x 1√

2

(
1
1

)
. (21)

Now we will determine the remaining coefficients using continuity at x1,2 ⇒ φ̂0,l(x1) = φ̂0,m(x1), φ̂0,m(x2) = φ̂0,r(x2)
and the normalization of the wave-function. Furthermore, we will assume that x2 − x1 → ∞ so that in the vicinity
of x = x1 we will approximate

φ̂0,m(x) ≃ cm,−e
− M

v~
x 1√

2

(
1

−1

)
(22)
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while in the vicinity of x = x2 we will approximate

φ̂0,m(x) ≃ cm,+e
+ M

v~
x 1√

2

(
1
1

)
. (23)

Under these conditions we obtain cl,− = c−e
−Mx1/(v~), cm,− = c−e

Mx1/(v~), cm,+ = c+e
−Mx2/(v~), cr,+ =

c+e
Mx2/(v~), with c± to be determined by the normalization of the wave-functions. After these steps we end up

with the following two localized solutions at the points x1 and x2 respectively (Fig. 6)

φ̂0,−(x) = c−e
−M

v~
|x−x1|

1√
2

(
1

−1

)
and φ̂0,+(x) = c+e

− M
v~

|x−x2|
1√
2

(
1
1

)
. (24)

FIG. 6: Zero-energy solutions with specific chirality σ = ±1 located at the boundaries separating the areas of different
magnetization. In general the two solutions have an exponentially decaying overlap ∝ e−const·(x2−x1) and therefore correspond
to exactly zero-energy solutions only for x2 − x1 → ∞.

Comments:

• Note that the edge states have half the degrees of freedom of the original electrons [28], since chirality is fixed
to ±1 respectively per edge solution.

• Since edge states appear at the boundaries separating segments of different magnetic moment, this implies that
there should be a topological invariant with alternating sign along successive segments of the material.

• Note that the edge states appear at the points where M(x) = 0. This corresponds to the gap closing points of

the bulk spectrum E = ±
√
(v~kx)2 +M2 at kx = 0.

B. 2d model - chiral edge modes - QAHE

We will now consider the following 2d extension of the previous Hamiltonian

Ĥ(p̂, x) = v (p̂xσy − p̂yσx) +M(x)σz , (25)

where we have also included the remaining component of the Rashba spin-orbit interaction. We have assumed that our
system is translationally invariant along the y-direction. Due to translational invariance we expect to find dispersive
electronic modes running along the y-direction, since the wave-vector ky is a good quantum number. Let’s proceed
with studying the symmetries of this 2d Hamiltonian. It is clear that the symmetries of the new Hamiltonian will
belong to a subset of the symmetries of the 1d model. First of all the addition of the third Pauli matrix breaks

chiral symmetry Π̂. This also implies that we may only have up to one remaining anti-unitary symmetry left. It is

straighforward to check that only Ξ̂ = σxK̂ persists. Consequently, the Hamiltonian lies in symmetry class D. From
the symmetry class table we can see that, in 2d, class D supports a Z topological invariant. This implies that we can
still have non-trivial topological properties for the particular Hamiltonian and they are going to be closely connected
to the non-trivial topological content of the 1d model. To clearly demonstrate this, we restrict ourselves to the low
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energy sector of the 1d model. Essentially we will consider the two zero-energy solutions. In the 2d model, these
originally zero-energy solutions become dispersive, i.e. depend on ky . In fact we introduce the related wave-functions

φ̂0,−,ky
(r) = c−e

ikyye−
M
v~

|x−x1|
1√
2

(
1

−1

)
and φ̂0,+,ky

(r) = c+e
ikyye−

M
v~

|x−x2|
1√
2

(
1
1

)
(26)

and we directly observe that they satisfy the 2d Hamiltonian above

[v (p̂xσy − p̂yσx) +M(x)σz ] φ̂0,σ,ky
(r) = Eσ(ky)φ̂0,σ,ky

(r) , (27)

only if Eσ(ky) = −σv~ky (Fig. 7). The latter linear dispersion depends on the chirality of the eigen-state and that
is why it is called chiral. This has to be compared with the chiral edge modes found in the quantum Hall effect. In
the present case they give rise to the quantum anomalous Hall effect [27] where there is no necessity for an external
magnetic field B. The solution located at the left (right) edge has chirality σ = −1 (+1) and an energy dispersion
Eleft(ky) = +v~ky (Eright(ky) = −v~ky).

FIG. 7: The previously zero-energy solutions of the 1d model owing specific chirality become dispersive chiral edge modes in
the 2d case.

C. Non relativistic kinetic term - disorder - symmetry class transition - topological protection

In the models above, we considered a somehow artificial situation where we neglected the usual quadratic kinetic term
or the presence of impurities. Let’s now study the symmetry class modification that is introduced when we add the
usual kinetic term or introduce disorder to the system.

• 1d model:

Ĥ(p̂x, x) =
p̂2x
2m

− µ+ vp̂xσy +M(x)σz . (28)

Due to the presence of the kinetic term, the chiral and charge-conjugation symmetries are broken, while Θ̂ = K̂
persists. We have the following symmetry class transition BDI → AI. We observe that the latter symmetry
class does not support any topological invariant in d = 1 and therefore even if we can find some bound states
at x1, x2 they will not be topologically protected. We would obtain the same effect if we would add to our
Hamiltonian disorder via a random potential V (x).

• 2d model:

Ĥ(p̂, x) =
p̂2

2m
− µ+ v (p̂xσy − p̂yσx) +M(x)σz . (29)
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In the absence of the non-relativistic term, the Hamiltonian above belongs to symmetry class D, with only
the charge-conjugation present. Due to the presence of the kinetic term, the charge-conjugation symmetry
will become broken and the system will undergo the symmetry class transition D → A which can be also
characterized by a Z invariant in 2d. In this manner, we observe that the d = 2 dimensionality can support
topologically protected edge modes for the particular Hamiltonian. Notice that in principle the edge modes will
be also protected against disorder, since the symmetry class remains the same.

IV. QUANTUM ANOMALOUS HALL EFFECT IN A T -VIOLATING TOPOLOGICAL INSULATOR

MODEL

Let’s now proceed with another model that exhibits bound states in 1d and chiral edge modes in 2d. On one hand
the latter study will illustrate the fact that different systems belonging to the same symmetry class share a number of
common properties but on the other, it will provide a direct connection to realistic models describing the bulk band
structure of 2d topological insulators [4].

A. 1d model

The 1d model under consideration is obtained by the bulk 1d Jackiw-Rebbi model in Eq. (15) simply by replacing
the constant magnetization M with a momentum dependent magnetization M(p̂x) = m− p̂2x. The latter replacement
leads to the Hamiltonian

Ĥ(p̂x) = vp̂xσy + (m− p̂2x)σz , (30)

with m a constant. This type of magnetization term can naturally appear for T -violating semiconducting systems
where s- and p- orbitals are involved for the conduction and valence bands, respectively [4]. The aforementioned
Hamiltonian is particularly relevant for the QAHE observed just recently [27] in ferromagnetically doped 2d T -
preserving topological insulators. In fact, as we will also discuss later, the Hamiltonian describing the physics of
T -invariant HgTe/CdTe semiconducting quantum wells consists of two time-reversed copies [4] of the Hamiltonian
appearing in Eq. (30). Since the Hamiltonian of Eq. (30) is only a function of momentum and not of the coordinate
x, we can readily Fourier transform and for an infinite system we obtain the bulk Hamiltonian

Ĥ(kx) = v~kxσy + (m− ~
2k2x)σz . (31)

Let us now study the symmetries of the particular Hamiltonian. Note that complex conjugation acts on the

wave-vector in the following manner K̂† kx K̂ = −kx. We directly observe the presence of chiral symmetry Π̂ = σx,

time-reversal symmetry Θ̂ = K̂ and charge-conjugation symmetry Ξ̂ = σxK̂. Once again we encounter the symmetry
class BDI and is natural to expect that also this model should exhibit zero-energy boundary solutions. Nonetheless,
a question which naturally arises is what kind of boundaries should we consider in order to obtain zero-energy bound
state solutions. In fact, due to the particular form of the Hamiltonian and more importantly due to the quadratic
term in momentum, we have the possibility to obtain zero-energy bound state solutions by simply confining the
electrons in a box. In fact, we will consider that the electrons are restricted to move in a box extended from x1 to
x2, due to the presence of an infinitely high positive confining potential V (x) = +∞ for x ∈ (−∞, x1] ∪ [x2,+∞).
Since the electrons are confined between x1 and x2, the electronic wave-function has to satisfy a hard-wall

condition, i.e. it should be exactly zero at these points φ̂(x1) = φ̂(x2) = 0. One remark has to be made before
proceeding. We can also obtain zero-energy edge states by considering domain walls similar to the Jackiw-Rebbi
model via setting m(x) = −m + 2mΘ(x − x1) − 2mΘ(x − x2). In this case the quadratic in momentum term be-
comes irrelevant since in the vicinity of the domain walls we can expand about k = 0, yielding the Jackiw-Rebbi model.

The introduction of infinitely high boundaries at x1 and x2 implies that the wave-vector is not a good quantum
number. Only energy constitutes a good quantum number for labelling eigen-solutions. Since we are looking for
zero-energy solutions we will consider the equation

[
v~kxσy + (m− ~

2k2x)σz
]
φ̂0 = 0 ⇒ ~kx = −iσ(v/2)±

√
m− (v/2)2 . (32)

Similarly to the Jackiw-Rebbi model, the wave-vectors depend also here on the chirality σ = ±1. However, we observe

an important difference. In the 1d Jackiw-Rebbi model, the zero-energy wave-vectors where strictly imaginary since
M > 0. In the model considered in this paragraph, the quadratic term allows also for strictly real wave-vectors. In
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the latter situation, the zero-energy states are not localized at the boundaries and leak into the bulk. Remember
though that bulk-boundary corespondence dictates that a topologically non-trivial phase implies the presence of
zero-energy bound state solutions. The disappearance of these bound states, while the symmetry class remains the
same, signifies that the bulk system entered the topologically trivial phase. Consequently, the value of m for which a
number of wave-vectors become strictly real marks the passage to the topologically trivial regime. This critical value
of mc is retrieved by setting ℑ(kx) = 0. The latter condition yields mc = 0. Since the values ofm span a 1d parameter

space, we observe that this point in this parameter space constitutes the “boundary” separating the topologically
trivial phase (m < mc) from the topologically non-trivial phase (m > mc) (see Fig. 8). One directly observes that
for m = mc = 0, the bulk spectrum exhibits a gap closing at kx = 0. This gap closing for the infinite (bulk)
system leads to a zero-energy mode which is the analog of the zero-energy bound state solution for the finite system.
This is essentially the manifestation of bulk-boundary correspondence in this system, which should also be un-
derstood via the introduction of an appropriate topological invariant quantity, which should be finite only for m > mc.

FIG. 8: Topological phase diagram in the parameter space spanned by the values of m. For m > mc the systems becomes
topologically non-trivial with zero-energy bound state solutions. For m < mc the system lies in the topologically trivial phase.
For m = mc = 0 the bulk spectrum exhibit a gap closing for kx = 0. The passage from the topologically trivial to the
topologically non-trivial phase (and vice versa) is realized through the gap closing of the bulk spectrum. In the bulk, the
kx = 0 for m = mc = 0 constitutes a zero-enery mode, which is the analog of the zero-energy bound state solution in the finite
size system.

We proceed now with retrieving the zero-energy bound state solutions. In the topologically non-trivial phase m > 0
and we set kx ≡ −iσ/l±a with a =

√
m− (v/2)2/~ and 1/l = v/(2~) > 0. Note that the wave-vectors corresponding

to zero-energy owe a specific decaying behaviour depending on the chirality σ = ±1. This directly yields at which
boundary side, is a solution of specific chirality located. Since for σ = +1 the wave-vector has a negative imaginary
part, this chirality zero-energy solution lies on the right boundary (x = x2). Consequently, the σ = −1 chirality
solution lies on the left boundary (x = x1). By considering that x2 − x1 → +∞ we can write the two solutions
separately for the left and right boundaries:

φ̂0,−(x) =
[
c−,+e

ia(x−x1) + c−,−e
−ia(x−x1)

]
e−(x−x1)/l

1√
2

(
1

−1

)
, (33)

φ̂0,+(x) =
[
c+,+e

ia(x−x2) + c+,−e
−ia(x−x2)

]
e+(x−x2)/l

1√
2

(
1
1

)
. (34)

Note that for m > (v/2)2 we obtain a = 1/ξ while if 0 < m < (v/2)2 then a ≡ −i/ξ with ξ = ~/
√
|m− (v/2)2| ∈ R

+.

By applying the hard-wall boundary condition we have φ̂0,−(x1) = 0 and φ̂0,+(x2) = 0 which is satisfied only if
cσ,− = −cσ,+ (Fig. 9). This leads to the cases (see also Fig. 10)

• m > (v/2)2 > 0:

φ̂0,−(x) ∝ sin[(x− x1)/ξ]e
−(x−x1)/l

1√
2

(
1

−1

)
, (35)

φ̂0,+(x) ∝ sin[(x− x2)/ξ]e
+(x−x2)/l

1√
2

(
1
1

)
. (36)

• 0 < m < (v/2)2:

φ̂0,−(x) ∝ sinh[(x− x1)/ξ]e
−(x−x1)/l 1√

2

(
1

−1

)
, (37)

φ̂0,+(x) ∝ sinh[(x− x2)/ξ]e
+(x−x2)/l

1√
2

(
1
1

)
. (38)
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FIG. 9: Zero-energy bound states of opposite chirality σ = ±1 (green, red). The latter zero energy bound state solutions are

present only for m > 0 and satisfy the hard-wall conditions φ̂0,−(x1) = 0 and φ̂0,+(x2) = 0.

• m = mc = 0:

~kx = −iv σ ± 1

2
. (39)

This shows that for m = 0 one solution per chirality extends through the whole bulk since it corresponds to
kx = 0 and becomes not “bound” any more.

• m < 0: We observe that for each chirality the two related solutions have a decay factor that locates them
in opposite boundaries. This implies that the hard wall conditions can be only satisfied if the corresponding
eigen-vectors are the null vectors. In this case we transit to the topologically trivial phase with no zero-energy
bound states. The latter situation is completely diferent compared to the case m > 0 where solutions of the
same chirality lie on the same boundary side.

FIG. 10: Wave-vector solutions of Eq. (32) in the complex k-plane. The solutions in the upper (lower) half-plane lead to
zero-energy bound states localized at the left (right) boundary. Blue and red symbols distinguish the two chiralities. The
passage from the topologically non-trivial (m > 0) to the trivial (m < 0) phase is accompanied by the vanishing of the zero-
energy bound states and occurs when kx = 0 and mc = 0. For the latter values the bulk gap closes. This constitutes a direct
consequence of the bulk-boundary correspondence.

B. 2d model

The 2d model is obtained by adding the remaining component of Rashba spin-orbit coupling as previously:

Ĥ(p̂) = v (p̂xσy − p̂yσx) + (m− p̂2)σz . (40)

Note that we added a quadratic p̂2y dependence in M(p̂). Since in the low energy limit a gap closing can occur only

for small momenta, the most significant term is p̂yσx which is linear in momentum compared to the p̂2yσz term that is
quadratic in momentum. By neglecting the latter, the eigen-functions for the chiral edge modes are directly retrieved



13

• m > (v/2)2 > 0:

φ̂0,−,ky
(r) ∝ sin[(x− x1)/ξ]e

−(x−x1)/leikyy
1√
2

(
1

−1

)
, (41)

φ̂0,+,ky
(r) ∝ sin[(x− x2)/ξ]e

+(x−x2)/leikyy
1√
2

(
1
1

)
. (42)

• 0 < m < (v/2)2:

φ̂0,−,ky
(r) ∝ sinh[(x− x1)/ξ]e

−(x−x1)/leikyy
1√
2

(
1

−1

)
, (43)

φ̂0,+,ky
(r) ∝ sinh[(x− x2)/ξ]e

+(x−x2)/leikyy
1√
2

(
1
1

)
. (44)

In both cases the energy reads

Eσ,ky
= −σv~ky . (45)

The spectrum above is chiral, since each chirality solution is located at different boundaries. In a completely
analogous way as in the 2d extension of the Jackiw and Rebbi model we have that the solution located at the left
(right) edge has chirality σ = −1 (+1) and an energy dispersion Eleft(ky) = +v~ky (Eright(ky) = −v~ky) (Fig. 7).
Finally, if we also condider the originally neglected term p̂2yσz, we see that in the φ̂0,±,ky

(r) subspace it acts as an
interaction with a matrix form

〈
p̂2yσz

〉
= (~ky)

2

(
0 t
t 0

)
with t ∝ e−

x2−x1

l
a(x2 − x1) cos[a(x2 − x1)]− sin[a(x2 − x1)]

2a
, (46)

where t defines the overlap of the chiral edge modes which decays exponentially with x2 − x1. For x2 − x1 → +∞
and small momenta ~ky, this term leads to a negligible mixing of the two edge modes.

C. Quantized Hall conductivity of the 2d bulk system - topological invariant

We have already mentioned that bulk-boundary correspondence implies the presence of topologically protected
edge solutions. In the case under consideration, the system exhibits the QAHE. We expect from the bulk Hall

conductivity to be quantized σxy = Ñe2/h. The confirmation of this fact will be the final proof for the validity of the
bulk-correspondence (at least for this system) from a bulk perspective. Therefore our next step will be to calculate
the Hall conductivity. In the general case the Hall conductivity is calculated via Kubo’s formula [30]. Of course,
there exist other approaches based for instance on the Boltzmann equation and Fermi’s Golden Rule which despite
their phenomenological character, they still reproduce in a simpler manner the results derived using Kubo’s method.
Here, we will consider an adiabatic approach [31] for the calculation of the Hall conductivity, which is suitable for
insulating materials. The same results can be obtained using Kubo’s formula with real time, thermal (Matsubara)
or non-equilibrium (Keldysh) Green’s functions [32–37]. As a matter of fact, the adiabatic approach which we will
follow, is based upon the modified adiabatic eigenstates of the 2d model due to the influence of an external electric
field.

1. Bulk eigen-states

We Fourier transform the bulk Hamiltonian of Eq. (40) and obtain

Ĥ(k) = v~ (kxσy − kyσx) +
(
m− ~

2k2
)
σz =

( (
m− ~

2k2
)

−v~(ky + ikx)
−v~(ky − ikx) −

(
m− ~

2k2
)
)

≡ E(k)

(
cosϑk −i sinϑke−iϕk

i sinϑke
iϕk − cosϑk

)

= E(k) ĝ(k) · σ , (47)
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FIG. 11: The unit vector ĝ(k) parametrizing the Hamiltonian takes values on a two-dimensional sphere S2.

with E(k) =
√
g(k) · g(k) =

√
(v~k)2 + (m− ~2k2)

2
where we have introduced the g-vector and the angles ϕk, ϑk:

g(k) =
(
−v~ky, v~kx,m− ~

2k2
)
= E(k) (− sinϕk sinϑk, cosϕk sinϑk, cosϑk) . (48)

The corresponding eigen-vectors read

|+,k〉 =




cos
(
ϑk

2

)

i sin
(
ϑk

2

)
eiϕk


 and |−,k〉 =



i sin

(
ϑk

2

)
e−iϕk

cos
(
ϑk

2

)


 . (49)

The above bulk eigen-states satisfy Ĥ(k) |ν,k〉 = Eν(k) |ν,k〉 with Eν(k) = νE(k) where ν = ±.

2. Coupling to an external constant electric field - Adiabatic eigen-states

In order to study the QAHE from a bulk perspective, we need to apply a constant electric field Ex and calculate
the electric current Jy = σHEx, where σH corresponds to σH = σyx = −σxy. Since in general the electric field
can be written in terms of the scalar (V ) and vector (A) potentials as E = −∇V − ∂tA, we can include it in our
2d Hamiltonian through the minimal coupling, i.e. p̂ → p̂ + eA(t) which translates to k → k + eA(t)/~ (e > 0).
Essentially, the presence of a finite electric field renders the wave-vector time-dependent, satisfying

~k̇(t) = −eE(t) , (50)

which describes Newton’s second law. Note that for a constant electric field k(t) = k(t0)− eE(t− t0)/~. The crucial
point in the manner that the electric field enters the Hamiltonian, is that the form of the latter remains the same,

i.e. we can write Ĥ(k, t) ≡ Ĥ(k(t)). For the case of an insulating system and under the condition that the rate k̇ is
small, one can consider that the system evolves adiabatically in the presence of the time-dependent vector potential.
This assumption implies that the eigen-states of the system follow the adiabatically varying k(t). In this manner, the
adiabatic or instantaneous eigen-states are simply |±,k(t)〉.

3. Time-dependent perturbation theory based on adiabatic eigen-states

The adiabatic eigen-states can constitute a useful basis for formulating a time-dependent perturbation theory [31],
in the case of a slowly varying external field. In the presence of the external field, Schrödinger’s equation obtains the
form

i~
∂

∂t
|ν,k, t〉 = Ĥ(k, t) |ν,k, t〉 , (51)



15

where |ν,k, t〉 correspond to the exact eigen-states of Ĥ(k, t). We would like now to set up a perturbation theory, for
which the exact eigen-states will coincide with the adiabatic eigen-states at zero-th order. We write

(
i~
∂

∂t
− Eν [k(t)]

)
|ν,k, t〉+ Eν [k(t)] |ν,k, t〉 = Ĥ(k, t) |ν,k, t〉 (52)

where the first term will be considered as the perturbation on the adiabatic eigen-states |ν,k(t)〉. At this point we

expand |ν,k, t〉 perturbatively, in the following sense |ν,k, t〉 = |ν,k, t〉(0)+ |ν,k, t〉(1)+ . . . ≡ |ν,k(t)〉+δ |ν,k(t)〉+ . . ..
By plugging this expression in the equation above, we obtain:

|ν,k, t〉 = |ν,k(t)〉+ i~
∑

λ6=ν

|λ,k(t)〉 〈λ,k(t)| ∂t |ν,k(t)〉
Eλ[k(t)]− Eν [k(t)]

+ h.o.t. . (53)

With the help of the chain rule for derivatives we have

|ν,k, t〉 = |ν,k(t)〉+ i~k̇(t) ·
∑

λ6=ν

|λ,k(t)〉 〈λ,k(t)|∇k(t) |ν,k(t)〉
Eλ[k(t)]− Eν [k(t)]

+ h.o.t. . (54)

Using Newton’s law Eq. (50), we obtain

|ν,k, t〉 = |ν,k(t)〉 − ieE(t) ·
∑

λ6=ν

|λ,k(t)〉 〈λ,k(t)|∇k(t) |ν,k(t)〉
Eλ[k(t)]− Eν [k(t)]

+ h.o.t. . (55)

For a constant electric field the above eigen-states are simply linear combinations of the adiabatic eigen-states. Conse-

quently they are also adiabatic eigen-states and therefore we can write |ν̃,k(t)〉 ≡ |ν,k, t〉(0)+ |ν,k, t〉(1). Furthermore,
we may supress the time-dependence in k and simply write

|ν̃,k〉 ≃ |ν,k〉 − ieE ·
∑

λ6=ν

|λ,k〉 〈λ,k|∇k |ν,k〉
Eλ(k)− Eν(k)

. (56)

4. Adiabatic current

In order to retrieve the Hall conductivity, we have to define the current operator. We will start from the microscopic
equation of continuity for the electric charge

˙̂ρ(q, t) + iq · ĵ(q, t) = 0 , (57)

where ρ̂(q, t) and ĵ(q, t) define second-quantized Heisenberg operators evolving with the general second-quantized
Hamiltonian in Schrödinger’s picture

Ĥ(t) =

∫
dk Ψ̂†

kĤ(k + eA(t)/~)Ψ̂k , (58)

where we have introduced the spinor Ψ̂†
k = (c†k,↑ c

†
k,↓). The electric charge density operator in Heisenberg’s picture

reads

ρ̂(q, t) = −e
∫

dk

(2π)d

∑

σ=↑,↓

ĉ†k,σ(t)ĉk+q,σ(t) ≡ −e
∫

dk

(2π)d
Ψ̂†

k(t)ÎσΨ̂k+q(t) , (59)

where the time-depedence of the field operators is a result of the Heisenberg description. In order to determine the
current we have to calculate ˙̂ρ, which is given as

˙̂ρ(q, t) =
i

~

[
Ĥ(t), ρ̂(q, t)

]
= e

i
∫

t

t0
Ĥ(t′)dt′/~

[
Ĥ(t), ρ̂(q)

]
e
−i

∫
t

t0
Ĥ(t′)dt′/~

, (60)

where ρ̂(q) defines the corresponding Schrödinger operator, yielding

[
Ĥ(t), ρ̂(q)

]
= −e

∫∫
dkdk′

(2π)d

[
Ψ̂†

kĤ(k + eA(t)/~)Ψ̂k, Ψ̂
†
k′ ÎσΨ̂k′+q

]

= −e
∫

dk

(2π)d
Ψ̂†

k

[
Ĥ(k + eA(t)/~)− Ĥ(k + q + eA(t)/~)

]
Ψ̂k+q . (61)
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Using the equation of continuity we obtain the Schrödinger current operator

ĵ(q, t) = − e

~

∫
dk

(2π)d
Ψ̂†

k

∂Ĥ(k + eA(t)/~)

∂k
Ψ̂k+q . (62)

Note that in general the current operator depends also on the external vector potential. This can become more

transparent for a quadratic dispersion Ĥ(k) = (~k)2/2m where we obtain ∂Ĥ(k + eA(t)/~)/∂k = ~(~k/m+ eA(t)).
The current consists of the paramagnetic and diamagnetic contributions, respectively. In the case under consideration
we are interested in the linear response where A(t) is small. In this case, only the paramagnetic current becomes
relevant and reads

ĵ(q) = − e

~

∫
dk

(2π)d
Ψ̂†

k

∂Ĥ(k)

∂k
Ψ̂k+q . (63)

For a homogeneous electric field, only the q = 0 component is relevant (homogeneous current), which reads

ĵ = − e

~

∫
dk

(2π)d
Ψ̂†

k

∂Ĥ(k)

∂k
Ψ̂k . (64)

It is obvious that the above equation will hold also for the adiabatic situation similar to the one considered in the
previous paragraph. In terms of the single-particle eigen-states |ν̃,k〉 with corresponding creation (annihilation)

operator ψ̂†
k,ν̃ (ψ̂

k,λ̃) we obtain

ĵ = − e

~

∫
dk

(2π)d

∑

ν̃,λ̃

〈
ν̃,k

∣∣∣∣∣
∂Ĥ(k)

∂k

∣∣∣∣∣ λ̃,k
〉
ψ̂†
k,ν̃ψ̂k,λ̃ . (65)

5. Hall conductivity formula

We are now in a position to evaluate the expectation value of the current operator up to first order in the electric
field. Based on the adiabatic eigen-states |ν̃,k〉 we have

Ja =< ĵa >= − e

~

∫
dk

(2π)d

∑

ν̃

〈
ν̃,k

∣∣∣∣∣
∂Ĥ(k)

∂ka

∣∣∣∣∣ ν̃,k
〉
nF [Eν̃(k)] ≃ − e

~

∫
dk

(2π)d

∑

ν

〈
ν,k

∣∣∣∣∣
∂Ĥ(k)

∂ka

∣∣∣∣∣ ν,k
〉
nF [Eν(k)]

−e
2Eb
i~

∫
dk

(2π)d

ν 6=λ∑

ν,λ

〈
ν,k

∣∣∣∂Ĥ(k)
∂ka

∣∣∣λ,k
〉〈

λ,k
∣∣∣ ∂
∂kb

∣∣∣ ν,k
〉
−
〈
λ,k

∣∣∣∂Ĥ(k)
∂ka

∣∣∣ ν,k
〉〈

λ,k
∣∣∣ ∂
∂kb

∣∣∣ ν,k
〉∗

Eλ(k)− Eν(k)
nF [Eν(k)] , (66)

where nF (ǫ) denotes the Fermi-Dirac distribution for energy ǫ and a, b = x, y. For systems which are not characterized
by a finite current flow in the ground state for E = 0, only the last term can lead to a finite current. For the rest we
will focus only on the second term. Using now the formulae

〈
ν,k

∣∣∣∣∣
∂Ĥ(k)

∂α

∣∣∣∣∣λ,k
〉

= [Eλ(k)− Eν(k)]

〈
ν,k

∣∣∣∣
∂

∂α

∣∣∣∣λ,k
〉

(67)

and
〈
ν,k

∣∣∣∣
∂

∂k

∣∣∣∣λ,k
〉

= −
〈
λ,k

∣∣∣∣
∂

∂k

∣∣∣∣ ν,k
〉∗

, (68)

we have

Ja = −e
2Eb
i~

∫
dk

(2π)d

ν 6=λ∑

ν,λ

〈
ν,k

∣∣∣∂Ĥ(k)
∂ka

∣∣∣λ,k
〉〈

λ,k
∣∣∣ ∂
∂kb

∣∣∣ ν,k
〉
−
〈
ν,k

∣∣∣∂Ĥ(k)
∂ka

∣∣∣λ,k
〉∗ 〈

λ,k
∣∣∣ ∂
∂kb

∣∣∣ ν,k
〉∗

Eλ(k)− Eν(k)
nF [Eν(k)]

= −e
2Eb
i~

∫
dk

(2π)d

ν 6=λ∑

ν,λ

[〈
ν,k

∣∣∣∣
∂

∂ka

∣∣∣∣λ,k
〉〈

λ,k

∣∣∣∣
∂

∂kb

∣∣∣∣ ν,k
〉
−
〈
ν,k

∣∣∣∣
∂

∂ka

∣∣∣∣λ,k
〉∗〈

λ,k

∣∣∣∣
∂

∂kb

∣∣∣∣ ν,k
〉∗]

nF [Eν(k)] .

(69)
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The conductivity reads

σab = −e
2

~

∑

ν

∫
dk

(2π)d
Ων

ab(k)nF [Eν(k)] , (70)

where we introduced the so-called Berry’s curvature [31, 38]

Ων
ab(k) = −i

λ6=ν∑

λ

[〈
ν,k

∣∣∣∣
∂

∂ka

∣∣∣∣λ,k
〉〈

λ,k

∣∣∣∣
∂

∂kb

∣∣∣∣ ν,k
〉
−
〈
ν,k

∣∣∣∣
∂

∂kb

∣∣∣∣λ,k
〉〈

λ,k

∣∣∣∣
∂

∂ka

∣∣∣∣ ν,k
〉]

, (71)

which satisfies Ων
ab(k) = −Ων

ba(k). Furthermore the summand

〈
ν,k

∣∣∣∣
∂

∂ka

∣∣∣∣λ,k
〉〈

λ,k

∣∣∣∣
∂

∂kb

∣∣∣∣ ν,k
〉
−
〈
ν,k

∣∣∣∣
∂

∂kb

∣∣∣∣λ,k
〉〈

λ,k

∣∣∣∣
∂

∂ka

∣∣∣∣ ν,k
〉

(72)

is identically zero for ν = λ which implies that we can remove the constraint of the sum appearing in the expression
for the Berry curvature. Then using the completeness relation

∑
ν |ν,k〉 〈ν,k| = Îσ along with the orthogonality

condition

〈λ,k|ν,k〉 = δν,λ ⇒ ∂ 〈λ,k|
∂α

|ν,k〉 = −〈λ,k| ∂ |ν,k〉
∂α

, (73)

we obtain

Ων
ab(k) = −i

∑

λ

[〈
ν,k

∣∣∣∣
∂

∂ka

∣∣∣∣λ,k
〉〈

λ,k

∣∣∣∣
∂

∂kb

∣∣∣∣ ν,k
〉
−
〈
ν,k

∣∣∣∣
∂

∂kb

∣∣∣∣λ,k
〉〈

λ,k

∣∣∣∣
∂

∂ka

∣∣∣∣ ν,k
〉]

= −i
∑

λ

[
∂ 〈ν,k|
∂kb

|λ,k〉 〈λ,k| ∂ |ν,k〉
∂ka

− ∂ 〈ν,k|
∂ka

|λ,k〉 〈λ,k| ∂ |ν,k〉
∂kb

]

= i

(
∂ 〈ν,k|
∂ka

∂ |ν,k〉
∂kb

− ∂ 〈ν,k|
∂kb

∂ |ν,k〉
∂ka

)
≡ ∂Aν

b (k)

∂ka
− ∂Aν

a(k)

∂kb
, (74)

where we introduced Berry’s vector potential

A
ν(k) = 〈ν,k |i∇k| ν,k〉 . (75)

In fact Aν(k) is a gauge potential since under a gauge transformation |ν,k〉 → e−iα(k) |ν,k〉 it transforms as Aν →
A

ν(k) +∇kα(k). With the use of Berry’s vector potential the Hall conductivity reads

σH = σyx =
e2

~

∑

ν

∫
dk

(2π)2

[
∂Aν

y(k)

∂kx
− ∂Aν

x(k)

∂ky

]
nF [Eν(k)] ≡

e2

~

∑

ν

∫
dk

(2π)2
Ων

z (k)nF [Eν(k)] , (76)

where we introduced Berry’s curvature

Ων
z(k) ≡ Ων

xy(k) = (∇k ×A(k))z , (77)

where we labelled the Berry curvature Ων
xy(k) with the z-axis which is perpendicular to the xy-plane, since Ων

ab(k) ∝
εabc with εabc the completely anti-symmetric tensor with a, b, c = {x, y, z}. Notice that the Hall conductivity is
proportional to the integral of the Berry curvature along the z-axis which is similar to the QHE. Essentially, Ων

z(k)
plays the role of the external Bz field in the QHE. Consequently, Ων

z(k) should be odd under T , which can occur only
for systems which violate T -symmetry.

6. Quantized Hall conductivity in a T -violating topological insulator

For the Hamiltonian under consideration (Eq. (47)) we obtain

Ων
z(k) = −ν

2
ĝ(k) ·

(
∂ĝ(k)

∂kx
× ∂ĝ(k)

∂ky

)
, (78)
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where we have made use of the unit vector ĝ(k) = g(k)/|g(k)|. The Hall conductivity becomes

σH =
e2

h

1

4π

∫
dk ĝ(k) ·

(
∂ĝ(k)

∂kx
× ∂ĝ(k)

∂ky

){
nF [−E(k)]− nF [E(k)]

}
. (79)

For zero temperature, only the lowest band is occupied and due to the fact that the Fermi-Dirac distribution becomes
a step function, we obtain

σH =
e2

h

1

4π

∫
dk ĝ(k) ·

(
∂ĝ(k)

∂kx
× ∂ĝ(k)

∂ky

)
≡ e2

h
Ñ , (80)

where we will argue that the following quantity

Ñ =
1

4π

∫
dk ĝ(k) ·

(
∂ĝ(k)

∂kx
× ∂ĝ(k)

∂ky

)
, (81)

is an integer (Z) and constitutes a topological invariant [13]. To show why this integral takes only quantized values,
we have to understand better the behavior of the integrand, and particularly investigate the behavior of ĝ(k) towards
infinity. Since we have

ĝ(k) =


− v~ky√

(v~k)2 + (m− ~2k2)
2
,

v~kx√
(v~k)2 + (m− ~2k2)

2
,

m− ~
2k2

√
(v~k)2 + (m− ~2k2)

2


 , (82)

we will now examine the behavior of this unit vector at the origin k = 0 and towards infinitity |k| → +∞. We have

ĝ(0) = (0, 0, sign(m)) and ĝ(|k| → +∞) = (0, 0,−1) . (83)

Note that for m > 0(m < 0) the orientation of the ĝ(k) at the origin and at infinity are the opposite (same), leading
to a skyrmion (trivial) configuration (Fig. 12). Since the ĝ(k) vector is oriented along the same direction at all points
of the 2d space at infinity, all these points become essentially equivalent. In this sence our 2d space is not any more
R

2 but compactifies to S2, which corresponds to the usual sphere.

FIG. 12: Left: Skyrmion configuration [39] of the unit vector ĝ(k). In this topologically non-trivial configuration, the ĝ vector
changes continuously its orientation in such a manner so that the orientation at the “center” of k-space is anti-parallel to
the orientation at the boundary (infinity). Note that the ĝ(k) obtains exactly the same orientation at infinity rendering the
whole boundary equivalent to a single point. This essentially compactifies k-space from R

2 to a two-sphere S2. Right: The
compactified k-space into an S2.

On the other hand, the term ĝ · (dxĝ × dyĝ) provides the infinitessimal solid angle covered upon an infinitessimal
variation of ĝ(k), since

Ñ =
1

4π

∫
dk sinϑk

(
∂ϕk

∂ky

∂ϑk
∂kx

− ∂ϕk

∂kx

∂ϑk
∂ky

)
=

1

4π

∫∫
dϑdϕ sinϑ . (84)

Due to the boundary condition at infinity, when we integrate over the whole k-space, the ĝ(k) will vary and cover
an integer number of a complete solid angle, 4π, providing in the general case a total solid angle of 4πZ. In this

manner, Ñ = Z and yields the expected quantized Hall conductivity. One may directly observe that for m > 0 we

obtain Ñ = 1 which would correspond to a single chiral edge mode per boundary of the material. Clearly this is
another different aspect of the bulk-boundary correspondence. The topological invariant quantity is the result of the
homotopy mapping of a S2 → S2 [13, 14] (see Fig. 13).
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FIG. 13: The topological invariant Ñ responsible for the quantization of the Hall conductivity is an Z performing the mapping
of the compactified k-space, S2, to the manifold of the unit vector ĝ(k) which also a two sphere S2. Generally any mapping of
two spheres of the same dimensionality is an integer Z.

7. The first encounter of space compactification in physics: Kaluza - Klein theory

The concept of compactification has appeared almost one century ago in high energy physics, in terms of the Kaluza-
Klein theory [40, 41] which was aiming at the unification of gravity and electromagnetism. Although unsuccessful,
it lead to a breakthrough since it opened new routes in including additional dimensions beyond the usual Minkowski
spacetime, which consists of a single time-dimension (t) and three Euclidean spatial dimensions (r). The current
developments in high energy physics suggest that we live in an 11-dimensional world where 10 of them correspond to
spatial dimensions. However, the additional 7-dimensions are not directly visible to us since their fingerprints lie in
higher energies. In fact, the latter concept was exactly the fundamental step in Kaluza-Klein theory. The additional
dimensions are not visible to us because they are compact, i.e. for instance circles, spheres or more complicated
structures. Kaluza and Klein considered a five-dimensional space where the fifth dimension (ζ) is a circle of radius
R. In this manner, space-time can be visualized as a “cylinder” (Fig. 14). Due to the compactification of the extra
dimension, a particle described by a classical field Φ(t, r, ζ) which satisfies the five-dimensional Klein-Gordon equation

(
∂2

∂t2
−∇

2 − 1

R2

∂2

∂ζ2
+M2

)
Φ(t, r, ζ) = 0 ⇒

[
∂2

∂t2
−∇

2 +M2 +
( n
R

)2]
Φn(t, r) = 0 , (85)

can be viewed as a particle living in the usual 4-dimensional space with an effective mass originating from the
plane wave-solutions Φ(t, r, ζ) = Φn(t, r)e

inζ of the additional dimension. Due to the compactification and the
single-valuedness of einζ , one obtains the allowed values of n, i.e. n = 0, 1, 2, . . .. In this manner, we obtain an infinite
number of solutions, particles of different masses, the so-called Kaluza-Klein tower. The relativistic spectrum in this
case reads E2 = p2 +m2

n with the allowed masses mn =
√
m2 + (n/R)2. Note that the smaller the radius for the

compactified ζ-space, the higher in energy we can observe the effects of the fifth dimension.

FIG. 14: Left: The five-dimensional spacetime considered within the Kaluza-Klein theory. In our case, the additional dimension
defines a spatial dimension on top of the usual Minkowski spacetime. Middle: The extra dimension is assumed to be compact
and in our case a circle. As a result, the five-dimensional space resembles a cylinder. Right: The compactified ζ-space is a
circle of radius R.



20

D. Topological invariant for the 1d bulk system from dimensional reduction

We can directly obtain the topological invariant for the 1d-model, which belongs to class BDI and is expected to
be an integer. The ĝ(k) simply reduces to

g(k) =
(
0, v~k,m− (~k)2

)
= E(k) (0, sinϑk, cosϑk) , (86)

where for simplicity we set k ≡ kx. Once again, we study the boundary values of ĝ(k). We have ĝ(|k| → +∞) = −1
leading to the compactification of k-space from R to a circle S1. As previously, ĝ(k = 0) = sign(m) and
the sign of m will define if we lie in the topologically trivial or not phase. Particularly for m < 0 we may de-
form our Hamiltonian so to be constant ĝ(k) = (0, 0,−1) while form > 0 we obtain a twist of the ĝ vector (see Fig. 15).

FIG. 15: Left: Trivial configuration of the topologically deformed ĝ(k)-vector. Right: Topologically non-trivial configuration
of the unit ĝ(k)-vector with a single twist. In both cases the ĝ(k) has the same orientation at ±∞ leading to a compactification
of the 1d k-space from R to S1.

From Fig. 16 it is clear that a topological invariant quantity can be obtained from the mapping of S1 → S1. Similar
to the S2 → S2 case this also an integer. It is obvious that two spheres of the same dimensionality are always linked
via an integer. The topological invariant in the present 1d case coincides with the angle ϑk which is covered when we
cover an angle of 2π in the S1 compactified k-space. We may readily introduce the so-called winding number [12–14]

w̃ =
1

2π

∫
dϑ ≡ 1

2π

∫
dk

dϑ

dk
= − 1

2π

∫
dk

(
ĝ(k)× ∂ĝ(k)

∂k

)

x

. (87)

For the case considered here, it is straighfroward to see that w̃ = 1. At this point it useful to make the following
remarks:

• We have already mentioned that the quantities Ñ and w̃ constitute topological invariant quantities, robust under
smooth deformations of the Hamiltonian. Smooth implies that the changes which we subject the Hamiltonian
to, are such that they do not close the bulk gap since this would lead to an indefinite ĝ(k)-vector. Furthermore,
the symmetry class of the Hamiltonian should remain the same during this deformation procedure. Here we will

prove this property for w̃ (similarly for Ñ). We start from the expression for the topological invariant

w̃′ = − 1

2π

∫
dk

(
ĝ′(k)× ∂ĝ′(k)

∂k

)

x

, (88)

where we have smoothly deformed our Hamiltonian by infinitessimally deforming the ĝ(k)-vector in the following
manner ĝ′(k) = ĝ(k)+δĝ(k), with ĝ(k) ·δĝ(k) = 0. The latter constraint implies that we add a genuinely diffent
contribution to the previous Hamiltonian, which allows to ĝ′(k) to be a unit vector, i.e. ĝ′(k) · ĝ′(k) = 1 →
ĝ(k) ·δĝ(k) = 0. In order to assure that we remain in the same symmetry class we have to satisfy simultaneously
the additional constraints: δgx(k) = 0, δgy(k) = −δgy(−k) and δgz(k) = δgz(−k). By replacing we have

w̃′ = w̃ − 1

π

∫
dk

(
δĝ(k)× ∂ĝ(k)

∂k

)

x

+ h.o.t = w̃ , (89)

where we used the antisymmetry of the external product and the following relations

ĝ(k) · ĝ(k) = 1 → ĝ(k) · ∂ĝ(k)
∂k

= 0 ⇒ ∂ĝ(k)

∂k
||δĝ(k) ⇒ ∂ĝ(k)

∂k
× δĝ(k) = 0 . (90)
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FIG. 16: The two S1 spheres are homotopically mapped with the winding number w̃ counting how many times an angle of 2π
has been covered in ĝ-space, when an angle of 2π has been covered in the compactified k-space.

• If we calculate the topological invariant quantities, Ñ and w̃, for the bulk Hamiltonians of the Jackiw-Rebbi

model dicussed earlier (see Eq. (15) and Eq. (25)) we will observe that Ñ = w̃ = 1/2. According to our

discussion, Ñ enters in the expression of the conductivity and its fractionalization implies that a fractional
number of electrons carry the electric current. However, this is not physical for an non-interacting system. The
reason for this contradiction is related to the fact that Hamiltonians which are linear in momenta as for instance
Ĥ = v(p̂xσy − p̂yσx)−Mσz are pathological as far these invariant are concerned [13], since ĝ(k) does not satisfy
the appropriate boundary conditions. In fact, ĝ(k) does not point along the same direction for all |k| → +∞.
Consequently, k-space cannot be compactified into a sphere and therefore we cannot define a topologically
invariant quantity. This is essentially the reason why the latter model cannot exhibit edge modes without the
consideration of anM(x). Specifically for the stewise double domain wall magnetization profile, each bulk phase
is characterized by a fractional topological invariant, so that the changes of the topological invariant yield an
integer number. This is exactly the way that integer nature of the invariant is restored. Consequently we have
to define domain walls, i.e. pairs of bulk phases which are characterized by a fractional topological invariant,
in order to obtain a well defined integer number of zero-energy bound states (see Fig. 17). In this case the sign
of the difference of the topological invariants characterizing two consecutive segments provides the chirality (σx
eigen-value) characterizing the bound state solution.

FIG. 17: The calculated winding number w̃ for each of the three bulk segments within the Jackiw-Rebbi model. The calculated
invariant has a sign which depends on the sign of the magnetization. Moreover, it is fractionalized as a consequence of the
fact that the Hamiltonian is linear in momentum. However, the difference of the winding number along a domain wall is an
integer and equals the number of zero-energy bound state solutions appearing at the interface. The sign of the difference of the
winding number along the domain wall provides the chirality of the zero-energy bound state.

• The above remark sets constraints to the models that can describe a physical system. Any relativistic theory
of the Jackiw-Rebbi family must consist of a direct sum of an even number of block Hamiltonians of the

following type Ĥ = v(p̂xσy − p̂yσx)−Mσz. However, as we have already observed, any model of the latter type
becomes topologically “regular” when it attains non-relativistic corrections, like the terms which are quadratic
in momenta. In the latter case, the required boundary conditions for the ĝ-vector are fulfilled and we can define
a topological invariant quantity.
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V. T -INVARIANT TOPOLOGICAL INSULATORS

Having studied the 1d and 2d models for a T -violating topological insulator, it is straightforward to construct
related T -invariant models for topological insulators, by simply doubling the degrees of freedom. In the simplest case
this is achieved by adding the T -reversed copy of the block Hamiltonian presented in Eq. (40). Moreover, T -invariant
topological insulators were also predicted to exist in 3d [10, 42, 43, 45], which was later experimentally confirmed
[46–52]. The latter owe similar but also distinct properties compared to their lower dimensional analogs.

1. 2d T -invariant topological insulators

Let’s start with the 2d model Hamoltonian for a T -invariant topological insulator [4]
(

Ĥ(k) 0

0 Ĥ∗(−k)

)
with Ĥ(k) = v~ (kxσy − kyσx) + (m− ~

2k2)σz , (91)

At this point we have to clarify the basis on which the Hamiltonian above, acts on. So far we have naturally associated
the Pauli matrices σ with the electronic spin-1/2. Here however, the four eigen-states on which the Hamiltonian acts

on, correspond to the eigen-states of the total angular momentum Ĵ = L̂+ Ŝ with j = 3/2, i.e. |j = 3/2;mj = +3/2〉,
|j = 3/2;mj = +1/2〉, |j = 3/2;mj = −3/2〉 and |j = 3/2;mj = −1/2〉 (here there is a slight difference compared to
the Bernevig-Hughes-Zhang model (BHZ) [4]). The angular momentum j = 3/2 originates from the hybridization
of the conduction Γ6 and valence Γ8 bands encountered in the typical semiconducting T -invariant 2d topological
insulators, involving l = 1 and s = 1/2. As shown in Fig. 18, the band structure of HgTe is inverted compared to
the usual motif encountered for instance in CdTe. By fabricating HgTe/CdTe quantum wells of different width d, one
can impose the one or the other type of band structure. In the Hamiltonian of Eq. (91) the only parameter which
depends on d is m. However, we have already shown that the parameter m controls the topological properties of
these systems. The dependence of m with respect to d is such that, for d > dc → m > 0, the quantum well structure
is exhibiting the inverted band structure characteristics typical to HgTe and as a result the system transits to the
topologically non-trivial phase. As a matter of fact, the transition to the topologically non-trivial phase by tuning
the width of the quantum well was theoretically predicted by [4] and experimentally confirmed by [25].

FIG. 18: Band structure in HgTe/CdTe quantum wells. The band structure of bulk HgTe is inverted compared to the typical
case encountered in bulk CdTe. In the former, the Γ6 band lies below the Γ8 band, which constitute the conduction and valence
bands for CdTe. The width of the middle region determines if the HgTe band structure characteristics will dominate, leading
to a topologically non-trivial phase. Note that the Γ’s correspond to irreducible representations of the relevant point group.

We observe that the complete Hamiltonian is block diagonal and the system belongs to the symmetry class BDI⊕
BDI. Note that there is an artificial chiral symmetry which can be always lifted with the inclusion of a finite chemical
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potential or disorder, leading to class A⊕A. In the latter case, the Hamiltonian is characterized by two Z topological

invariants Ñσ, with σ =↑, ↓ labelling the sign of the mj of the eigen-states of the two blocks. In order for the system

to be T -symmetric, the two invariants have to satisfy Ñσ = σÑ . The electric Hall conductivity will be proportional

to Ñ↑ + Ñ↓ and will be zero in this case. In contrast, the difference Ñ↑ − Ñ↓ = 2Ñ 6= 0 leading to the so called

quantum spin Hall effect. Note that in the latter case, we have a number of Ñ helical modes per edge.
We have to remark that there exist further terms that we can add in the Hamiltonian above, which preserve T -

symmetry but mix the two blocks. In the latter case, the Hamiltonian transits to symmetry class AII that supports
a Z2 topological invariant. The result of this symmetry class transition is to allow to the system to exhibit only a
single pair of topologically protected helical solutions per edge. Essentially, in the presence of infinitessimally small

terms which lead to class AII, the Z2 topological invariant coincides with (Ñ↑ − Ñ↓)/2mod2 = Ñmod2, providing 0

for a topologically trivial phase and 1 for a non-trivial [9, 18, 19].

2. Interlude: 2d topological semi-metals - graphene

So far we have examined 2d insulating systems which violate or preserve T -symmetry. Nonetheless, graphene is
quite similar to a 2d T -invariant insulator but does not have a band gap. It is natural to ask if a system like graphene
can have any non-trivial topological properties, arising from the Dirac spectrum. Before answering this question, let’s
first discuss the band structure of graphene [53], which in the low energy limit can be described by two block diagonal
2× 2 Hamiltonians of the form

(
ĤK(q) 0

0 ĤK′(q)

)
with ĤK(q) = v~q · σ and ĤK′(q) = v~q · σ∗ , (92)

where we have introduced the reciprocal lattice vectors

K =

(
2π

3a
,

2π

3
√
3a

)
and K ′ =

(
2π

3a
,− 2π

3
√
3a

)
. (93)

FIG. 19: The two S1 spheres are homotopically mapped with the winding number w̃ counting how many times an angle of
2π has been covered in ĝ-space, when an angle of 2π has been covered in the compactified k-space. The two S1 spheres are
homotopically mapped with the winding number w̃ counting how many times an angle of 2π has been covered in ĝ-space, when
an angle of 2π has been covered in the compactified k-space.

At these two inequivalent points of the 2d k-space, the energy spectrum shows zeros. Therefore, for investigating the
low energy properties of graphene, we can focus in the vicinity of these two points by expanding the wave-vectors in
the following sense k = K + q in terms of small momenta q, i.e. |q| << K. Since the two vectors K and K ′ are
connected by the mirror symmetry y → −y, which for the particular case is equivalent to acting with the time reversal
operator T , the Hamiltonians at these two points are related by taking σ → −σy. Note also, that in the present case
we have a system with an even (two) number of Dirac points. In the previous section we discussed that it is necessary
for the Jackiw-Rebbi type of models to contain an even number of Dirac copies, in order to circumvent the pathology
of the Dirac equation which is linear in momentum and is not compact. In the graphene case, the system is not an

insulator and therefore we cannot extend the same reasoning since the invariant Ñ cannot be defined. Nonetheless,
we observe that graphene’s Hamiltonian includes an even number of Dirac type Hamiltonians v~q · σ, leading to an
even number of independent Dirac zero-energy points. The necessity of an even number of Dirac points originates in
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this case from T -symmetry. The latter constraint can be also viewed as a consequence of the Nielsen-Ninomiya no-go
theorem [54], forbidding an odd number of Dirac points for any bulk system which preserves T -symmetry.
In order to explore possible non-trivial topological properties of the Hamiltonian above let us recall that in the

topological non-trivial insulating systems examined earlier, the quantum anomalous Hall conductivity was expressed
in terms of the properties of each band and specifically it depended on the Berry curvature (Eq. (77)) and the related
gauge potential Aν(k) Eq. (75). It is useful to investigate these quantities for the semimetalic case. Similarly to the

situation in Eq. (47), the eigen-vectors of ĤK(q) and ĤK′(q) are given from the following expressions:

|±, q,K〉 = 1√
2

(
±1
e+iϕq

)
, and |±, q,K ′〉 = 1√

2

(
±1
e−iϕq

)
, (94)

where we introduced qx = |q| cosϕq, qy = |q| sinϕq with eigen-energies Eν(q) = νv~|q|. We readily obtain

A
ν(q) = −1

2

∂ϕq

∂q
and A

′ν(q) = +
1

2

∂ϕq

∂q
, (95)

for the points K and K ′ respectively. We observe that the Berry gauge field is non-zero and independent of the band
index. Furthermore, it is straighforward to confirm with the use of Eq. (77), that Ων

z(k) = 0. The latter is consistent
with the preservation of T -symmetry which requires the vanishing of the coefficient of the third Pauli matrix. We
can rewrite the result for the gauge field in a more illustrative form

A
ν(q) =

1

2

(
qy
|q|2 ,−

qx
|q|2

)
and A

′ν(q) =
1

2

(
− qy
|q|2 ,

qx
|q|2

)
. (96)

By transferring to the circular coordinates (qx, qy) → (|q|, ϕq) we obtain Aν
ϕ(q) = −1/(2|q|) and A′ν

ϕ (q) = +1/(2|q|),
implying that the radial component of A is zero. From the above expression we directly observe that the gauge-field

has a finite circulation, i.e.
∮
C dl · Aν(q) = −π and

∮
C dl · A′ν(q) = π. However, according to Stokes theorem∮

C
dl · Aν(q) =

∮
σ(C)

dσ n̂ · Ων(q) = −π, implying Ων
z(q) = −πδ(q) (similar for K ′). This contradiction is quite

common in electromagnetism when we encounter point-like charges. For instance for an electric point-charge e sitting
at the origin of the 3d-coordinate space r = 0 the Poisson equation reads ∇2V = 0 despite the fact that V (r) = −e/r
up to a multiplying constant. In the latter case, the expression for the scalar potential can be found via the Gauss
law and the related divergence theorem

∫
σ dσ n̂ ·E = e⇒

∫
u(σ) du∇ ·E(r) = e⇒ 4π

∫
dr r2∇2V (r) = −e⇒ V (r) =

−e/r. In the present case, the Dirac point where the upper and lower bands touch, behaves like a magnetic point-like
source (vortex) providing a finite circulation for the vector potential and a singular Berry curvature, which is non-zero
exactly at the singularity q = 0. The finite π-circulation of A is also called π-Berry’s phase. In fact, in T -invariant
2d systems the Berry phase can be either 0, π, i.e. a Z2 number, similar in a sense to the Z2-invariant characterizing
the 2d T -invariant topological insulators. As a consequence, one expects that graphene could also demonstrate some
type of edge modes. Indeed, in the zig-zag (but not in the armchair) configuration, graphene nanoribbons support
dispersionless edge states [53] which could be also viewed as a limiting case of the dispersive helical edge modes of a
T -invariant 2d topological insulator [55].

FIG. 20: Left: Helical edge modes at the boundary separating a 2d T -invariant topological insulator from vacuum. The edge
states appear within the bulk, are dispersive and merge with the bulk states away from k = 0 where the bulk gap closing occurs.
Figure taken from [18]. Right: Dispersionless edge states in a graphene nanoribbon, arranged in the zig-zag configuration.
The dispersionless graphene edge states can be viewed as a limiting case of the helical edge modes shown in the left panel when
the bulk gap of the insulator goes to zero. Figure taken from [53].
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3. 3d topological insulators - topologically protected Dirac surface modes

We will conclude the discussion of T -invariant topological insulators with a short description of the 3d systems.
Similar to their 2d analogs, a simple extension for a 3d topological insulator [56] can have the form

Ĥ(p̂) = v (p̂xσy − p̂yσx) + vp̂zλxσz +
(
m− p̂2

)
λyσz , (97)

where we have enlarged the spinor dimension to four. For the present discussion, we can consider that the σ Pauli
matrices correspond to the usual electronic spin-1/2 and the λ Pauli matrices correspond to a band index. Every
element of the Hamiltonian above is a Kronecker product λµ⊗σν of the respective Pauli matrices µ, ν = x, y, z and the
related unit matrices µ, ν = 0. As we have already followed in Eq. (97) we will supress the Kronecker symbol and the

unit matrices. Under T̂ we have T̂ †σT̂ = −σ while we assume T̂ †(λx, λy , λz)T̂ = (λx,−λy, λz). Due to the properties

of the λ matrices the Hamiltonian under investigation is characterized by the usual T -symmetry, i.e. Θ̂ = T̂ = iσyK̂,

as also by a chiral symmetry Π̂ = λzσz and a concomitant charge-conjugation symmetry with Ξ̂ = λzσxK̂. The

symmetry class of the system is DIII, since Θ̂2 = −Î and Ξ̂2 = +Î. The particular class is characterized by a Z

invariant in 3d. Note that in the presence of a non-zero chemical potential that would be added via the introduction
of a constant diagonal term in the above Hamiltonian, the symmetry would change to AII which is characterized by
a Z2 invariant in 3d. The situation is completely similar to the 2d T -invariant topological insulators where in the
presence of chiral symmetry we have a Z number of protected helical modes appear per edge, while when it is broken
only a single pair of helical solutions appears per edge. The only difference is that in the present case we do not have
helical edge modes but helical surface modes, or as we will see Dirac surface modes.
In order to explicitely demonstrate the existence of helical surface modes in the model above, we will follow the

procedure discussed in the context of T -violating topological insulators and confine the system in a box (z ∈ [z1, z2])
along the z-axis. Along the other two spatial dimensions, x and y, we will assume translational invariance. We Fourier
transform and set kx = ky = 0. The Hamiltonian obtains the form

Ĥ(kx = ky = 0, kz) = v~kzλxσz +
(
m− ~

2k2z
)
λyσz , (98)

which is similar to Eq. (40). The zero-energy solutions will be eigen-states of Π̂ = λzσz and have the form

• m > (v/2)2 > 0:

φ̂0,−,σ(z) ∝ sin[(z − z1)/ξ]e
−(z−z1)/l

(
0
1

)
, (99)

φ̂0,+,σ(z) ∝ sin[(z − z2)/ξ]e
+(z−z2)/l

(
1
0

)
. (100)

• 0 < m < (v/2)2:

φ̂0,−,σ(z) ∝ sinh[(z − z1)/ξ]e
−(z−z1)/l

(
0
1

)
, (101)

φ̂0,+,σ(z) ∝ sinh[(z − z2)/ξ]e
+(z−z2)/l

(
1
0

)
, (102)

with ξ = ~/
√
|m− (v/2)2| ∈ R

+ and 1/l = v/(2~) > 0. The eigen-solutions are labelled by the eigen-values of
λz = ±1 and the eigen-values of σz = ±1 (σ). Note that there is a double degeneracy, since each zero-energy solution
sitting at z1,2 is labelled by the eigen-values of σz , σ = ±1. This is the Kramers degeneracy and constitutes a direct

consequence of T -symmetry and T̂ 2 = −Î. As a matter of fact, the two solutions at each side have opposite spin
polarizations. At this point we may retrieve the helical surface modes by first allowing kx and ky to be non-zero and
then letting the related terms to act on the truncated space spanned by the four wave-functions above. We directly

obtain that close to the z = z1 boundary the Hamiltonian becomes Ĥ−(z1,k||) = v~(kxσy − kyσx) while close to

the z = z2 boundary the Hamiltonian becomes Ĥ+(z2,k||) = v~(kxσy − kyσx), where we neglected the Hamiltonian
part which is quadratic in momenta and leads to an exponentially decaying mixing term (see Eq. (46)). The same
procedure can be carried out if we assume confinment along the x and y directions, yielding helical surface modes
with different wave-functions. The helical surface modes are present only for m > 0. Note that the Nielsen-Ninomiya
theorem still holds, since there is a single Dirac cone on a surface, and not in the bulk. Moreover, the Dirac cones
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FIG. 21: 3d T -invariant topological insulator confined along the z-direction between z1 and z2. For m > 0 the system resides in
the topologically non-trivial phase exhibiting topologically protected Dirac-like surface modes. Each surface solution is labelled
by the eigen-states of the chiral symmetry operator λzσz. In accordance with Nielsen-Ninomiya’s theorem, a single Dirac cone
is allowed on the surface and could lead to a fractional quantum anomalous Hall effect if T -symmetry is broken near the surface.
A similar confinment procedure can be applied for the other faces of the 3d system, leading to surface modes with different
quantum numbers compared to the case examined here.

necessarily appear in pairs, though non-locally, in order to assure that we do not have any global fractionalization
effects.
The appearance of a single Dirac cone on a surface leads to important ramifications when T -symmetry is violated

near the surface without closing the bulk gap. This could be the case where we place a ferromagnet in proximity to
the topological surface. In this case, the helical surface modes are no longer protected, while at the same time a gap
F will open in the surface spectrum. Consequently, the surface Hamiltonian will obtain the form of the 2d model

Ĥ−(z1,k||) = v~(kxσy − kyσx) + Fσz which can exhibit the fractional quantum anomalous Hall effect, as discussed
earlier. However, a Hall measurement will unavoidably involve also the opposite side leading to an integer quantum
anomalous Hall effect. Nonetheless, optical measurements could in principle detect this fractional behavior [57].
We may now proceed with understanding the bulk topological properties of the system. First of all we directly

observe that the Hamiltonian can be parametrized in the following manner

Ĥ(k) = v~ (kxσy − kyσx) + v~kzλxσz +
(
m− ~

2k2
)
λyσz = E(k) ĝ(k) · Γ , (103)

where we introduced the five-component vector

g(k) =
(
−v~ky, v~kx,m− ~

2k2, v~kz, 0
)

≡ E(k) (− sinχk sinϕk sinϑk, sinχk cosϕk sinϑk, sinχk cosϑk, cosχk, 0) ≡ E(k) ĝ(k) · Γ , (104)

with E(k) = |g(k)| =
√
(v~k)2 + [m− (~k)2]2 and Γ = (σx, σy, λyσz , λxσz , λzσz). Note that the five Γ matrices

span an SO(5) Clifford algebra, similar to the SO(3) Clifford algebra that the usual Pauli matrices σ do. This implies

that the anticommutator relations {Γa,Γb} = 2δabÎ which the Γ matrices satisfy, allow as to define a five-dimensional
intrinsic space. The unit vector ĝ(k) will be constraint to take values on a three sphere S3. Since the ĝ(k) has the
following behaviour at infinity ĝ(|k| → +∞) = (0, 0,−1, 0, 0) we can compactify the R

3 k-space into a three sphere
S3. According to the previous sections we expect that the topological invariant will be an Z and will be connected to
the mapping of S3 → S3 effected by ĝ(k). We introduce the following topological invariant

W̃ =
1

2π2

∫
dk εabcd5 ĝa(k)

∂ĝb(k)

∂kx

∂ĝc(k)

∂ky

∂ĝd(k)

∂kz
, (105)

where we have introduced the totally antisymmetric symbol εabcde, assumed Einstein’s convention of summing the
repeated indices and a, b, c, d, e = 1, 2, 3, 4, 5. For the model under consideration the topological invariant is non-zero

for m > 0 and is equal to W̃ = 1. We cal always construct a Z2 invariant starting from a Z invariant, in the following

manner Z2 ≡ e−iπW̃ = (−1)W̃ . If chiral symmetry Π̂ and charge-conjugation become infinitessimally broken, but

Θ̂-symmetry persists, then the above Z2 will be the only allowed invariant of the system since now the system lies in
class AII.
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VI. TOPOLOGICAL SUPERCONDUCTORS

So far we have studied insulating materials with a special band-structure which leads to a number of topological
phenomena, including the quantum anomalous Hall effect and the quantum spin Hall effect. Transport in the QAHE
(QSHE) system is mediated by chiral (helical) edge modes which can disperse without any dissipation. The latter
feature is certainly quite appealing for nano-electronic applications. Evenmore, these edge modes were shown to be
characterized by half-the quantum numbers of the bulk electrons, for instance specific chirality or spin projection.
However, it is interesting to explore up to which point we are able to divide an electron into halves. For that one has
to realize which are the available degrees of freedom of electrons. As we already know, an electron is an electrically
charged spin-1/2 particle. The solutions that we have already examined had half-of the spin degrees of freedom, but
none of them had half of the charge degrees of freedom. Essentially, a bound state solution of this type is called
Majorana [58–60] and would imply that the corresponding wave-function would be inert to local charge sources and
fluctuations. Only non-local charge sources or fields which can see both halves can interact with the system. Moreover,
if this solution would correspond to zero-energy, the ground state of the system would exhibit a degeneracy. The
topological protection, the immunity to charge noise and the ground state degeneracy constitute a triad of properties
which are particularly attractive for topological quantum computing [61, 62] which is a prominent way of bypassing
the obstacle of noise and decoherence encountered in quantum bits (qubits) based on spin [63] or superconducting
systems [64].

A. Majorana fermions and topological quantum computing

In the previous paragraph, we suggested that finding zero-energy bound state solutions of the Majorana type, would
be advantageous for several aspects including the potential application in the field of topological quantum computing.
In reality, Majorana fermions are not that “rare”, at least from the condensed matter perspective, but mostly kept
well hidden inside every electron. To understand the latter claim, let’s mathematically formulate the above picture in
terms of the creation (c†α(r)) and annihilation (ĉα(r)) operators of electrons, satifying the anti-commutation relation

{ĉα(r), ĉ†β(r′)} = δ(r − r′)δαβ and {ĉα(r), ĉ†β(r)} = 0. One can always formally rewrite the abbove operators into

following fashion ĉα(r) = (γ̂α(r) + iˆ̃γα(r))/
√
2:

FIG. 22: Every electronic operator can be decomposed into two self-conjugate Majorana fermion operators.

where the new operators are self-conjugate (or simply real), since γ̂α(r) = γ̂†α(r) and they are called Majorana fermion

operators (for simplicity we will supress the “ˆ” from the operators, for the rest of the discussion). The name is coined
after Ettore Majorana who first showed in 1937 [58] the possiblity of real solutions of the Dirac equations leading to the
proposal of Majorana particles. As a matter of fact, the neutrino has been considered the most prominent cancidate
of a Majorana particle. Majorana fermion (MF) operators additionally satisfy {γα(r), γβ(r′)} = {γ̃α(r), γ̃β(r′)} =
δ(r− r′)δαβ and {γα(r), γ̃β(r′)} = 0. Note that each of these operators also fulfills γ2α(r) = 2 in contrast to the usual
fermionic operators for which c2α(r) = 0. The latter property demonstrates that a γ operator alone cannot create
or annihilate a particle. Only a pair of Majorana fermions can combine into an electron. Basically, these operators
constitute the two neutral halves comprising a charged fermion (the electron). Athough we can always express an
electron in terms of two Majorana fermions this does not imply that they can be experimentally accessible. This
happens because any local charge source will see simultaneously both MFs because they exist at the same point of
space. Only if we can find a way to split the electron into two spatially separated Majorana fermions, we could isolate
them and in principle observe them.
According to the previous sections, we have encountered topologically protected boundary solutions of the

Schrödinger equation, carrying half of the electronic degrees of freedom. The latter suggests that there could be

an appropriate topologically non-trivial system which can support zero-energy bound state solutions φ̂(r) and lead
to MF operators γ(r) = γ†(r). Our aim is to figure out what type of topologically non-trivial system could support
MFs. So far the topological systems that we have considered were described by a second quantized Hamiltonian of

the following form H =
∑

k Ψ̂
†
kĤ(k)Ψ̂k with Ψ̂†

k = (c†k,↑ c
†
k,↓). We can diagonalize the corresponding single particle
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FIG. 23: Left: Non-local electron built up by two spatially separated Majorana fermion operators corresponding to a Majorana
bound state wave-function. Right: Exchanging Majorana fermions in real space leads to a protected single topological qubit
rotation termed braiding. In qubit space, this corresponds to a gate operation where the qubit states pick up a relative π/2
phase.

Hamiltonian by introducing the Bogoliubov operators γk,α

γk,α = ukck,α + vkck,−α . (106)

Note that even if we set uk = vk the operator γk,α 6= γ†k,α, i.e. it can never become a MF operator. The reason is that

this operator is a linear combination only of electronic (particle) operators. To tackle this problem, the only route is

to find a system where the Bogoliubov eigen-operators are made out of linear combinations of electron (ck,α) and hole

(c†k,α) operators. A suitable system whose quasiparticle excitations are linear combinations of electrons and holes is a
superconductor. For a conventional superconductor, the mean-field decoupled second quantized Hamiltonian has the
form

H =

∫
dk

∑

α=↑,↓

εα(k)c
†
kαckα +

∫
dk
(
∆c†k,↑c

†
−k,↓ +∆∗c−k,↓ck,↑

)
, (107)

where ∆ defines the superconducting order parameter. In the particular case a Bogoliubov transformation where

γk,↑ = ukck,↑ + vkc
†
−k,↓ , (108)

can diagonalize the single particle Hamiltonian. Note that once again, γ†k,↑ 6= γk,↑ even if we set uk = vk. Although we
have managed to obtain linear combinations of particles and holes, the latter correspond to different spin projection,
not allowing us to construct MF operators. The problem can be completely circumvented only for a superconducting

system which also involves pairing for the same spin projections, i.e. leading to Cooper pairs of the form c†k↑c
†
−k,↓.

For this unconventional type of a superconductor, the Bogoliubov transformation will have the form

γk,α = uk,αck,α − vk,αc
†
−k,α + uk,−αck,−α − vk,−αc

†
−k,−α . (109)

In the case shown above, if there can be for instance a wave-function of the form uk,±α = −vk,±α ∈ R then

γk,α = uk,α

(
ck,α + c†−k,α

)
+ uk,−α

(
ck,−α + c†−k,−α

)
(110)

and one observes that for the inversion-symmetric points kI satisfying k ≡ −k, we indeed obtain MFs γkI ,α
= γ†kI ,α

.
Apparently the required recipe in order to obtain MFs, is to obtain an unconventional superconducting pairing which
leads to Cooper pairs consisting of electrons having the same spin-projection. This type of superconductivity is called
spin-triplet and the most common example is a p-wave supercondutor which we will examine in the next paragraphs.
Before proceeding let us comment on the importance of retrieving MF operators located at different points of

coordinate space. As we have already mentioned, two zero-energy bound state solutions of the MF type, lead to the
corresponding operators γa and γb from which we can construct a non-local electron with an annihilation operator

c0 = (γa + iγb)/
√
2. Since the corresponding energy of the c0 electron is zero, occuping or not-occupying the

particular electronic state does not modify the energy of the total system. Consequently the state where this electron

is not-occupied |0〉, satisfying c0 |0〉 = 0, and the state with an occupied electron |1〉 = c†0 |0〉 are degenerate.
Note that the particular degeneracy is topologically protected as long as the zero-energy MF solutions are also
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protected. The arising doubly degenerate two-state subspace can define a topological qubit, which constitutes the
fundamental building block for performing topological quantum information processing [62]. Rotations in this qubit
space correspond to single-qubit operations. For the topological qubit, there exist a single operation called braiding,
which is topologically protected and corresponds to (|0〉 , |1〉) →

(
eiπ/4 |0〉 , e−iπ/4 |1〉

)
. This operation can be effected

by exchanging adiabatically the two MFs building up the non-local electron. As a matter of fact, this is the only
topologically protected operation against noise and decoherence that one can define within this qubit space. Other
operations are also possible but not protected. As a result, universal topological quantum computing is not accessible
in terms of MFs and further solutions have to be found [65].

B. Unconventional superconductivity

As we have already mentioned, the mean-field decoupled Hamiltonian describing a conventional superconductor as
it was originally proposed by Bardeen-Cooper-Schrieffer (BCS) [66], has the form of Eq. (107). The mean-field theory
approximation is crucial for decoupling the attractive electron-electron interaction (phonon-mediated)

Vint = − g

(2π)d

∫∫
dkdk′ c†k,↑c

†
−k,↓c−k′,↓ck′,↑ , (111)

into a solvable non-interacting theory for quasiparticles which are superpositions of electrons and holes. The mean-
field theory approximation is the consideration that specific operators can be replaced by their expectation values. In
general, which operator should be selected for the mean-field approximation depends on the type of phase transition.
In the case of superconductivity, particle number conservation will be spontaneously broken, when entering the
superconducting phase. Therefore, we can consider

c†k,↑c
†
−k,↓ =

〈
c†k,↑c

†
−k,↓

〉
+
(
c†k,↑c

†
−k,↓ −

〈
c†k,↑c

†
−k,↓

〉)
, (112)

where the term in the parenthesis denotes the fluctuation of the operator around this mean value. After neglecting the
second order terms in the fluctuations and leaving aside the arising term |∆|2/g, which is irrelevant for examining the
quasiparticle properties, we retrieve Eq. (107). To obtain the BCS Hamiltonian we introduced the superconducting
order parameter

∆ = −g
∫

dk

(2π)d

〈
c−k,↓ck,↑

〉
and ∆∗ = −g

∫
dk

(2π)d

〈
c†k,↑c

†
−k,↓

〉
. (113)

The particular superconducting order parameter is a complex scalar number. It is the so-called conventional or
s-wave superconducting order parameter discussed within the BCS theory. Since it corresponds to a Cooper pair of
zero momentum, where the electrons involved have anti-parallel spins, it is additionally termed a spin-singlet super-
conducting order parameter. Due to the fermionic anti-commutation relations the superconducting order parameter
has to be anti-symmetric under the exchange of the two electrons. The spin-singlet configuration of two electrons
is odd under spin-exchange since it has the form |S = 0;ms = 0〉 = (|↑↓〉 − |↓↑〉) /

√
2. Since the order parameter

essentially contitutes the wave-function of the Cooper pair, in order to be completely antisymmetric it has to be even
under inversion k ↔ −k. Generally, we can write ∆↑↓(k) = −∆↓↑(−k). We directly confirm that for the spin-singlet
pairing, the superconducting order parameter has to satisfy ∆singlet(k) = ∆singlet(−k). However, another possibility
opens up. For two electrons with spin-1/2 the total spin can also take the quantum number S = 1. This is the

triplet case where |S = 1;ms = +1〉 = |↑↑〉, |S = 1;ms = 0〉 = (|↑↓〉+ |↓↑〉) /
√
2 and |S = 1;ms = −1〉 = |↓↓〉. All

these states are symmetric under the exchange of the two particles. As a matter of fact the three possible order
parameters which correspond to this spin-triplet Cooper pairing, must be an odd function of momentum. In the most
general case we can introduce the order parameters ∆αβ(k) in terms of the spin projections of the two electrons.
These matrix elements have to satisfy ∆αβ(k) = −∆βα(−k). However, these order parameters can be visualized as

elements of a matrix ∆̂(k), defined in spin-space. The antisymmetry condition now reads ∆̂(k) = −∆̂T(−k), with T

denoting matrix transposition. The order parameter can be decomposed into spin-singlet ψ(k) and triplet parts d(k)

in the following manner: ∆̂(k) = ψ(k)iσy+d(k)iσyσ. The singlet and triplet order parameters satisfy the constraints
ψ(k) = ψ(−k) and d(k) = −d(−k) [67].
For a rotationally invariant normal phase, one can expand the order parameters in spherical harmonics Ylm(k)

defined in momentum space. Since Ylm(−k) = (−1)lYlm(k) one observes that singlet (triplet) superconducting order
parameters can take only even (odd) harmonics. For l = 0 we obtain the spin singlet s-wave superconductivity,
ψ(k) = ∆s, conventional superconductivity. For l = 2 we have five possible types of d-wave superconductivity.



30

Among them one finds ψ(k) = ∆d(k
2
x − k2y) which is related to the type of superconductivity encountered in high-Tc

cuprate superconductors [68]. Which type of superconducting order parameter will become preferred depends on one
hand on the type of the interaction and on the other on the energy dispersion and particularly the Fermi surface of
the electrons in the normal phase. If the FS is isotropic, then an s-wave order parameter will be preferred. If the
Fermi surface is anisotropic in k-space, it is possible but not necessary that an anisotropic order parameter can be
stabilized, but the exact outcome is related to the microscopic details of the system. Apart from the singlet order
parameters, we also have triplet. For example in the l = 1 case we have the following harmonics kx + iky, kz, kx − iky
corresponding to a particular ml = +1, 0,−1. Within a real basis we simply have Yl=1 ∼ k. Depending on the
combination of the p-wave harmonics in the d(k)-vector one can break spontaneously additional symmetries apart
from the electromagnetic U(1) symmetry. The important difference of the conventional order parameter compared
to the rest, it is that it shows no zeros. Instead unconventional order parameters can become zero at some k-space
points, lines or surfaces. The latter characteristic is very important for obtaining MFs.

C. Majorana fermions in chiral p-wave superconductors

In this section we will focus on a particular model for p-wave superconductivity which will allow the discussion of
topologically protected edge states and edge modes of the Majorana type. The most general model of a mean-field
decoupled Hamiltonian for a p-wave superconductor has the following form

H =

∫
dk
∑

α

εα(k)c
†
kαckα +

∫
dk
[
c†k,αd(k) · (σiσy)αβc

†
−k,β + h.c.

]
. (114)

In the particular case we will consider the following structure for the order parameter: d(k) = (0,−∆p(k), 0), yielding

H =

∫
dk
∑

α

εα(k)c
†
kαckα − 1

2

∫
dk
∑

α

[
2i∆p(k)c

†
k,αc

†
−k,α − 2i∆p(k)c−k,αck,α

]
. (115)

At this point we can make use of the Nambu formalism and rewrite the above Hamiltonian in the following manner

H = 1
2

∫
dk
∑

α Ψ̂†
k,αĤα(k)Ψ̂k,α, with

H =
1

2

∫
dk
∑

α

(
c†
k,α c−k,α

)( εα(k) −2i∆p(k)
2i∆∗

p(k) −εα(−k)

)(
ck,α
c†−k,α

)
, (116)

where the factor of 1/2 is crucial for not double-counting the degrees of freedom. After including the τ Pauli matrices

defined in particle-hole space, we observe that the above single particle Hamiltonian Ĥ(k) is characterized by the

charge-conjugation symmetry Ξ̂†Ĥ(k)Ξ̂ = −Ĥ(k) with Ξ̂ = τxK̂. This arises due to the antisymmetry of the order
parameter ∆p(k) = −∆p(−k). Note however that the particular symmetry is quite fundamental and therefore quite
robust. As long as the system is in the p-wave superconducting phase, the particular symmetry is always present.
The consequence of this symmetry is that the allowed symmetry classes for the particular type of systems, are only
DIII,D,BDI. The presence of the aforementioned charge-conjugation symmetry can be reflected in the following

property of the Hamiltonian: if φ̂k is a two-component solution with energy Ek, satisfying

Ĥ(k)φ̂k = E(k)φ̂k , (117)

then also the wave-function Ξ̂φ̂k = τxφ̂
∗
−k satisfies

Ĥ(k)Ξ̂φ̂k = Ē(k)Ξ̂φ̂k ⇒ Ξ̂†Ĥ(k)Ξ̂φ̂k = Ē(−k)φ̂k ⇒ Ĥ(k)φ̂k = −Ē(−k)φ̂k ⇒ Ē(k) = −E(−k) . (118)

As a result, a zero energy solution satisfies φ̂k = τxφ̂
∗
−k. Due to the antisymmetry of the superconducting order

parameter, this zero solution can only occur for the inversion symmetric points kI satisfying k ≡ −k. In this case

φ̂kI
= τxφ̂

∗
kI

which is exactly the Majorana condition. The latter wave-function is self-conjugate which allows us to
define Majorana operators. To better understand this we can diagonalize the single particle Hamiltonian for each α,
with a Bogoliubov transformation. For the rest of the discussion we will focus for simplicity on a single spin-projection
α. The transformation reads

(
ck
c†−k

)
=

(
uk v∗−k

vk u∗−k

)(
γk
γ†−k

)
and

(
γk
γ†−k

)
=

(
u∗−k −v∗−k

−vk uk

)(
ck
c†−k

)
. (119)
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Note that for gap closings at the inversion symmetric points φ̂kI
= τxφ̂

∗
kI

→ ukI
= ±v∗kI

. If we consider for instance

the second case with ukI
∈ R, we obtain γkI

= ukI
(ckI

+ c†kI
) = γ†kI

.
Let us now consider the following particular expressions for the energy dispersion and p-wave superconducting gap:

ε(k) =
(~k)2

2m
− µ and ∆p(k) = ∆p(kx − iky) , (120)

where µ denotes the chemical potential. The latter expression for the p-wave superconducting order parameter
corresponds to the so-called chiral p-wave superconducting order parameter. In fact this type of unconventional
superconductivity has been proposed for Sr2RuO4 [69]. Nevertheless, this scenario still remains experimentally un-
settled, which also constitutes an obstacle for using these materials for MF-based applications. The single-particle
Hamiltonian corresponding to Eq. (120) reads

Ĥ(k) = 2∆p (kxτy − kyτx) +

[
(~k)2

2m
− µ

]
τz . (121)

The Hamiltonian above has exactly the same structure as the T -violating Hamiltonian Eq. (40) considered earlier
for a 2d topological insulator. It is therefore straightforward to conclude that the chiral p-wave system enters the
topologically non-trivial regime when µ > 0, which is the usual case. In the topologically non-trivial phase we find
Majorana chiral edge modes in the 2d case and Majorana zero-energy edge states in the 1d case. The appearance of
Majorana fermions is connected to the gap closing that occurs for µc = 0 at the inversion symmetric k = 0 point.

D. Kitaev’s lattice model for a 1d p-wave superconductor - unpaired Majorana fermions

A particularly useful analysis of the 1d model presented in Eq. (121) was performed by Kitaev [70], which provided
transparent understanding of the emergence of MFs in these systems and stimulated further theoretical developments.
Below we present a slightly modified version of Kitaev’s model

Ĥ(k) = 2∆p sin(ka)τy + {2t[1− cos(ka)]− µ} τz , (122)

which describes a p-wave superconductor for a periodic chain of lattice sites, of lattice constant a. Due to the
periodicity, the wave-vector k ≡ kx is confined in the Brillouin zone, i.e. k ∈ (−π/a, π/a]. The energy spectrum of
the Hamiltonian above reads

E(k) = ±
√
{2t[1− cos(ka)]− µ}2 + 4∆2

p sin
2(ka) . (123)

As we have already noted, the continuum 1d model of Eq. (121) exhibits a Majorana mode for the inversion symmetric
k = 0 point. In the vicinity of k = 0, which is crucial for the investigation the emergent Majorana fermion physics,
the Hamiltonian of Eq. (122) is identically mapped to Eq. (121), with t = ~

2/2ma2. Consequently, a gap closing at
µ = 0 will lead to a Majorana mode at k = 0 and a Majorana bound state in coordinate space per edge of the finite
size system. However, in this model another option appears. The remaining inversion symmetric point k = π/a can
also show a gap closing. This happens for µ = 4t. This situation didn’t take place for the continuum model because
the corresponding inversion point to π/a, is lima→0π/a = +∞, for which the energy goes to +∞ not allowing for a
gap closing. In this manner, if we can achieve µ > 4t we can access another phase. However, its topological character
is not know a priori. To determine the latter we may directly calculate the corresponding topological invariant. The
symmetry class of the system is BDI and it can be characterized by the winding number

w̃ = − 1

2π

∫
dk

(
ĝ(k)× ∂ĝ(k)

∂k

)

x

. (124)

For the above we properly expressed the single particle Hamiltonian of Eq. (122) as Ĥ(k) = g(k) · τ , with the help of

g(k) = (0, 2∆p sin(ka), 2t[1− cos(ka)]− µ) . (125)

By direct calculation of the winding number we obtain w̃ = 0 for µ > 4t. This implies that there is only a restricted
regime 0 < µ < 4t where the system resides in the topologically non-trivial phase supporting MFs.
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FIG. 24: Left: Topologically trivial metallic phase within the Kitaev model. A special case with µ 6= 0 and t = ∆p is
depicted. Both Majorana fermion operators comprising a local electronic operator are coupled. Right: Topologically non-
trivial superconducting phase within the Kitaev model. For the specific choice 2t = µ and t = ∆p, we obtain two unpaired

Majorana fermions, one per edge (marked with red).

Let us now verify these bulk results by tranferring to a finite chain of N sites. The second quantized Hamiltonian
corresponding to Eq. (122) is now rewritten in the following manner

H =
N∑

n=1

(2t− µ)c†ncn −
N−1∑

n=1

t(c†ncn+1 + c†n+1cn)−
∆p

2

N−1∑

n=1

(
c†nc

†
n+1 − c†n+1c

†
n + cn+1cn − cncn+1

)
. (126)

According to the bulk criterion, for µ = 2t the system lies in the topologically non-trivial superconducting phase
with zero-energy edge Majorana fermions. Following Kitaev, we will consider exactly this particular case, in order
to demonstrate that for this value the MF bound state wave-functions become localized at the very edges of the
system, i.e. at sites n = 1 and n = N . Away from µ = 2t, but still within the appropriate MF regime, the bound
state wave-function will acquire a finite spread within the bulk of the system. For µ = 2t and by additionally setting
∆p = t, which is always allowed and does not affect the emergence of MFs, we obtain

H = −t
N−1∑

n=1

(
c†ncn+1 − cnc

†
n+1 + c†nc

†
n+1 − cncn+1

)
= 2ti

N−1∑

n=1

cn − c†n√
2i

cn+1 + c†n+1√
2

= 2ti

N−1∑

n=1

γ̃nγn+1 . (127)

We directly notice that the MF operators γ1 and γ̃N are missing from the above Hamiltonian, i.e. they are unpaired
(Fig. 24). These two operators are defined exactly at the edge points of the system and together they build up the

non local zero-energy electron c0 = (γ̃N + iγ1)/
√
2.

The concept of unpaired MFs is particular useful for studying the topological properties of these systems in a
simplified manner. In fact the hallmark of topological superconductors constitutes the 4π-periodic Josephson effect [70,
71]. This effect concerns the coupling of two edge MFs belonging to two identical adjacent 1d p-wave superconductors

s = l, r (left,right) with different superconducting phases ϕs → ∆pe
iϕsc†n,sc

†
n+1,s, with s = l, r. Each superconducting

phase can be gauged away cn,s → eiϕs/2cn,s, recovering in this manner the previous result. The neighboring electrons
sitting at the edges of the two 1d superconductors, can tunnel into the other superconductor via the tunneling

Hamiltonian HT = −T(c†N,lc1,r + c†1,rcN,l). After the gauge transformation, the tunneling Hamiltonian becomes

HT = −T[ei(ϕr−ϕl)/2c†N,lc1,r + e−i(ϕr−ϕl)/2c†1,rcN,l]. In the low energy limit, the electronic operators can be replaced

by the unpaired MF operators cN,l ≃ iγ̃N,l/
√
2 and c1,r ≃ γ1,r/

√
2, providing HT = iTcos(δϕ/2)γ̃N,lγ1,r, with

δϕ = ϕr − ϕl. By introducing the electron annihilation operator which can be constructed using the two neighboring

unpaired MF operators, cT = (γ̃N,l + iγ1,r)/
√
2 we obtain HT = T

2 cos (δϕ/2)
(
2c†TcT − 1

)
. Note that the operator

cT does not correspond to zero-energy due to the presence of the tunneling Hamiltonian. Otherwise, in the absence

of the tunneling Hamiltonian cT → c0. We now proceed with calculating the related supercurrent, which is given by

Js = −2e

~

∂ 〈HT〉
∂δϕ

=
e

~

T

2
sin

(
δϕ

2

)
PT , (128)
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FIG. 25: Hopping between two unpaired Majorana fermions, residing at the edges of two identical 1d p-wave superconductors
with different superconducting phase. A Josephson current mediated by Majorana fermions appears, with a 4π-periodicity with
respect to the phase difference ϕr−ϕl, in contrast to the 2π-periodicity encountered in topologically non-trivial superconductors.

where we also introduced the parity of the zero-energy state PT =
〈
2c†TcT − 1

〉
= 2nF [E(δϕ)] − 1, with the energy

E(δϕ) = T cos(δϕ/2). The fermion parity takes the value +1(−1) if the zero-energy state is occupied (empty). If
the number of electrons on the two superconductors is fixed, so will be the fermion parity. This yields to the 4π-
periodic Josephson current Js ∼ sin(δϕ/2). In topologically trivial superconductors, where MFs are not present, the
Josephson current [72] is proportional to Js ∼ sin(δϕ). This crucial periodicity difference, is in principle detectable
in experiments.
Before proceeding to the next section, it is useful to comment on a very important difference between the continuum

and lattice models of Eqs. (121) and (122), respectively. Although we demonstrated that both of them support a single
MF per edge, the lattice model can provide a richer topological phase diagram by including terms not only connecting
the nearest neighbors. For instance, in the case where we only have next-nearest-neighbor terms the Hamiltonian in
coordinate space would read

H =

N∑

n=1

(2t− µ)c†ncn −
N−2∑

n=1

t(c†ncn+2 + c†n+2cn)−
∆p

2

N−2∑

n=1

(
c†nc

†
n+2 − c†n+2c

†
n + cn+2cn − cncn+2

)
. (129)

In the particular case, we obtain two interpenetrating chains, each of them residing in the topologically non-trivial
phase for 0 < µ < 4t. As a result each of them should host a MF per edge, leading to the following edge MFs: γ1, γ2,
γ̃N−1 and γ̃N . The possibility of more than a single MF per edge, can be naturally understood in terms of the chiral
symmetry which is present. Class BDI allows for a Z topological invariant, identified previously with the winding

number w̃ [73]. By tranferring to momentum space, the Hamiltonian of Eq. (129) has the usual form Ĥ(k) = g(k) · τ ,
with

g(k) = (0, 2∆p sin(2ka), 2t[1− cos(2ka)]− µ) . (130)

The calculation of the winding number for the particular g-vector yields |w̃| = 2 leading to 2 MFs per edge. This
result is easy to visualize if we plot the winding of the g-vector in k-space (Fig. 26). This is in stark contract to the
continuum model where the g-vector shows only a single twist (Fig. 15).

FIG. 26: A configuration of ĝ(k) with a double-twist from −π/a to π/a. This double winding in momentum space implies the
appearance of two Majorana fermion operators per edge for the finite-size system. The presence of more than one Majorana
fermions per edge is allowed due to chiral symmetry.
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E. Majorana fermions in engineered 1d p-wave superconductors

As we discussed in the previous section, p-wave superconductivity is an attractive quantum phase of matter,
but still remains elusive. The possibility that it intrinsically appears in Sr2RuO4 continues to be under investigation.
Nonetheless, even if p-wave superconductivity will be confirmed in Sr-Ruthenates, it will be still difficult to implement
topological quantum information processes, with the current experimental techniques. The reason is that these systems
are governed by strong correlations, which lead to many complications when it comes to their control and manipulation.
Therefore, alternative proposals appeared recently, discussing the possibility of engineering a p-wave superconductor
using more conventional ways. Based on the symmetry arguments presented earlier, it is understood that if we manage
to develop a hybrid system which will belong to the same symmetry class as a p-wave superconductor, then we will
have the same topological properties. This is exactly the idea that motivated a number of authors to propose a number
of platforms [74–76] which fulfill this requirement, stimulating a number of experiments [77, 78]. Among them one can
distinguish a hybrid structure consisting of a semiconducting wire with strong Rashba spin-orbit coupling in proximity
to a conventional spin-singlet bulk superconductor [75]. Due to the proximity effects, a superconducting gap is induced
in the semiconducting wire. By further applying a sufficiently large Zeeman field, with orientation perpendicular to
the polarization of the spin-orbit coupling, we can manage to bring this hybrid sytem to a topologically non-trivial
superconducting phase harboring a single MF per edge Fig. 27. The critical value of the Zeeman energy EZ ∼ B
that has to achieved is given by Ecrit

Z =
√
∆2 + µ2, where ∆ defines the proximity induced superconducting gap

on the wire and µ the chemical potential of the wire. For magnetic fields yielding EZ > Ecrit
Z the system resides

in the topologically non-trivial superconducting phase. Below, we will demonstrate that for high magnetic fields,
the Hamiltonian describing the particular hybrid system can be mapped to the Hamiltonian Eq. (121) of a p-wave
superconductor [62].
The Hamiltonian describing a Rashba semiconducting wire, in the presence of an external Zeeman field and proxi-

mity induced superconductivity, reads

H(k) =

[
(~k)2

2m
− µ

]
τz + v~kσz − EZτzσx −∆τyσy , (131)

where the above Hamiltonian acts on the four-component spinor Ψ̂†
k =

(
c†k,↑, c

†
k,↓, c−k,↑, c−k,↓

)
, while τ and σ matrices

act on Nambu and spin spaces, respectively. Note that here we have chosen the xz-plane as the plane for the
corresponding 2d version of the Rashba interaction: v(p̂xσz − p̂zσz). The Hamiltonian belongs to symmetry class

BDI, with time-reversal symmetry Θ̂ = τzσxK̂, charge-conjugation Ξ̂ = τxK̂ and chiral symmetry Π̂ = τyσx. The gap

closing at k = 0 occurs when Ecrit
Z =

√
∆2 + µ2, as mentioned earlier.

To demonstrate the connection to the p-wave superconducting Hamiltonian of Eq. (121), we will consider the
Rashba spin-orbit interaction and the superconducting gap as small perturbations. Furthermore, we will focus in the
vicinity of k = 0, implying that ε(k) ≡ [(~k)2/2m− µ] 6= 0. In order to perform the required perturbative expansion,
we will adopt the Schrieffer-Wolff canonical transformation method. Specifically, we will consider that there exists a

unitary transformation which can transform H = 1
2

∑
k Ψ̂

†
kĤ(k)Ψ̂k to a new Hamiltonian H̃ = e+iSHe−iS . We will

FIG. 27: Left: Cartoon of a hybrid structure consisting of a semiconducting wire with strong Rashba spin-orbit coupling in
proximity to a conventional bulk superconductor. The system behaves as a topologically non-trivial superconductor with a
single Majorana fermion per edge. Middle: The experimental implementation of the hybrid structure presented in the left
panel. Right: According to tunneling measurements, a zero-bias peak anomaly hints the presence of Majorana fermions in
this setup. Middle and Right figures taken from [77].
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split the Hamiltonian into two parts, H = H0 + V where the second part defines the perturbation. The operator S is
considered to be of the same order as V . In this way we obtain

H̃ = e+iSHe−iS = H+ i[S,H]− 1

2!
[S, [S,H]] + . . .

= H0 + V + i[S,H0] + i[S,V ]− 1

2!
[S, [S,H0]]−

1

2!
[S, [S,V ]] + . . . (132)

We will choose the operator S in such a way so that our transformed Hamiltonian has no first order terms in the
perturbation parameter. Moreover, we shall then restrict ourselves only to the second order terms in the expansion
parameter. In this manner, the operator must satisfy [S,H0] = iV leading to

H̃ = H0 + i[S,V ]− i

2
[S,V ] + h.o.t. ⇒ H̃ = H0 +

i

2
[S,V ] = H0 −

i

2
[V ,S] . (133)

After tedious but straightforward calculations, we find that

H̃ =
1

2

∫
dk Ψ̂†

k [ε̃(k)τz − EZ(k)τzσx + dy(k)τx + dz(k)τxσx] Ψ̂k , (134)

where we have introduced

ε̃(k) =

{
1 +

1

2!

[
∆

ε(k)

]2}
ε(k) with ε(k) =

(~k)2

2m
− µ , (135)

EZ(k) =

[
1 +

1

2!

(
v~k

EZ

)2
]
EZ , (136)

dz(k) = − 1

2!

∆

ε(k)
v~k , (137)

dy(k) = − 1

2!

∆

EZ
v~k . (138)

We directly observe that apart from the renomalization of the kinetic and Zeeman energies, two additional terms appear
which correspond to spin-triplet p-wave superconductivity. Quite remarkably, by following the suitable recipe we
converted the spin-singlet superconductivity to spin-triplet. In the high magnetic field limit, only one spin component
is important and therefore we project on the spin-up subspace. The resulting spin-up Hamiltonian reads

Ĥ↑(k) = [ε̃(k)− EZ(k)] τz + [dy(k) + dz(k)] τx . (139)

Since the topological properties depend only on the behavior in the vicinity around k = 0, we will also consider terms

up to second order in the wave-vector. By additionally performing the unitary transformation Ĥrot(k) = ÛĤ↑(k)Û
†,

with Û = (τx + τy)
√
2, we finally have

Ĥrot(k) = 2∆pkτy −
[
(~k)2

2m∗
− µ∗

]
τz (140)

with

1

m∗
=

1

m

[
1− 1

2

(
∆

µ

)2

− mv2

EZ

]
, µ∗ = µ

[
1 +

1

2

(
∆

µ

)2
]
+ EZ and ∆p =

(EZ − µ)v~∆

4EZµ
. (141)

The mapping to the p-wave superconducting model of Eq. (121) has now been established, illustrating the topological
connection of the two models, which also guarantees the emergence of MFs. This a very interesting example of how
diverse models lead to a common topological behavior when they fall into the same symmetry class. Finally, this opens
new perspectives in material and device design, where based on symmetries we can engineer the desired topological
properties using hybrid systems consisting of accessible topologically trivial components.
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[15] D. Vollhardt and P. Wölfle, “The superfluid phases of Helium 3”, Taylor & Francis (2002).
[16] N. D. Mermin, Rev. of Mod. Phys. 51, 591 (1979).
[17] E. Fradkin, “Field Theories of Condensed Matter Physics”, Cambridge University Press, 2nd edition (2013).
[18] M. Z. Hasan and C. L. Kane Rev. Mod. Phys. 82, 3045 (2010).
[19] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[20] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[21] C. W. J. Beenakker, Annu. Rev. Con. Mat. Phys. 4, 113 (2013).
[22] P. Kotetes, New J. Phys. 15, 105027 (2013).
[23] G. W. Semenoff, Phys Rev Lett 53, 2449 (1984).
[24] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
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