1. Warm-Up

(a) **Translation** [2 points]

Show that the state $|\phi\rangle = e^{iPa/\hbar} |\psi\rangle$ corresponds to the state $|\psi\rangle$ shifted by the distance *a*, i.e. $\phi(x) = \psi(x+a)$. Here *P* is the momentum operator.

(b) Harmonic Oscillator [3 points]

Show that

$$e^{-i\alpha N}a^{\dagger}e^{i\alpha N} = e^{-i\alpha}a^{\dagger},\tag{1}$$

where a^{\dagger} and a are the ladder-operators of the harmonic oscillator with $[a, a^{\dagger}] = 1$ and $N = a^{\dagger}a$.

[Hint: Apply the left- and right-hand-site of (1) onto a general state $|\phi\rangle = \sum_{n} b_n |n\rangle$, where $N |n\rangle = n |n\rangle$ and $a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$.]

(c) **Bloch-Equations** [3 points]

We consider a particle with magnetic moment $M = \gamma L$ in a magnetic field B,

$$H = -\boldsymbol{M} \cdot \boldsymbol{B}.$$

Show with the help of the commutator relations for the angular momentum L that the expectation value $\langle M \rangle$ satisfies the equation of motion

$$rac{d}{dt}\left\langle oldsymbol{M}
ight
angle =\gamma\left\langle oldsymbol{M}
ight
angle imesoldsymbol{B}.$$

[Hint: $[\boldsymbol{a} \times \boldsymbol{b}]_i = \sum_{jk} \varepsilon_{ijk} a_j b_k$.]

(d) Stark-Effect [2 points]

A two level system $\{|\psi_+\rangle, |\psi_-\rangle\}$ couples to a classical electric field \mathcal{E} . The Hamiltonian is given by

$$\begin{pmatrix} \langle \psi_+ | H | \psi_+ \rangle & \langle \psi_+ | H | \psi_- \rangle \\ \langle \psi_- | H | \psi_+ \rangle & \langle \psi_- | H | \psi_- \rangle \end{pmatrix} = \begin{pmatrix} E_+ & \alpha \mathcal{E} \\ (\alpha \mathcal{E})^* & E_- \end{pmatrix}.$$

Determine the eigenenergies and discuss the limits $|\alpha \mathcal{E}| \gg |E_- - E_+|$ and $|\alpha \mathcal{E}| \ll |E_- - E_+|$.

[Hint:
$$\sqrt{1+x^2} = 1 + \frac{1}{2}x^2 - \frac{1}{8}x^4 + \cdots$$
, $(x \ll 1)$.]

2. Potential-Well

We consider a particle in a one-dimensional potential well

$$V(x) = \begin{cases} \infty & x \le -a \\ v \theta(x) & -a < x \le a \\ \infty & a < x \end{cases},$$

where $\theta(x)$ is the Heaviside-Theta-function.

- (a) [2 points] Make an appropriate ansatz for the wavefunction in the intervals $-a < x \le 0$ und $0 < x \le a$, which fulfills the matching conditions at $x = \pm a$.
- (b) [3 points] Use the matching conditions at x = 0 to show that the eigenenergies are determined by the transcendent equation

$$q\tan(ka) = -k\tan(qa),$$

where $k = \sqrt{2mE/\hbar^2}$ and $q = \sqrt{2m(E-v)/\hbar^2}$.

3. Harmonic Oscillator

Consider a one-dimensional oscillator,

$$H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 X^2, \quad \text{mit} \quad [X, P] = i\hbar$$

We define the ladder operators $a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}}X - \frac{i}{\sqrt{2m\hbar\omega}}P$ and $a = \sqrt{\frac{m\omega}{2\hbar}}X + \frac{i}{\sqrt{2m\hbar\omega}}P$. At the time instant t = 0 the system is initialized in the state

$$|\phi(0)\rangle = \frac{1}{\sqrt{2}}(|n\rangle + |n+2\rangle),$$

where $|n\rangle$ are the eigenstates of the Hamiltonian, i.e. $H|n\rangle = \hbar\omega(n+1/2)|n\rangle$.

- (a) [2 points] Determine $|\phi(t)\rangle$ for t > 0 and derive the expectation value $\langle H \rangle$, where $\langle \cdot \rangle = \langle \phi(t) | \cdot | \phi(t) \rangle$.
- (b) [5 points] Determine the time-dependence of ΔX^2 , where $\Delta X^2 = \langle X^2 \rangle \langle X \rangle^2$.

[Hint: Write X and X² in terms of a and a^{\dagger} , where $a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$ and $a |n\rangle = \sqrt{n} |n-1\rangle$.]

page 2 – **next page !!!**

(7 points)

4. Spin- $\frac{1}{2}$

The Hamiltonian of a Spin- $\frac{1}{2}$ system is given by

$$H = -\frac{\hbar\omega}{2} \frac{1}{\sqrt{2}} (\sigma_x + \sigma_y) = -\frac{\hbar\omega}{2} \begin{pmatrix} 0 & e^{-i\pi/4} \\ e^{i\pi/4} & 0 \end{pmatrix}, \qquad (2)$$

written in the eigenbasis of σ_z , i.e. $\{|\uparrow\rangle, |\downarrow\rangle\}$. At the time instant t = 0 we prepare the state

$$|\phi(0)\rangle = |\uparrow\rangle \,. \tag{3}$$

- (a) [3 points] At the time instant t = 0 we measure H. Which values E are measured and what are the corresponding probabilities P(E)?
- (b) [4 points] Once again, the state (3) is initialized at the time instant t = 0. At a later time τ we measure the observable $A = \sigma_z$. What are the values a that we measure and what are the corresponding probabilities P(a)?

5. Three-Atomic Molecule

We consider an electron in a molecule, which consists of three atoms A, B, C. The (orthonormal) wave-functions that are localized around the cores are termed as $|\varphi_a\rangle$, $|\varphi_b\rangle$ and $|\varphi_c\rangle$. First, if we neglect the possibility that the electron can hop from one atom to the other the system is characterized by the Hamiltonian H_0 , for which we have $H_0 |\varphi_i\rangle = E_0 |\varphi_i\rangle$ (i = a, b, c). Now, the atoms are coupled by an additional operator V,

$$V |\varphi_a\rangle = t |\varphi_b\rangle + t |\varphi_c\rangle$$
$$V |\varphi_b\rangle = t |\varphi_a\rangle + t |\varphi_c\rangle$$
$$V |\varphi_c\rangle = t |\varphi_a\rangle + t |\varphi_b\rangle$$

- (a) [1 point] Express $H = H_0 + V$ as a 3 × 3-matrix in the basis $\{ |\varphi_a\rangle, |\varphi_b\rangle, |\varphi_c\rangle \}$.
- (b) [2 points] We define the operator

$$T = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Calculate T^2 and T^3 and express H in terms of the unit matrix 1, T and T^2 .

- (c) [1 point] Show that the eigenvectors of T are eigenvectors of H.
- (d) [2 points] Show with the help of (b) and (c) that the eigenvalues of H are given by $E_0 + 2t \cos(2\pi n/3)$ with n = 0, 1, 2.

(7 points)

(6 points)