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Abstract Nanophotonic systems facilitate a far-reaching control
over the propagation of light and its interaction with matter. In
view of the increasing sophistication of fabrication methods and
characterisation tools, quantitative computational approaches
are thus faced with a number of challenges. This includes deal-
ing with the strong optical response of individual nanostructures
and the multi-scattering processes associated with arrays of
such elements. Both of these aspects may lead to significant
modifications of light-matter interactions.
This article reviews the state of the recently developed discon-
tinuous Galerkin finite element method for the efficient numer-
ical treatment of nanophotonic systems. This approach com-
bines the accurate and flexible spatial discretisation of classi-
cal finite elements with efficient time stepping capabilities. We
describe in detail the underlying principles of the discontinu-
ous Galerkin technique and its application to the simulation
of complex nanophotonic structures. In addition, formulations
for both time- and frequency-domain solvers are provided and
specific advantages and limitations of the technique are dis-
cussed. The potential of the discontinuous Galerkin approach is
illustrated by modelling and simulating several experimentally
relevant systems.

Discontinuous Galerkin methods in nanophotonics
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1. Introduction

The last decades have seen amazing improvements in ad-
vanced nanofabrication techniques. Using tools such as elec-
tron beam lithography, it is possible to structure materials
in the nanometer regime. Electronics has benefitted very
much from these and other advances in technology and has
brought them to everyday life. At the same time, nanos-
tructuring has facilitated completely new ways of how to
control light.

The most interesting effects occur when the feature sizes
of the system are comparable to or much smaller than the
wavelength of incident electromagnetic waves [1–4]. In
particular, photonic crystals – which consist of periodically
structured dielectric materials – prohibit the propagation of
light along certain directions for certain frequencies via the
formation of band gaps. Deliberately introduced deviations
from the periodicity allow to design functional elements
such as waveguides, splitters, interferometers, and more.

In a similar fashion, periodically arranged metallic build-
ing blocks such as nanorods, split-ring resonators, and fish-
nets can be combined to so-called metamaterials [1]: If these
building blocks are much smaller than the wavelength of
incident electromagnetic waves, then the composite material
may be considered as an effective medium whose optical
properties are largely determined by the building block.

Intriguingly, this allows researchers to tailor material prop-
erties to their needs. For instance, metamaterials have been
reported which show a distinct magnetic resonance at optical
frequencies. For certain systems, even a negative effective
refractive index has been found [5]. Possible applications
and current research includes devices such as the perfect
lens [6] and the optical cloak, which guides light around an
obstacle in a way that it is invisible to an observer [7].

Nanostructures are also appealing for biological and
chemical applications. For example, metallic nanostructures
tend to enhance incident electric fields near tips and corners.
The locally enhanced field drastically increases nonlinear
effects such as the Raman effect. As a consequence, it is
possible to measure and identify the Raman signal of sin-
gle molecules [8]. Based on the same principle of local
field enhancement, it is also possible to construct plasmonic
tweezers [9] which trap and manipulate small particles. As
the field enhancement goes along with a strong localisa-
tion, metallic nanostructures provide a way to overcome the
diffraction limit at optical frequencies. Scanning near-field
optical microscopes utilise metallic tips to regularly achieve
resolutions in the sub-100nm regime [10].

Furthermore, microscopic dielectric resonators show
very pronounced resonances with enormous quality fac-
tors. At the same time, they are extremely sensitive to their
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environment – so sensitive, in fact, that even a single mole-
cule can change their resonance frequency [11–13]. Conse-
quently, such resonators are promising candidates for bio-
logical and chemical sensing applications.

The list of fascinating achievements and working de-
vices is virtually endless. Despite the impressive bandwidth
of these experiments, however, there is one commonality:
Experimental research in the field of nanophotonics is chal-
lenging, expensive, and suffers from limited resources and
infrastructure. Luckily, numerical simulation tools can sup-
port and ease experiments in a number of stages.

1.1. The need for numerical simulations

First of all, when planning a research project numerical
experiments help to find promising systems and geometries.
Proofs of concepts can be done without ever dealing with
the fabrication process and the related difficulties. From
such idealised experiments with optimal control, promising
parameter ranges can be determined and the influence of
different materials can be studied a-priori.

Once the systems of interest are fabricated, numerical
simulations can be used to optimise the system parameters
in order to tweak the performance, e. g., to increase the
quality factor of a resonator structure. On the other hand,
numerical simulations also allow to assess the quality of
the fabrication process, as imperfections are usually not
included in the numerical model.

Finally, simulations can simplify the interpretation. Us-
ing computer programs, it is possible to access quantities
such as charge and electromagnetic field distributions or
heat dissipation, which may not be accessible in the ac-
tual experiment. Physical effects can be switched on and
off independently to investigate the dominant contribution
to a phenomenon. Thus, we can learn for future designs.
Simulation results can be visualised to obtain an intuitive
understanding of the underlying physics. In some cases this
might even help to understand unexpected effects which are
not included in the physical model or have not been consid-
ered.

1.2. Common simulation methods

In nanophotonics it is usually sufficient to employ a clas-
sical description of the electromagnetic fields as given by
Maxwell’s equations. It is important to understand that the
choice of the simulation tool is crucial for the quality of the
results. Among the wide range of available methods we find
a large number of techniques for specific applications. For
example, the multiple multipole technique (MMP) is ideally
suited to simulate spheroidal particles [14]. The Wannier
function expansion can accurately describe large-scale pho-
tonic crystals with a comparatively small number of degrees
of freedom [15, 16]. Layered periodic structures are easily
investigated using the Fourier modal method [17–19].

Not surprisingly, such methods cannot fully display their
strengths when being applied to systems other than the ones

they were originally intended for. In such cases, converged
numerical results require a disproportionately large amount
of computational resources. In contrast, there exist a couple
of general purpose solvers which can – some extensions
provided – tackle an extremely diverse set of systems with
only moderate requirements.

The Finite-Difference Time-Domain (FDTD) algorithm
is the most popular simulation tool for nanophotonics [20].
Starting from an initial state, it propagates the electromag-
netic fields in time. The field components are discretised at
cleverly chosen positions within a rectangular lattice, the
so-called Yee grid or staggered grid. Using a Taylor expan-
sion for the derivatives and a leap-frog scheme in time, one
ends up with a very simple procedure to evolve the fields
step by step. Together with a multitude of extensions, FDTD
has been successfully applied to countless systems, even
nonlinear ones.

However, FDTD has a couple of weaknesses. It owes its
simplicity to the comparatively inflexible Yee grid. Objects
which are not parallel to the coordinate axes are subject
to aliasing or the staircase effect, which is of special con-
cern for metallic nanostructures. The accuracy of the spatial
discretisation is further limited by the underlying Taylor
expansion. As soon as material interfaces are present, the
accuracy is reduced from second to first order because the
electromagnetic fields are no longer smooth. Despite various
efforts [21–23], it remains extremely challenging to improve
the spatial accuracy beyond the limits of the basic algorithm.

As a second commonly used class of general purpose
solvers we would like to mention the Finite Element Method
(FEM) [24, 25]. FEM works on a non-uniform mesh which
is adapted to the geometry of interest. At critical points,
the mesh size can be reduced to improve the local reso-
lution (h-refinement). Each element of the mesh holds an
electromagnetic field representation of adjustable accuracy
(p-refinement) and is coupled to its neighbours. Eventu-
ally, these building blocks lead to a sparse system of linear
equations (SLE).

Solving such a system appears costly when compared
to the computation of a single time step in FDTD. However,
if one solves Maxwell’s equations in the frequency-domain
for just a small to medium (� 100) number of frequencies,
this can be considerably faster than a corresponding time-
domain simulation. Consequently, this is how FEM is most
often applied. On the other hand, a finite element time step-
ping scheme is rather expensive, as one has to solve an SLE
for each time step.

1.3. Overview of the discontinuous
Galerkin method

It is desirable to find a way to combine the advantages of
both FDTD and FEM. An adaptive mesh with adjustable
order of accuracy should be woven into a scheme with rea-
sonable efficiency concerning processor (CPU) time and
RAM. Discontinuous Galerkin (DG) methods are one possi-
bility to achieve this goal [26, 27].
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The historical development of the DG method is rather
intricate with important contributions by many researchers
from different fields. Thus, we will restrict our historical
account to a very few selected works relevant for Maxwell’s
equations. More detailled chronologies and information on
other types of equations can be found in [26, 28, 29], for ex-
ample.

The DG method has been first proposed and used in
the context of steady-state neutron transport [30] in 1973.
Later works have applied the method to other research areas
like acoustics, plasma physics, and hydrodynamics. Com-
bined with a Runge-Kutta scheme [31] the method showed
very promising results for hyperbolic systems. After some
previous efforts related to Maxwell’s equations, Hesthaven
and Warburton proposed a nodal DG time-domain scheme
for the numerical solution of electrodynamic systems in
2002 [27]. Besides providing the algorithm itself, this pa-
per also features rigorous mathematical proofs concerning
numerical stability and convergence. Since then, a steadily
increasing number of groups outside the mathematical com-
munity have adapted the DG method for Maxwell’s equa-
tions, e. g., see [32–35].

In essence, the DG method is a variant of conventional
FEM. Again, we divide the computational domain into a set
of elements, the mesh. On each element, we expand the elec-
tromagnetic fields in terms of a set of basis functions. The
main difference to FEM is that these basis functions are re-
stricted to their respective elements; they are identically zero
on all other – and especially the neighbouring – elements.
Hence, at the interface between neighbours, we can have
two different field values, one for each element. This is the
origin of the word “discontinuous” in the method’s name.

With the overlap of basis function being unavailable as a
coupling mechanism, we can treat all elements individually.
Any linear algebra we use acts only on the space of a single
element and results in small, handable matrices. Once the
expensive linear algebra has been performed, we reintro-
duce the coupling between neighbouring elements using
the concept of the numerical flux, which is borrowed from
finite volume methods. We obtain a semi-discrete form in
which the position-dependence is already discretised while
the time-dependence is not.

We can choose to discretise the time in terms of time
steps similar to FDTD or we can solve Maxwell’s equa-
tions in frequency-domain. The time-domain version indeed
combines the advantages of both FDTD and FEM because
it is as accurate as FEM and – for a comparable level of
accuracy – faster than FDTD. The frequency-domain ver-
sion is probably not as efficient as conventional FEM, but it
can be derived from the time-domain algorithm with just a
few modifications.

1.4. Outline of the review

The remainder of this article is structured as follows:
Section 2 describes the way from the physical system

to the semi-discrete form for time-dependent expansion
coefficients in some mathematical detail.

The semi-discrete form can either be used to evolve
the fields in time or to obtain eigenmodes and stationary
solutions in the frequency domain. Both trails are followed
in Sect. 3.

Section 4 illustrates the capabilities of the DG method.
After a general review of applications in the literature we fo-
cus on two practically relevant examples. The first one deals
with the simulation of a two-dimensional ring resonator
coupled to two waveguides. The second, three-dimensional
example investigates the mutual interaction of two split-ring
resonators. Both time- and frequency-domain techniques are
employed. To illustrate the computational efficiency of the
DG method, we provide details concerning computational
time and required main memory.

Obviously, it is not possible to cover every aspect of the
discontinuous Galerkin technique for Maxwell’s equations
within the scope of this review. Hence, we have compiled
several topics, open questions and possible future develop-
ments in the outlook section to provide the reader with some
suggestions for additional research.

The basic algorithm is capable of solving comparatively
simple systems. More complicated setups involving open
boundaries or dispersive materials require some extensions
which are finally presented in the appendix. Readers famil-
iar with FDTD will observe some similarities, but a few
differences as well.

1.5. Target audience

This article is intended for readers interested in the numeri-
cal simulation of general nanophotonic systems. It does not
assume specialised knowledge of numerical methods and,
thus, should be accessible to physicists, electrical engineers,
and applied mathematicians. Throughout the review we
present the method and attached topics from an application-
oriented perspective and focus on the numerical treatment
of Maxwell’s equations. In particular, we try to present the
key ideas of the basic algorithm and its numerous extensions
as intuitively as possible. At various points we give some
hints on how to efficiently implement the DG method in a
computer code. Where possible (and reasonable from our
application point of view), we left mathematical details to
the referenced literature to avoid unnecessary distraction.

More experienced readers might find some sections of
particular interest. Readers familiar with FDTD will find
an introduction into the finite element like discretisation
in Sect. 2. Section 3 illustrates the freedom we have in dis-
cretising time, which is in stark contrast to FDTD, while
many topics discussed in the appendix are mere variations
of established FDTD techniques.

Experts on conventional finite element methods will find
the key differences to the discontinuous Galerkin discreti-
sation outlined in Sects. 2.2, 2.3, and 2.6. As FEM solvers
usually work in the frequency-domain, Sect. 3.1 will be help-
ful to get a basic understanding of the time stepping process.
Also, many of the extensions presented in the appendix deal
with problems which only arise in the time-domain.
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2. Spatial discretisation via the
discontinuous Galerkin approach

In the remainder of this review we will concentrate on Max-
well’s curl equations

ε ��r� �∂t�E��r� t� � �∇��H��r� t� � (1a)

μ ��r� �∂t�H��r� t� ���∇��E��r� t� � (1b)

Here, we have introduced the electric field�E and the mag-

netic field �H. We will use the arrow-notation�a for all vec-
tors which have an x-, y-, and z-component. The relative
permittivity ε and the relative permeability μ are assumed
to be linear, dispersionless and isotropic. It should be noted
that we have absorbed the vacuum permittivity ε0 and the
vacuum permeability μ0 into the electromagnetic fields to
obtain dimensionless units. The speed of light is given by
c � 1�

�εμ . Defining the material matrix

Q ��r� �

�
ε ��r� 0

0 μ ��r�

�
�

the state vector

q��r� t� �
�
�E��r� t�
�H��r� t�

�
�

and the flux

�F �

�
�Fx

Fy

Fz

�
� � Fi�q� �

�
�êi��H��r� t�
êi��E��r� t�

�
�

it is possible to reformulate Eq. (1) as the conservation law

Q ��r� �∂tq��r� t���∇ ��F�q� � 0 � (2)

In these definitions we have employed the Cartesian unit
vectors êi, i � x� y� z (see Table 1).

Table 1 Notation for various types of vectors.

Notation Meaning

êi Unit vector in i-direction (i� x� y� z)

n̂ Outwardly directed normal vector of unit length

�a Physical vector with x-, y-, and z-components

a Physical state vector with more than three components

ã
Vector of expansion coefficients for a single field com-

ponent

�̃a
A physical vector with x-, y-, and z-components,

where each component is a vector of expansion coef-

ficients ãx, ãy, and ãz

ã
A physical state vector with more than three compo-

nents, where each component is a vector of expansion

coefficients

Please note that the state vector q represents the three
components of both electromagnetic fields and, thus, has

six components. The flux vector�F has three components (x,
y, and z), where each component is a six-component vector
itself. This notation seems confusing at first glance, but will
turn out to be convenient in the following. Table 1 shows
the most common vector notations in this paper.

We want to point out that we do not explicitly enforce
the divergence conditions

�∇ ��E � 0 and �∇ ��H � 0 �

As can be easily shown [27], the time-evolution given by
Maxwell’s curl equations conserves the divergence of the
initial state. Hence, if the electromagnetic fields specified at
t � 0 satisfy the divergence conditions, they will do so for all
t � 0 as well. A similar statement holds for time-harmonic
problems where the system is excited by external harmonic
sources. Nonetheless, the negligence of the divergence con-
ditions does lead to a large number of spurious modes in
the spectrum of the DG operator. This becomes particularly
problematic when trying to solve eigenvalue problems (see
Sect. 3.2.2).

In the next few sections we will discuss how to deal with
the spatial dependencies of Eq. (2). Section 2.1 introduces
the computational domain and a corresponding decomposi-
tion into a set of elements. On each single element, Sect. 2.2
defines the properties of the numerical solution in a local
sense, i. e., considering each element individually and not in
the context of its neighbours. This context is subsequently
reintroduced by the numerical flux in Sect. 2.3. In addition,
the numerical flux is used to enforce boundary conditions
as shown in Sect. 2.4. Finally, Sect. 2.5 introduces an ex-
pansion basis for the numerical solution. This yields the
semi-discrete form, a spatially discretised version of Eq.
(2) which includes time-dependent expansion coefficients.
Some remarks regarding the efficiency and the error of the
spatial discretisation conclude this section.

2.1. Tesselation of the computational domain

The DG method is a volume method, which means that we
sample field values all over the volume as defined by the
system and its surroundings. Because of limitations in avail-
able memory we have to restrict the simulation to a finite
computational domain. On its borders, suitable boundary
conditions need to be applied to mimic the physical be-
haviour of the part of the system which cannot be simulated.
Boundary conditions within the DG method are discussed
later in Sect. 2.4.

Depending on the dimensionality of the system, the
computational domain is decomposed into mutually distinct
elements which make up the mesh. For one-dimensional sim-
ulations these elements would be line segments. In two and
three dimensions, the standard choices of triangles and tetra-
hedrons, respectively, lead to efficient methods. Other ele-
ment types such as quadrilaterals, hexahedrons [36], prisms,
pyramids, or meshes with multiple types are possible and
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Figure 1 (online color at: www.lpr-journal.org)
Tesselation of a few sample computational do-
mains. Top panel: A series of Bragg layers (one-
dimensional system). Middle panel: Two wave-
guides coupled to a slotted microresonator (two-
dimensional system). Bottom panel: A split-ring
resonator on a substrate (three-dimensional sys-
tem). Each panel shows a mesh of the respective
system which consists of several elements of dif-
ferent shapes and sizes. Furthermore, each panel
features a zoomed view on an element and illus-
trates the transformation to a standardised refer-
ence element which significantly eases the com-
putations (see Sect. 2.6).

sometimes advantageous. Even non-conforming discreti-
sations can be used without too many difficulties [37, 38].
However, in the context of this article we will only consider
conforming triangular and tetrahedral meshes. Either way,
those elements need not be equally sized or shaped and, thus,
create an unstructured mesh. This considerable freedom can
be exploited to resolve spatial features of the computational
domain with as many elements as needed to achieve a de-
sired level of accuracy, while large homogeneous regions
can be modelled with as few elements as possible. Figure 1
shows meshes for a couple of systems together with a sketch
of typical elements.

The task of creating a mesh for a given geometric setup
is a vast research field of its own. Luckily, there are quite
a few meshing tools available. Among the more popular
open source tools we find NETGEN [39], TetGen [40], and
Gmsh [41].

2.2. Working on single elements

Let us now consider a single element of the computational
domain. Our goal is to find a numerical approximation qN
to the correct solution q of Maxwell’s equations in conser-
vation form. In general, Eq. (2) will not hold exactly for qN ,

but will have to be modified to

Q ��r� �∂tqN ��r� t���∇ ��F�qN� � res � (3)

where res is the residuum of the equation. Ideally, the
residuum would be zero. As this is usually not the case, we
have to find – and define – the best approximation. Within a
given, finite, linear function space, there exists an optimal
function which minimises the residuum. This residuum will
then be orthogonal to the function space. Let Li ��r� represent
a scalar basis function of the function space. The scalar
product of Eq. (3) and Li on the element � with volume V�
is given by

�
V�

�
Q ��r� �∂tqN ��r� t���∇ ��F�qN�

�
�Li ��r� d3r

�

�
V�

res �Li ��r� d3r � 0 � (4)

The numerical solution must satisfy Eq. (4) for all test func-
tions Li.

At this point it should be noted that the last equation is
completely local. It only involves field values and deriva-
tives on the element �. From physical reasoning it is clear
that we cannot assume to get a correct solution of our prob-
lem from Eq. (4) alone, because Maxwell’s equations are

www.lpr-journal.org © 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



6

LASER & PHOTONICS
REVIEWS

K. Busch, M. König, and J. Niegemann: Discontinuous Galerkin methods in nanophotonics

formulated in a continuous space, not in a segmented one.
Light waves propagate and, thus, must leave an element and
enter the neighbouring one. We will account for this in the
next section.

2.3. Connecting elements via the numerical flux

So far we have completely ignored the presence of neigh-
bouring elements. However, solutions to Maxwell’s equa-
tions must obey the continuity conditions. This leaves us
with two options.

– We define boundary conditions on each element. The
boundary conditions depend on the field values in neigh-
bouring elements.

– We absorb the boundary conditions into modifications
of the physical equations. The modifications will depend
on fields in neighbouring elements as well.

For our purposes we choose the second option. Acknowl-
edging that the coupling to neighbouring elements must be
achieved across the element boundary, we integrate (4) by
parts and obtain

�
V�

�
Q ��r�∂tqN ��r� t� �Li ��r���F�qN� ��∇Li ��r�

�
d3r

��

�
∂V�

�
n̂ ��F�qN�

�
�Li ��r� d2r�

In the right-hand side’s integral over the element’s surface
∂V�, n̂ represents the outwardly directed normal vector of

unit length. We will now replace the flux�F on the right-hand

side of this equation by the numerical flux,�F�, which we
will have to define later. The seemingly random introduction
of the numerical flux allows us to reintroduce the coupling to
neighbouring elements which we have previously removed
by defining the orthogonality in an element-wise fashion.
Undoing the integration by parts then yields

�
V�

�
Q ��r� �∂tqN ��r� t���∇ ��F�qN�

�
�Li ��r� d3r

�

�
∂V�

n̂ �
�
�F�qN���F� �qN�

�
�Li ��r� d2r � (5)

This is the strong variational formulation of Maxwell’s curl
equations. At this point, it is worth to mention that the
left-hand side of Eq. (5) is still a local statement entirely
confined to the element �. The evaluation of the right-hand
side requires both the flux and the numerical flux on the

element’s boundary.�F� must introduce the coupling to neigh-
bouring elements, and hence must incorporate field values
from neighbouring elements. As a consequence, the right-
hand side is a non element-local statement.

The proper choice of the numerical flux�F� is essential
for the correctness and the convergence of the scheme. Most
interestingly, however, its choice is not unique. Hesthaven
and Warburton have shown [27] that – for nodal schemes as
presented later in Sect. 2.5 – a so-called upwind flux leads

to a numerically stable and convergent scheme. It is given
by the expression

n̂ �
�
�F�qN���F� �qN�

�

�

�
���

1

Z̄

�
α
�
Δ�E� n̂�n̂ �Δ�E�

�
�Z�n̂�Δ�H

�
1

Ȳ

�
α
�
Δ�H� n̂�n̂ �Δ�H�

�
�Y�n̂�Δ�E

�
�
		
 � (6)

Employing definitions for the impedance

Z� �

�
μ�

ε�
�

the conductance

Y� �
1

Z�
�

�
ε�

μ�
�

and their sums

Z̄ � Z��Z� and Ȳ � Y��Y� �

Eq. (6) includes material parameters from both the local
element (index “�”) and its neighbour (index “�”) in the
normal direction n̂. Furthermore, it includes the field differ-
ences

Δ�E ��E���E� and Δ�H � �H���H�

across the interface to each neighbour. Stated more clearly,
�E� is the limit of the electric field on the interface when
approaching from the neighbouring element, while �E� is
the limit when coming from the interior of the local cell.

As both limits are not necessarily identical, Δ�E describes
a jump discontinuity. Such discontinuities naturally occur
at material interfaces, where the normal component of the

electric field changes according to ε�n̂ ��E� � ε�n̂ ��E�. As
a consequence, expression (6) weakly enforces that
1. the fields are continuous where they ought to be and
2. satisfy the matching conditions at material interfaces.
This is illustrated in Fig. 2.

We have not yet discussed the upwind parameter α in
Eq. (6). Any number in �0� 1� yields a numerically stable
and convergent scheme [26]. The value 1 represents the pure
upwind flux, whereas we recover the central flux for α � 0.
The central flux is energy-conserving while the upwind
flux is not. As it turns out, for a nodal expansion basis as
introduced later in Sect. 2.5 the upwind flux is preferable
because it strongly damps unphysical modes. Thus, the
choice of α also influences the accuracy of the scheme.
Optimal convergence rates are achieved for α � 1, while
the rates are less clear for other values of α [26, 27].

2.4. Boundary conditions

It has already been mentioned that volume methods cannot
discretise an infinite space with a finite amount of memory.
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Figure 2 (online color at: www.lpr-journal.org) Illustration of
the influence of the numerical flux. The panels show two neigh-
bouring elements (triangles) and the component of the electric
field tangential to the interface between both elements. The left
panel depicts the situation where no numerical flux is present,
i. e., where no coupling between the elements exists. As a result,
the field distribution on the interface is not unique. The situation
changes if one employs the upwind flux given by Eq. (6), which
penalises jump discontinuities of the tangential fields. As a re-
sult, it weakly enforces the continuity of tangential fields across
element boundaries, as shown in the right panel.

Hence, the computational domain must be truncated. We
need to specify boundary conditions, i. e., how the electro-
magnetic fields should behave at the interface to the not
simulated part of the universe. The numerical flux allows
for an easy inclusion of the most important boundary condi-
tions.

Periodic boundary conditions are a special case among
the boundary conditions. In contrast to the other conditions
presented below, each element on the boundary of the com-
putational domain has a well-defined neighbour. Conse-
quently, we can apply the very same numerical flux as we
do for elements in the interior of the computational domain.
Implementing this boundary condition is thus reduced to
the search of the correct neighbouring element.

The situation is a bit more complicated for actual bound-
ary elements, i. e., elements missing a neighbour. For such
elements we have to provide information on the materials
and fields in virtual neighbouring elements. To do so, we
simply set

Z� � Z� and Y� � Y�

and modify the field differences as indicated in Table 2.
Perfect electric (PEC) and perfect magnetic conductors
(PMC) reflect all incident radiation and are used to cre-
ate cavities or to introduce symmetry planes into the system.
Silver-Müller boundary conditions [24, 25] mimic an infi-
nite computational domain by partially absorbing outgoing
radiation. However, only spherical waves which impinge

Table 2 Modified field differences for commonly used boundary
conditions.

Boundary condition Δ�E Δ�H

Perfect electric conductor (PEC) �2�E� 0

Perfect magnetic conductor (PMC) 0 �2�H�

First order absorbing (Silver-Müller) �2�E� �2�H�

normally to the boundary are (at least theoretically) perfectly
absorbed. All other angles of incidence lead to spurious re-
flections. Thus, to minimise reflections one should place a
spherical Silver-Müller boundary sufficiently far away from
the radiation source. Still better results can be obtained by
adding perfectly matched layers (see Sect. A.4).

2.5. The semi-discrete problem

Equations (5) and (6) are the strong formulation of Max-
well’s curl equations for numerical approximations of the
electromagnetic fields. However, the numerical nature of
the approximation has yet to be specified, which will be the
task of this section.

To this end, we represent the electromagnetic fields in
terms of the previously defined test functions Li. Using
the same function space for both the test functions and
the field expansion is called the Galerkin choice. For each
field component in each element �, we obtain expressions
analogous to

E�x ��r� t� �
n

∑
j�1

Ẽ�x� j �t� �L j ��r�� Ẽ�x� j �t� �L j ��r� � (7)

Here, Ẽ�x was introduced as a vector of n expansion coeffi-
cients for the x-component of the electric field (see Table
1). Note the Einstein notation which implies summation
for repeating indices. In general, one has to reconstruct
the numerical solution using the expansion coefficients and
the basis. However, there is a special basis which allows
us to immediately connect the expansion coefficients with
field values. The basis functions we use are called Lagrange
polynomials or interpolating polynomials. Their defining
property is given by

Li ��r j� � δi j �

�
0 for i �� j

1 for i � j
i� j � 1 � � �n � (8)

where δi j is the Kronecker symbol. Given a number n of
nodes�r j, each basis function will be zero for each but one
of them. With this property it is easy to show that

E�x ��rk� � Ẽ�x� j �t� �L j ��rk� � Ẽ�x� j �δ jk � Ẽ�x�k�

Thus, the expansion coefficients correspond to the field val-
ues at the nodes. Hence, using this special basis the scheme
is called a nodal DG method. Usually, the more basis func-
tions – and thus more coefficients – we use, the more ac-
curate our expansion will be. With the general shape of
Lagrange polynomial of order p being given by

Li ��r� �
k�l�m�p

∑
k� l�m�0

a�i�k� l�m � x
kylzm �

we get a total of

n � p�1 (1D)

n � 1
2 � �p�1� � �p�2� (2D)

n � 1
6 � �p�1� � �p�2� � �p�3� (3D)
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Figure 3 (online color at: www.lpr-journal.org) Two-dimensional
Lagrange polynomials on a triangle. For p� 2 we obtain a total of
six Lagrange polynomials which are depicted above. The triangle
outline marks the x-y-plane, the values of the Lagrange polynomi-
als are encoded in the z-direction. The node positions are given by
the vertical lines which range from z��0�5 to z� 1. Apparently,
each Lagrange polynomial is assigned to a node where it has unit
value; at all other nodes it is zero. In between the nodes Lagrange
polynomials show a smooth interpolation behaviour.

Lagrange polynomials and nodal points per element. The

coefficients a�i�
k� l�m are entirely determined by the node posi-

tions and Eq. (8).

Adjusting p allows us to locally control the error of the
spatial discretisation. An example of Lagrange polynomials
for p � 2 and two-dimensional systems is given by Fig. 3.
Table 3 shows numbers of nodal points and their distribution
on the element boundaries for typical orders.

For one-dimensional problems analytical formulae exist
to create both optimal node positions and a set of match-
ing Lagrange polynomials. In two and three dimensions,

Table 3 Number of nodes in one-, two-, and three-dimensional
simplex elements. p denotes the polynomial order, n the total num-
ber of nodes, b the number of nodes on the element’s boundary,
and i the number of nodes within the element. For higher dimen-
sions, the majority of the points reside on the element boundary.

1D 2D 3D
p n b i n b i n b i

1 2 2 0 3 3 0 4 4 0

2 3 2 1 6 6 0 10 10 0

3 4 2 2 10 9 1 20 20 0

4 5 2 3 15 12 3 35 34 1

5 6 2 4 21 15 6 56 52 4

6 7 2 5 28 18 10 84 74 10

7 8 2 6 36 21 15 120 100 20

Figure 4 (online color at: www.lpr-journal.org) Node positions
in two dimensions for various polynomial orders p. The optimal
node distribution on the edges is given by an analytical formula.
Using the Warp&Blend method nodes are smoothly arranged
within the element. Please note that the nodes are not equally
spaced. In particular, higher orders feature very small distances
near the corners which heavily influence the maximum time step
(see Sect. 3.1.2).

the situation is more involved and one can employ the em-
pirical Warp&Blend method to generate two- and three-
dimensional point sets from one-dimensional ones [42]. In
principle, more optimised point sets might slightly improve
the interpolation error [43], but for most practical calcu-
lations the nodes generated via the Warp&Blend method
perform sufficiently well.

Figure 4 shows the distribution of nodes in a two-
dimensional element. For numerical reasons, the correspond-
ing Lagrange polynomials are constructed using an interme-
diate basis of orthogonal polynomials [27].

For simplicity, we assume Q ��r� to be constant within
each element. Inserting the field expansion (7) into Eq. (5)
leads to a separation of time-dependent expansion coeffi-
cients and position-dependent basis functions. The occur-
ring integrals simplify to

�
M�

�
i j �

�
V�

Li ��r� �L j ��r� d3r �

�
S �

k
�

i j �

�
V�

Li ��r� �∂kL j ��r� d3r � k � x� y� z �

�
F�

f
�

i j �

�
f
Li ��r� �L j ��r� d2r � �r j � face f �

Here, we have introduced the mass matrix M�, the stiffness
matrices S �

k along the coordinate axes k, and the face mass
matrices F�

f with respect to the element face f . Solving for
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the time-derivatives yields

∂t�̃E
� �

1

ε�
�
M�

�
�1
�

�
� �S �

� �̃H� (10a)

�F�

f �
α
�
Δ�̃E�f � n̂�n̂ �Δ�̃E�f �

�
�Z�n̂�Δ�̃H�f

Z̄

�
� �

∂t�̃H
� �

1

μ�
�
M�

�
�1
�

�
�� �S �

��̃E� (10b)

�F�

f �
α
�
Δ�̃H�f � n̂�n̂ �Δ�̃H�f �

�
�Y�n̂�Δ�̃E�f

Ȳ

�
� �

To shorten the notation, we have introduced

�S � �
�
S �

x � S �

y � S �

z
�T

�

the vector of stiffness matrices, and Δ�̃E�f and Δ�̃H�f as vectors

of differences of expansion coefficients across the face f
of element �. Please note that the inverse mass matrix and
the face mass matrix are applied to physical vectors with
x-, y-, and z-components, where each component itself is
a vector of expansion coefficients (see Table 1). To such
three-dimensional vectors, these matrices appear like scalar
coefficients, i. e.,

�
M�

�
�1
��̃a�

�
�
�M���1

� ãx

�M���1
� ãy

�M���1
� ãz

�
� �

Eq. (10) is the semi-discrete formulation of Maxwell’s
curl equations. As compared to the original equations (1),
the spatial dependence has been absorbed into a set of expan-
sion coefficients and corresponding matrices. However, the
expansion coefficients still depend on time. Strategies which
either directly discretise the time in terms of time steps or
take the Fourier transform to obtain a frequency-domain
formulation are topics of Sect. 3.

2.6. Remarks regarding efficiency

Eq. (10) looks quite involved, especially in comparison
with expressions obtained by standard finite-difference dis-
cretisations. It contains a number of matrices and even the
inverse of the mass matrix. This section will explain why the
discontinuous Galerkin discretisation is an efficient choice
after all.

First of all, let us consider the dimensions of the matrices
involved. The mass matrix M� is an n� n matrix, and
so are the stiffness matrices S �

k . We recall that n is the
number of nodes per element in d dimensions for order
p. The face mass matrices are n�n� matrices, where n� is

the number of points on each face which coincides with
the total number of nodes for dimension d�1 and order p.
Typical values of n and n� for various orders and dimensions
can be found in Table 3. In most cases, n and n� will be
approximately 20. Such small matrices are easy to invert.
Furthermore, they are easily stored in memory. The small
matrices are an immediate consequence of the discontinuous
basis functions. Conventional finite element methods yield
large, sparse matrices which cannot be easily inverted or
stored subsequently.

In most cases, it is not even necessary to store these
matrices. Similarly to classical finite element methods, one
computes the matrices on a reference element once. All
other elements are mapped on this reference by affine
transformations. However, this procedure is applicable for
straight-sided simplices as shown in Fig. 1 only (for curvi-
linear elements please refer to Sect. A.5). The respective
transformation follows immediately from the vertices of
the reference element and the target element and does not
depend on the order of the polynomial basis. The matrices
on the target element are composed of scaled reference ma-
trices, where the scaling factors consist of entries of the
Jacobi matrix of the transformation. This is also valid for
the inverse mass matrix. Hesthaven and Warburton provide
technical details on the mapping to a reference element
in [26, 27].

Hence, instead of storing a number of matrices with
around 20� 20 entries each for every single element, we
just store the 3�3 Jacobi matrix for each element. As the
reference matrices are usually small enough to be conve-
niently kept in the CPU cache, it is even faster to construct
the matrices on a target element when needed. We conclude
that we can efficiently evaluate the right-hand side of Eq.
(10), because all the matrices are explicitly known and avail-
able.

The price we pay is that on each interface between neigh-
bouring elements we store two distinct sets of field values;
one for either element. Table 3 compares n, the total number
of nodal points, with b, the number of nodal points on the
element’s boundary. In addition, the number of internal, non-
boundary points i is listed. For two- and three-dimensional
systems, most nodes are boundary nodes. Thus, we store
most of the points twice. Higher orders reduce this over-
head, but yield larger matrices. Nevertheless and especially
in nanophotonics, higher orders are often favourable as will
be discussed in the upcoming sections.

2.7. Error of the spatial discretisation

For numerical simulations it is essential to control the error
of the approximate solution with respect to the correct solu-
tion of the original equation. In our case, we can increase the
accuracy of the simulations by either decreasing the element
size h or by increasing the polynomial degree p. For suffi-
ciently smooth solutions and an upwind flux (α � 1), the
deviation between the numerical and the analytical solution
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is given by ���qref �qnum
���� O

�
hp�1

�
� (11)

Here, qref represents the (not necessarily known) exact ref-
erence solution of the original, non-discretised equation,
while qnum is the numerical one. Given some arbitrary norm
� � �, the convergence is algebraic in h and exponential in p.
Setting p, we can choose how fast the error shall decrease
with the mesh size, with the cost of additional operations
per element. In principle, both h and p can be different for
each element (hp-adaptivity). In practice, it is convenient
to use the same p for all elements and vary h locally. To
control the error, one can globally increase p (p-refinement)
or reduce h either globally or locally (h-refinement). Finding
a balance between accuracy and computational effort is not
always easy. However, in most of our calculations we find
that orders of p � �3�4�5�6� offer a good compromise. For
the mesh size h we then typically choose a maximal edge
length which roughly corresponds to half of the wavelength
of interest.

2.8. Advantages of the spatial discontinuous
Galerkin discretisation

The spatial discretisation via the discontinuous Galerkin
method has a number of merits of particular interest to nano-
photonics. First of all, the method does not rely on regular
grids like the FDTD method, but on flexible meshes with
elements of various sizes and shapes instead. This freedom
basically allows us to “adapt” the algorithm to a specific
system. In particular, it is straightforward to handle non
axis-aligned or curved material interfaces. Locally increas-
ing the spatial resolution (via h- or p-refinement) allows to
accurately model strong local variations of electromagnetic
fields, e. g., near metallic surfaces. At the same time, one
can save a substantial amount of degrees of freedom in re-
gions with weakly varying fields. This is usually the case in
the area surrounding a nanophotonic device with features
often smaller than the wavelength of interest. Therefore, the
DG method lends itself for multi-scale analysis.

Secondly, since the method employs discontinuous ba-
sis functions, discontinuities in the electromagnetic fields
are inherently dealt with. Accuracy and convergence issues
due to inhomogeneous material distributions as present in
FDTD calculations are absent in DG calculations. At the
same time, the special choice of basis functions also allows
us to treat the elements separately. As a result, the DG dis-
cretisation lends itself for parallel computations on multiple
cores, multiple computers, and graphic cards. Especially
higher polynomial orders p result in excellent parallel per-
formance, since the ratio of local-element operations and
inter-element communication is more favourable.

Simultaneously, high interpolation orders also lead to
very faithful representations of both magnitudes and phases
of propagating electromagnetic fields [27]. Resonators, inter-
ferometers, and other, potentially nonlinear, phase-sensitive

systems often encountered in nanophotonics greatly benefit
from the accuracy of higher-order methods [44].

3. Solving the semi-discrete problem

Starting from Maxwell’s curl equations, we have employed
a discontinuous Galerkin technique to discretise the elec-
tromagnetic fields in space. To simplify the notation, we
rewrite Eq. (10) as

∂t

�
�̃E�t�
�̃H�t�

�
� H �

�
�̃E�t�
�̃H�t�

�
�

�
�̃Esource �t�
�̃Hsource �t�

�
(12a)

or, more concisely,

∂t q̃�t� � H q̃�t�� q̃source �t� � (12b)

The system operator H acting on the current expansion co-
efficients represents the right-hand sides of Eq. (10). Please
note that the expansion coefficients comprise all elements,
and not just a single one. Furthermore, we have included
source terms, which were absent in Eq. (10), and labelled
them accordingly. Section A.1 will explain how to obtain
these terms for a number of physical situations.

Equation (12) states a system of coupled, first-order, or-
dinary differential equations for the expansion coefficients
of the electromagnetic field. There are two possibilities
to solve this system. Either we discretise time itself and
evolve initial fields in time, or we restrict ourselves to
time-harmonic problems. Both approaches are discussed
in Sects. 3.1 (time-domain) and 3.2 (frequency-domain), re-
spectively.

3.1. The discontinuous Galerkin time-domain
method

Before we come to the details on how to obtain the Dis-
continuous Galerkin Time-Domain (DGTD) method, let
us outline a few general properties of time-domain meth-
ods first.

Time is a quantity human beings have an intuitive feel-
ing for. Being accustomed to the concept that the present
translates into the future, time-domain simulations can help
us see the causes of visible effects. For example, given a sim-
ulation with multiple scatterers we can recognise the domi-
nant scatterer. Such knowledge might help us to improve a
design in order to reduce scattering losses. Animations of
time-dependent field distributions most easily illustrate the
behaviour of a physical system even for non-experts in the
field (or even the general area of science).

At the end of the day, for a comparison with experiments
we need to obtain spectral information about a system. Sim-
ulating the same system over and over again with plane
waves of different frequencies is usually not a good idea. In-
stead, one launches ultra-short pulses into the system. Such
pulses possess a very broad frequency spectrum. Using the

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org



Laser Photonics Rev. (2011)

REVIEW
ARTICLE

11

on-the-fly Fourier transform (Sect. A.6.1), one can obtain a
spectrum over the complete bandwidth in a single simula-
tion.

Simulating in the time-domain also allows us to natu-
rally include nonlinearities. The latter prohibit the superpo-
sition of solutions. In particular, the superposition of two
electromagnetic waves will lead to sum and difference fre-
quency generation. As a result, nonlinear phenomena cannot
easily be treated with frequency-domain methods.

Last but not least, time-domain methods are usually
quite memory-efficient. In most cases, it is sufficient to
store one or two vectors of expansion coefficients plus infor-
mation about the physical system. Both the memory require-
ments and the computational time scale linearly with the
number of degrees of freedom. Thus, time-domain methods
can handle large systems even on computers with limited re-
sources.

On the other hand, time-domain simulations have a num-
ber of conceptual drawbacks which include the comparison
with real-world experiments, long computation times for
high-quality resonators, and a non-trivial treatment of dis-
persive materials. Techniques to alleviate and dispose of
these drawbacks are presented in the appendix.

3.1.1. Time-stepping and the Runge-Kutta method

Equation (12) represents a set of ordinary differential equa-
tions of first order in time. To solve it numerically, we divide
the time axis into a number of (not necessarily equidistant)
time steps. The fields at the first time step t0 define the initial
condition. Usually, one assumes vanishing fields but other
initial conditions, e. g., cavity modes, are not uncommon.
Using a time stepping scheme, we evolve the fields from
tn to tn�1, where n indicates the time step. Let us consider
the equation

∂t q̃�t� � f̃�q̃�t� � t� � (13)

which has the shape of Eq. (12). The choice of the time step-
ping scheme crucially affects the performance. In essence,
on can either choose explicit or implicit methods. For ex-
plicit methods we need to evaluate the right-hand side
f̃�q̃�t� � t�, depending on the scheme even multiple times
per time step. Prominent solvers are Adams-Bashforth and
Runge-Kutta methods. However, if the time step is too large,
then explicit solvers yield numerically unstable, i. e., expo-
nentially growing, solutions. In contrast, implicit methods
require the solution of a system of equations for each time
step, but in turn provide unconditionally stable results. Nev-
ertheless, the error increases with the time step size. As
solving a system of equations is computationally expensive,
time stepping with implicit solvers is often less efficient
than using explicit solvers.

In the case of DGTD, the time evolution of the electro-
magnetic fields is most conveniently accomplished using
low-storage Runge-Kutta (LSRK) methods for a number of
reasons. First, it is desirable to accompany the higher-order
accurate DG discretisation in space with a higher-order ac-
curate time stepping scheme. Suitable LSRK schemes are

available for up to fourth order. Secondly, given a total num-
ber of N expansion coefficients, LSRK methods require a
total of 2N values stored in two registers q̃ and p̃. For one
time step from tn to tn�1, we have to adhere to the algorithm

q̃0 :� q̃�tn�

p̃i :� Ai � p̃i�1�Δt � f̃�q̃i�1� tn� ciΔt� (14a)

q̃i :� q̃i�1�Bi � p̃i (14b)

q̃�tn�1� :� q̃s�

Steps (14a) and (14b) define the stages i � 1 � � s, where s
is the number of stages. Together with this parameter, the
coefficients Ai, Bi, and ci define the properties (order of ac-
curacy, stability contour) of the LSRK scheme. It is notewor-
thy, however, that the storage requirements of the algorithm
neither depends on the order of accuracy nor the number of
stages. The five stage, fourth order accurate LSRK scheme
by Carpenter and Kennedy [45] is most commonly used
for the field evolution in DGTD [27]. Nevertheless, other
choices [46, 47] are possible and potentially advantageous.
Hence, they are discussed in Sect. 3.1.3.

3.1.2. Eigenvalues, conditional stability and maximum
time steps

Being explicit methods, LSRK schemes are subject to condi-
tional stability, also known as the Courant-Friedrichs-Lewy
condition (CFL condition). As soon as the time step Δt ex-
ceeds a critical time step, the numerical solution is subject
to unphysical exponential growth. The critical time step, for
which the numerical solution just does not grow exponen-
tially, depends both on the time stepping scheme and on the
system of equations to be integrated.

Let us first consider the influence of a specific LSRK
scheme, which is characterised by the characteristic polyno-
mial (or amplification factor)

R�z� � 1� γ1z� γ2z2� � � �� γszs
� z � � �

Here, the coefficients γ can be directly related to the coeffi-
cients Ai and Bi of the LSRK scheme [47]. In the absence of
sources, the discretised physical system can be expressed as
a matrix-vector product of a system matrix H and a number
of unknowns, compare Eq. (12). We can only obtain a stable
time-integration if the necessary condition

�R�Δt �λi�� � 1

holds for all eigenvalues λi of H . Geometrically speaking,
the curve �R�z��� 1 defines a stability contour in the com-
plex plane. The complex eigenvalue spectrum of H can be
scaled by the time step Δt until it is completely enclosed
by the stability contour. This is illustrated in Fig. 5. The
first time step for which this condition holds is called the
maximum stable time step Δtmax. It should be noted that this
time step does not guarantee stability, since its derivation
only relies on a necessary condition. Nevertheless, it serves
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Figure 5 (online color at: www.lpr-
journal.org) Low-storage Runge-Kutta
stability contour and eigenvalues of a
two-dimensional cavity. The red contour
is the stability contour of the five-stage,
fourth-order accurate low storage Runge-
Kutta scheme as introduced by Carpen-
ter and Kennedy. The blue crosses indi-
cate eigenvalues λi of the system opera-
tor H , which have been rescaled by the
maximum time step Δt. If Δt were larger,
at least one rescaled eigenvalue would
lie outside of the stability contour. As a
result, the numerical simulation would be
numerically unstable.

as a good approximation to the time step obtained from a
sufficient condition [26, 48].

Depending on the shape of the eigenvalue spectrum,
the scaling factor required to squeeze it into the stability
contour is different. Hence, it is worth to investigate the
typical eigenvalue spectrum of our discretised Maxwell op-
erator H as defined by Eq. (10). The spectrum is subject
to a number of influences and can be tuned by changing
the upwind parameter α . As discussed in Sect. 2.3, α � 0
reduces the upwind flux to the energy-conserving central
flux. Consequently, the spectrum only has purely imaginary
values, provided the physical system does not include dis-
sipative materials or absorbing boundary conditions. As α
increases, the eigenvalues gain a negative real part. This
effectively damps modes which do not fulfil the vanishing
divergence condition or are not sufficiently resolved by the
spatial discretisation. Auxiliary fields, for example to imple-
ment perfectly matched layers or dispersive materials (see
appendix), further modify the spectrum.

The size of the time step is strongly related to the quality
of the spatial discretisation as well. Similarly to the pop-
ular FDTD algorithm, where the maximum time step is
governed by

Δtmax �
mesh width

c
�

the smallest distance between nodes within an element in-
fluences the DGTD time step. The higher the order and the
more deformed an element is, the smaller the maximum
time step will be. In practice, one can use the estimate

Δtmax � s �dmin�p� �min
�

�
r�in

�
� (15)

where r�in is the radius of the insphere of element �, dmin�p�
is smallest distance between two nodes on an edge of the

reference element, and s is a constant factor of the order of
1. This heuristic approach works for a wide range of appli-
cations. However, it rarely provides the optimal time step.
Especially for higher orders p � 4, the maximally allowed
timestep is often underestimated and therefore performance
is lost. The estimate (15) can be improved by making the
factor s order-dependent and use a fitting to empirical data
to improve the performance. As an example, in [49], a p-
dependence of

s�p� � 0�8�0�27p�0�011p2

was proposed.
For a more advanced, system-dependent estimate of the

optimal time step, one can calculate a few extremal eigen-
values of the system operator using an iterative eigenvalue
solver such as ARPACK [50]. From these eigenvalues one
can infer a scaling factor such that they lie within the sta-
bility contour of some given algorithm. Unfortunately, the
computational cost associated with finding a sufficient num-
ber of eigenvalues can be quite considerable for large sys-
tems. Therefore, this approach is only feasible for medium-
sized problems.

3.1.3. Optimised Runge-Kutta schemes

The dependence of the time step on the shape matching
between the eigenvalue spectrum and the Runge-Kutta sta-
bility contour suggests that performance gains can be ex-
pected from optimised Runge-Kutta schemes. For memory
efficiency we restrict ourselves to LSRK schemes. The pa-
rameters Ai, Bi, and ci are subject to a number of conditions
stemming from the desired order of accuracy and the low-
storage property. Increasing the number of stages s above
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the order introduces additional free parameters. As they
affect the characteristic polynomial, they can be used to
modify the shape of the stability contour.

To compare the performance of different schemes, it is
worthwhile to consider the normalised time step

Δt̄ �
1

s
�Δt �

The normalised time step represents the fraction of the total
time step which can be attributed to a single stage. This
is a reasonable measure because each stage requires one
evaluation of the right-hand side f̃�q̃i�1� tn� ciΔt�. Hence,
the normalised time step also represents a measure for time
step per computational effort (CPU time). Diehl et al. have
compared over 50 established RK schemes to the commonly
used Carpenter-Kennedy scheme [46]. For fourth-order ac-
curate schemes, only marginal performance improvements
could be found for α close to zero. For α � 0�6, the five-
stage third-order scheme by Spiteri and Ruuth [51] yields a
speed-up factor of up to 1�6.

Very recently, Diehl et al. developed a numerical opti-
misation method to generate LSRK schemes with tailored
stability regions [47]. With this approach, a fourth-order 14-
stage scheme was generated, which outperforms the 5-stage
scheme by Carpenter and Kennedy by around 40–50%. It is
remarkable that these performance gains can be achieved by
merely changing a couple of numbers in an existing DGTD
implementation, which typically features several thousand
lines of code.

3.1.4. Advantages and drawbacks

We conclude the discussion of DGTD by a short compari-
son with other existing time-domain methods. Let us start
with the most established one. Compared to FDTD, DGTD
requires significantly more computations per degree of free-
dom because we have a number of small matrix-vector prod-
ucts within each element. At the same time, DGTD com-
putations usually require less degrees of freedom to obtain
similarly converged results. This is an immediate conse-
quence of the superior h- and p-refinement capabilities of
DGTD. Small elements can be used to resolve small geomet-
rical features. Even curvilinear elements (see Sect. A.5) can
be employed where necessary. Depending on the system,
DGTD can be considerably more efficient concerning both
memory and CPU time than FDTD [44].

The finite volume (FVTD) and finite element time-
domain (FETD) methods are conceptually quite similar to
DGTD. In fact, the DGTD method discussed here reduces to
a classical FVTD scheme for zeroth order (p� 0). However,
in contrast to traditional finite volume methods, the DGTD
method also offers a systematic approach to increase the or-
der of the spatial discretisation to an arbitrarily high polyno-
mial degree. This is also a big advantage over FETD, where
the generation of higher order Nédélec elements [24, 25]
is certainly not trivial. In addition, as mentioned before,
a FETD approach requires the solution of a large (albeit
sparse) system of linear equations at each time step. The

main disadvantage of the DGTD method is that one has to
deal with considerably more degrees of freedom due to the
discontinuities across element interfaces. These discontinu-
ities, however, also allow us to treat elements individually
with a set of small matrix-vector multiplications. For this
reason, DGTD is an ideal candidate for parallelisation on
multiple cores, computers, and graphics cards [52].

To summarise, we find that DGTD is an explicit time-
domain method which combines the efficiency of FDTD
with unstructured meshes and higher order accuracy as
known from finite element methods. Moreover, it can be
combined with a number of time stepping algorithms, out
of which customised low-storage Runge-Kutta algorithms
appear particularly efficient schemes. As a consequence,
DGTD can accurately simulate systems which involve fine
geometric features, strongly varying local fields, and differ-
ent length and time scales. Hence, DGTD is certainly an ex-
cellent method for the time-domain simulation of nanopho-
tonic systems.

3.2. Discontinuous Galerkin frequency-domain
methods

In the previous sections, we have introduced techniques
to discretise the time derivatives in Eq. (12). The current
section follows a different approach. Instead of looking at
the full dynamics of the system, we restrict ourselves to
time-harmonic solutions in the frequency domain.

Time-harmonic solutions are interesting for a number
of applications. Experiments often show more or less pro-
nounced spectral resonances. The field distribution at such
a resonance may explain its physical origin. When coupling
from a waveguide to another device, e. g., a photonic crystal
waveguide, it is important to match the mode profiles in
both devices for maximum transmittance. In such cases, the
system needs to be characterised for only a few frequencies.
Even in cases where we want to calculate a full spectrum a
time-harmonic simulation often proves advantageous. This
is especially the case for systems with high quality factors
(Q-factors). Such systems require very long time-domain
simulations in order to excite a resonance or let it decay.
Spurious results are often obtained from prematurely termi-
nated simulations.

Moreover, time-harmonic computations can include dis-
persion in a natural way. Instead of using analytical disper-
sion models (see Sect. A.2) one can immediately resort to
experimental data. There are also a couple of frequency-
dependent excitation profiles such as focussed laser beams
and waveguide modes, which introduce further difficulties
in the time-domain.

Hence, time-harmonic solvers provide an alternative
route to obtain numerical results for a multitude of systems.
Depending on the situation, either frequency-domain or
time-domain simulations are better suited. In some cases, a
time-domain simulation is used to calculate a broad-band
spectrum. Once the resonances are identified, time-harmonic
simulations are employed to evaluate mode profiles.
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It should be noted that in this article we want to solve
the very same first-order system as in the time-domain. In
particular, we will not derive a wave equation for one of the
electromagnetic fields as, for example, done in [53]. There-
fore, our approach will not lead to optimal performance,
but to maximum consistency with an existing time-domain
code. In this sense, the frequency-domain algorithms as
described in the upcoming sections complement the time-
domain solver.

3.2.1. Transformation to the frequency domain

To transform the semi-discrete form (12) into the frequency-
domain, we make the time-harmonic ansatz

q̃�t�� q̃�ω� � e�iωt
� (16)

The (angular) frequency is denoted by ω . Please note that
q̃�t� and q̃�ω� are radically different functions and should
not be confused with each other. As opposed to the usual
quantities, q̃�ω� is a vector of frequency-dependent expan-
sion coefficients, where each expansion coefficient is a com-
plex number. The physical solution for a specific time t is
given by the real part of (16). For the time-derivative, this
ansatz translates to

∂t q̃�t� � �iωq̃�ω� � (17)

Applying this ansatz to the sources as well and inserting it
into Eq. (12) leads to

�iωq̃�ω� �H q̃�ω�� q̃source �ω� � (18)

3.2.2. Eigenvalue problems

Let us first consider Eq. (18) without external sources, i. e.,

�̃Esource �ω�� �̃Hsource �ω�� 0 �

In this case, we obtain

H �

�
�̃E�ω�
�̃H�ω�

�
��iω

�
�̃E�ω�
�̃H�ω�

�
� (19)

This equations describes an eigenvalue problem of the sys-
tem operator H , where the eigenvalues are the complex
frequencies�iω and the corresponding eigenvector consists
of the field expansion coefficients. Thus, ω is the result of
an eigenvalue problem.

Though this problem looks simple enough, its numer-
ical solution using iterative eigenvalue solvers such as
ARPACK [50] is rather challenging. In particular, the spec-
trum of the discretised Maxwell operator H features a large
number of spurious, i. e., unphysical modes. For example,
Fig. 5 shows the eigenvalues λ � �iω of H for a two-
dimensional rectangular cavity. In principle, all the eigen-
values should lie on the imaginary axis, i. e., they should
correspond to real-valued frequencies ω . In particular, there

should be a minimum frequency which translates to the
largest possible wavelength in the system.

Instead, we observe eigenvalues with negative real parts
which appear due to the artificial damping introduced by the
upwind flux (see Sect. 2.3). It can be difficult to distinguish
the associated unphysical modes from physical modes if
absorbing materials are present in the system. Furthermore,
we even find eigenvalues on the real axis which correspond
to purely complex ω . In particular, we find a very large
number of zero eigenvalues, which correspond to the null
space of the DG operator and belong to stationary solutions
of Maxwell’s curl equations with non-vanishing divergence.

As a result, iterative eigenvalue solvers have difficulties
to find physical eigenvalues. In particular, the eigenvalues
with the smallest frequencies are difficult to find because of
the large spurious null space. On the other hand, eigenval-
ues with the largest magnitudes correspond to unphysical
modes introduced by the spatial discretisation. Even when
using the shift and invert transformation to find eigenval-
ues near a complex value σ , great care on the choice of
σ has to be taken in order to obtain physical eigenvalues.
The underlying reason for the formation of spurious modes
is that the DG discretisation does not enforce the global
divergence condition. To reduce the number of spurious
modes, one could use a locally divergence-free basis on
each element [54]. Combining such a scheme with a suit-
able numerical flux significantly reduces the null space and
helps to distinguish physical modes from spurious ones for
certain systems [26]. Nevertheless, calculating and identify-
ing relevant eigenvalues still remains a non-trivial problem,
for which the DG method is not ideally adapted.

3.2.3. Time-harmonic solutions

A time-harmonic solver can be used to calculate the field
distribution for a specific, frequency-dependent illumination
characterised by q̃source �ω�. In this case, we rewrite Eq. (18)
as

�H � iω� � q̃�ω� ��q̃source �ω� � (20)

Apparently, the desired field distribution is the solution of a
system of linear equations. Its right-hand side is given by the
sources while the equations are characterised by the DG sys-
tem matrix plus a diagonal matrix, which effectively shifts
the diagonal of H . In contrast to the eigenvalue problem,
ω enters the calculation as a parameter, which determines
the oscillation frequency of an external source.

It is worthwhile to consider the structure of the sys-
tem matrix H � � H � iω , whose detailed discussion is
postponed to Sect. 3.2.4. For the time being, it is sufficient
to know that H � is a non-symmetric sparse matrix where
almost all matrix elements are zero. For such matrices, a
number of efficient solver techniques are available and can
be roughly divided into direct and iterative solvers.

Direct solvers attempt to decompose H � into a product
of a lower triangular matrix L and an upper triangular matrix
U . The main challenge is not to lose the sparsity property
of H �, i. e., to minimise the number of non-zero entries in
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both L and U . Once the triangular matrices are known, the
problem

H �q̃� q̃source (21)

reduces to the – then trivial – forward and backward substi-
tutions

Lp̃� q̃source

U q̃� p̃ �

A number of fast direct solvers for unsymmetric matrices
are available, such as PARDISO [55] and UMFPACK [56].
However, those are rather memory consuming and there-
fore limit the number of degrees of freedom one can handle.
In practice only medium-sized systems with N � 105–106

unknowns can be treated when using direct solvers on typi-
cal computers.

In contrast, iterative solvers do not attempt to factorise
H �. Instead, starting from an initial guess q̃0 they try to
reduce the residuum H �q̃i� q̃source of the solution in an
iterative procedure. The system enters the scheme only via
matrix-vector products between H � and some (temporary)
vectors. In particular, storage of H � is not required as long
as its effect on an arbitrary vector can be easily computed.
As discussed in Sects. 2.6 and 3.1, an efficient matrix-vector
product is the basis of the time-domain algorithm. The only
differences to the time-domain are the complex-valued ex-
pansion coefficients and the diagonal shift, which can be
implemented as a simple scaling. As a consequence, iterative
methods are very memory-effective when combined with an
existing DGTD code, as only a small number of vectors of
expansion coefficients need to be stored. On the downside,
the number of iterations required to get sufficiently con-
verged results can be quite high. Acceleration techniques
are discussed in Sect. 3.2.5. Popular iterative solvers include
BiCGstab(l) [57] and restarted GMRES [58].

It should be noted that the choice of the initial guess
q̃0 is crucial for the performance of iterative solvers. The
naı̈ve choice of all expansion coefficients being zero of-
ten represents a poor guess. For scattering problems it can
prove advantageous to use the fields as created by the time-
harmonic source in the absence of scatterers as an initial
guess. This is especially the case in the limit of weak scat-
tering. For example, a plane wave can be a good start when
one is interested in Mie scattering. Similarly, when simulat-
ing a waveguide coupled to a resonator, one can ignore the
resonator and start with a waveguide mode instead.

Due to the impact of the initial set of expansion co-
efficients on the solution time, it is desirable to obtain a
system-dependent, automated, and educated guess for the
starting point. This can be done using multigrid methods.
The idea is to simulate the very same system using a set of
grids, where each grid is finer than the previous one. The
problem on the coarsest grid can be solved using direct
methods. As we do not use as many degrees of freedom
as for the finest grid, the additional memory-consumption
is usually acceptable. In the simplest version of multigrid
methods, the solution of the coarser grid is interpolated (or
prolongated) to the next finer one. There, an iterative solver

is applied to reduce the residual error. The procedure is
reapplied until the desired level of (geometrical) accuracy
is reached.

Finer grids can be created in two ways. First, one can
refine the mesh, i. e., the size of the elements (h-refinement).
Second, one can increase the number of degrees of free-
dom per element by using higher-order basis functions
(p-refinement). Since h-refinement requires additional al-
gorithms and p-refinement is one of DG’s strengths, the
latter is often the favourable choice. In our simulations,
good initial guesses are usually obtained with a direct solver
for p� 2.

A promising approach to the solution of the time-
harmonic problem (20) is to combine direct and iterative
solvers. For example, one can apply domain decomposi-
tion techniques and divide the computational domain into
smaller subdomains [59]. Such a decomposition introduces
virtual interfaces between neighbouring subdomains. Start-
ing from an initial guess, one can exploit the continuity
of fields to derive effective boundary conditions on these
virtual interfaces. This effectively reduces the problem of
solving Maxwell’s equations on the entire domain to the
problem of solving these equations on several smaller sub-
domains with well-defined boundary conditions. Provided
that the subdomains are small enough, direct solvers can
efficiently solve the resulting systems of linear equations.
In an iterative procedure, the boundary conditions on the
virtual interfaces are updated and a new solution on each
subdomain is computed using direct solvers. Hence, the
domain decomposition technique combines the strengths
of iterative solvers (low memory consumption) and direct
solvers (very fast) and allows to tackle even large three-
dimensional problems [59]. Unfortunately, this comes at the
price of increased code complexity, which is why we will
not discuss this approach any further in this review.

3.2.4. The structure of the system matrix

As noted earlier, it is interesting to study the structure of the
system matrix H �

�H � iω . Looking at the semi-discrete
form of Eq. (10), H � has the following contributions:

– The degrees of freedom within an element � are cou-
pled to each other via the discretised curl operator. The
occurring spatial derivative matrices M�1S are square
n�n matrices, where n is the number of nodes per ele-
ment (see Sect. 2.5). Please note that these matrices are
not symmetric. This is an immediate consequence of the
first-order form of Maxwell’s equations we want to solve.

– The numerical flux introduces some coupling within the
element as well as some coupling to the neighbouring
elements via the field differences. The matrices M�1F f
are of size n� n�, where n� is the number of points per
face (again, see Sect. 2.5).

– The term iω translates to a diagonal shift in the system
matrix.

– Finally, some extensions for practical use (see appendix)
may introduce auxiliary fields which are coupled to the
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Figure 6 (online color at: www.lpr-journal.org)
Sketch of the complete system matrix for a two-
dimensional cavity as a sample system. The
matrix H � on the left-hand side consists of a
number of rectangular blocks, each of which
couples degrees of freedom of a certain el-
ement (column) to those of another element
(row). However, just a few of these blocks ac-
tually feature non-zero entries. Blocks with at
least one non-zero entry are coloured black
(if the block lies on the diagonal of H �) or
red (the block is off-diagonal). The right-hand
side features the corresponding mesh used
to create the system matrix. Of the fourteen
numbered elements, elements 5 and 8 support
more degrees of freedom due to being filled
with a dispersive material (see Sect. A.2).

electromagnetic fields. If such a coupling is purely local,
this corresponds to a diagonal n�n matrix within H �.

We see that matrix elements either connect degrees within
an element or they link neighbouring elements with the local
one (Fig. 6). Hence, the coupling is local. Especially in the
limit of many elements, this leads to a sparse matrix, where
almost all elements are zero. Even more, as the number
of neighbours is limited to d�1 for simplices, where d is
the dimensionality of the system, the number of non-zero
entries per degree of freedom is roughly constant. Thus,
the number of matrix elements grows linearly with N, the
number of degrees of freedom.

In addition, we note that all contributions can be written
as special matrices with n rows each (see Fig. 7). Depending
on the type of the coupling, those matrices are either dense
(derivatives), diagonal (local coupling, diagonal shift), or
have a column-shaped structure (numerical flux). In particu-
lar, the numerical flux renders the system matrix structurally
non-symmetric. The block structure of H � can be exploited

to obtain an efficient sparse matrix storage scheme with
minimum index overhead.

A last remark concerns the ordering of the field expan-
sion coefficients in q̃. It appears natural to store all expan-
sion coefficient of a single field component for a single
element in a contiguous memory area. Doing so leaves us
with the task of mixing field components and elements (see
Fig. 8). In principle, one can either group expansion coeffi-
cients of one field component for all elements, i. e.,

q̃�
�
Ẽ�1

x � Ẽ�2
x � � � � � Ẽ�1

y � Ẽ�2
y � � � � � Ẽ�1

z � Ẽ�2
z � � � �

�
�

or one can group all field components of a single element,
i. e.,

q̃�
�
Ẽ�1

x � Ẽ�1
y � Ẽ�1

z � � � � � Ẽ�2
x � Ẽ�2

y � Ẽ�2
z � � � �

�
�

The second version is preferable as it keeps element-local
data together. This improves CPU cache usage and eases
data handling for computations on graphics cards. In addi-

Figure 7 (online color at: www.lpr-journal.org) Details on the structure of the system matrix H �. In principle, this figure is a more
detailed view of row 8 of Fig. 6 for p� 3. In contrast to the latter, coloured rectangles indicate individual non-zero matrix entries here.
The derivatives, the numerical flux, auxiliary differential equations and the diagonal shift contribute matrix values to the local block,
which corresponds to the black 8–8 block in Fig. 6. Neighbours influence a given element via the numerical flux over the mutual interface.
As an example, the red 8-13 block has been chosen. All other elements do not contribute non-zero elements to a particular row of the
system matrix H �.

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org



Laser Photonics Rev. (2011)

REVIEW
ARTICLE

17

Figure 8 (online color at: www.lpr-journal.org) Storage order of expansion coefficients. Tasked with storing expansion coefficients for
a number of field components on a number of elements, one can either store individual field components (top display) or all components
of individual elements (bottom display) contiguously in memory. Usually, the latter is preferable (see Sect. 3.2.4).

tion, it simplifies the use of the Block-Jacobi preconditioner
which will be presented in Sect. 3.2.5.

3.2.5. Preconditioning

Usually, large time-harmonic problems cannot be treated
by direct solvers because of vast memory requirements.
Iterative solvers, on the other hand, have very low memory
requirements at the cost of increased run times. Besides the
number of unknowns N and the quality of the initial guess,
the run time essentially depends on the condition number
κ�H �� of the system matrix H �. It can be expressed as

κ �
max

i
�λi�

min
i
�λi�

�

the ratio between the maximum and the minimum absolute
values of the system operator’s eigenvalues λi. The larger
the condition number, the more iterations it takes to reach a
desired level of accuracy. The idea behind preconditioning
is not to solve Eq. (21), but an alternative problem

P�1H �q̃ � P�1 � q̃source

with the very same solution q̃. The N�N matrix P is called
a preconditioner. If

κ�P�1H ��� κ�H ��

and the cost of multiplying P�1 with a vector is suffi-
ciently small, than the reduced number of iterations out-
weighs the additional computational cost per iteration. As a
consequence, iterative solvers need considerably less time to
obtain an approximate solution to the system of linear equa-
tions.

The minimum condition number is obtained for P �
H �. However, in this case one would require the inverse of
H � – which would be the solution of the actual problem
(21) for any source vector. If such an inverse was readily
available, one would not have to resort to iterative solvers.
Instead, preconditioners should approximate the system op-
erator in a way that allows an easy computation (and proba-
bly storage) of its inverse, while the product preconditioned

matrix P�1H � should be as close to the unit matrix as pos-
sible.

Fulfilling and balancing these requirements – especial-
ly for non-symmetric problems like the present one – is
not easy and often more art than science. The most sim-
ple preconditioner, the so-called Jacobi preconditioner, is
given by

Pii � H �

ii � Pi j � 0 for i �� j �

Unfortunately, the system operator of the DG method is
not diagonally dominant and limits the effect of the Jacobi
preconditioner. A block Jacobi preconditioner extends this
approach by dividing the available indices into mutually
distinct sets Ik:

Pi j �

�
H �

i j for i � Ik� j � Ik

0 for i � Ik� j � Il � l �� k
�

Thus, P represents the values of H � which lie on square
blocks on its diagonal. The size of the blocks is given by
the number of elements in each index set Ik. Naturally, the
block size influences the performance of the preconditioner.
For our DG scheme, there are two obvious choices.

For a start, the blocks might comprise the n expansion
coefficients of a single field component in a single element.
In this case, the entries in each block typically correspond
to coupling of a field component with itself as introduced by
the numerical flux (compare Fig. 7). Our experience shows
that this choice only leads to minor speed-ups for itera-
tive solvers.

The more advanced choice involves index sets which
consist of all degrees of freedom of a single element. These
blocks typically are 6n�6n matrices for three-dimensional
simulations. In the presence of auxiliary fields they are
even larger. Seen from a physical perspective, this precondi-
tioner corresponds to the solution of Maxwell’s equations
in an element-local fashion. Hence, it is very similar to the
original idea of the DG discretisation. As it turns out, the
condition number of H � can be reduced by several orders
of magnitude using this element Jacobi preconditioner – as
one is tempted to call it. It should be pointed out, though,
that the blocks can be quite large. For example, a p � 3 dis-
cretisation in three dimensions (n � 20) leads to 120�120
blocks, which amounts to 225kB of memory to store the
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complex entries in double precision. This may reduce the
practicability of this preconditioner for larger systems.

3.2.6. Advantages and drawbacks

As compared to conventional FEM, the DG frequency-
domain method as presented here has a couple of draw-
backs. First of all, FEM solvers usually start from a wave
equation instead of Maxwell’s equations. This reduces the
number of degrees of freedom by a factor of two. Further-
more, the field discretisation is usually done via so-called
edge elements [24, 25]. These elements are constructed to
be curl-conforming, i. e., the divergence of the electromag-
netic fields is always zero. In contrast, since DG does not
strictly enforce the divergence condition on the entire com-
putational domain, we are burdened with more degrees of
freedom than necessary. Furthermore, we are challenged by
the non-symmetric nature of the system matrix H �, which
leads to issues regarding preconditioning and solving the
related system of linear equations. Symmetric DG discreti-
sations of the second-order wave equation, as discussed
in [53], for example, seem preferable from an efficiency
point of view.

It should be noted, though, that the key strength of the
discontinuous Galerkin discretisation is the time-domain,
where it allows for a truly explicit scheme. Its benefits are
not as obvious in the frequency-domain. Nevertheless, es-
pecially the time-harmonic solver is a valueable addition
to an existing time-domain code, and it is fairly easily de-
rived from it. We have identified two key modifications to
an existing code base:
1. The code must support complex field expansion coeffi-

cient in addition to real-valued ones. Appropriate rou-
tines to multiply real-valued matrices (derivative matri-
ces, etc.) with complex-valued vectors must be provided
as well.

2. Solvers for systems of linear equations must be provided.
Fortunately, one can rely on a number of well-tested
libraries.

Furthermore, to fully exploit the advantages of direct solvers,
one needs an efficient routine for creating the matrix repre-
sentation of the system operator. A dynamic block storage
which automatically creates dense, diagonal, and column-
shaped blocks when needed is convenient, especially in the
light of possible extensions and auxiliary fields. Finally, a
preconditioner is extremely useful when enhancing the per-
formance of iterative solvers. Block-Jacobi techniques are
easily implemented and show promising results.

4. Applications to nanophotonics

After all the abstract theory, it is time to provide examples of
some real-world applications. The discontinuous Galerkin
method has a number of strengths which are important for
nanophotonics. Due to the adaptive mesh and higher-order
basis functions, it is perfectly suited to tackle multi-scale
problems. Tiny features as well as large volumes can be

efficiently modeled. Strong local field enhancements in the
vicinity of nanoantennas are easily resolved. Round geome-
tries are accurately resolved by means of curved elements.
On top of that, DG(TD) is very efficient in terms of CPU
time and memory consumption and predestined for paral-
lel computation. For these and other reasons, in particular
the past few years have seen a steadily growing number
of publications and conference contributions regarding the
DG method for Maxwell’s equations from numerous groups
from all around the world.

Quite naturally, most authors validate their implementa-
tion with some simple test particles, mostly squares, cylin-
ders, and spheres [32, 38, 59–61]. In this section, however,
we have compiled some references which give a more
application-oriented overview of what is possible with DG
methods, especially in the time-domain.

Let us start with numerical experiments which involve
dielectric materials only. Ji et al. have investigated the cou-
pling between slab waveguides and one or two microring
resonators in two dimensions [62]. In a similar study, Niege-
mann et al. have compared results on disc and ring res-
onators obtained using two numerical methods, namely
DGTD and FDTD [44]. They have found that for compa-
rable accuracy DGTD requires considerably less resources
(CPU time and RAM) than FDTD. Another interesting ex-
ample is provided by Tang et al., who have investiged the
scattering of light by two-dimensional cylindrical and hexag-
onal ice crystals at optical and infrared frequencies [33].

Chun et al. have applied the DGTD method to the
propagation of waves in layered, periodic structures with
anisotropic material properties [63]. In particular, they have
been able to analyse the finite size effect on the formation of
the frozen mode phenomenon. Anisotropic material distri-
butions have also been considered by König et al. to assess
the quality of a cylindrical optical cloak [64].

Metallic nanostructures and metamaterials have found
the broadest coverage within the DGTD literature. One of
the first studies on metallic nanostructures has been pub-
lished by Ji et al., who have investigated the coupling of
silver nanowires [65]. Shi et al. have modified the DGTD
method in order to simulate effective left-handed media
with Lorentz dispersion and their focussing properties [35].
The anomalous transmittance through sub-wavelength sil-
ver apertures has been examined by Niegemann et al. [32].
Hille et al. have shown that curvilinear elements signif-
icantly improve the local field distribution in V-shaped
grooves in silver strips [34]. Three-dimensional simula-
tions of V-shaped particles have been performed by Stan-
nigel et al. to evaluate the possibility of coherent control of
spatio-temporal field distributions via chirped pulses [60].
Finally, the paper by Feth et al. provides a comparison be-
tween experimental and numerical results on the coupling
of split-ring resonator dimers [66].

In addition, the DG method has been applied to other,
more macroscopic electromagnetic systems as well. For
example, Lu et al. have employed the DGTD method to sim-
ulate ground-penetrating radar measurements of objects and
cavities embedded in soil [67]. Another radar application is
the scattering of electromagnetic waves by aircraft, as for ex-
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ample studied by Dolean et al. [68] or Montseny et al. [69].
Last but not least, Dolean et al. have investigated the inter-
action of mobile phone radiation with the human head [68].

In the upcoming sections we will provide more details
on the performance of the DG method for two example sys-
tems.

4.1. Coupled resonator-waveguide systems

In this section we present some results on a two-dimensional
system in transverse-electric polarisation. It consists of a
ring resonator with radius r � 4μm which is coupled to two
waveguides of width w � 400nm (see Fig. 9 for a sketch).
The distance d between the waveguides and the resonator is
just 50nm. Both the waveguides and the ring resonator are
made of a material with ε � 9, the rest of the computational
domain is vacuum. A layer of PMLs surrounds the system
to absorb outgoing radiation (see Sect. A.4). Finally, a wave-
guide mode is launched in the upper left waveguide port via
the total-field/scattered-field technique (Sect. A.1.1).

For the numerical simulation a few challenges exist:
– The gaps between the waveguides and the ring resonator

are rather small compared to the other dimensions of the
systems. Hence, the discretisation comprises multiple
scales.

– Perfectly round ring resonators feature very high quality
factors. Numerical surface roughness – as introduced by
straight-sided elements – leads to additional scattering
and, thus, should be avoided.

As a first step, we model the system using straight-sided
elements (Fig. 9). Since we are primarily interested in the
transmittance into the upper right waveguide port (details
on transmittance calculations can be found in Sect. A.6.3),
we employ a time-domain simulation with a broad-band
source. For the time-stepping we use a 14-stage 4th order
LSRK scheme (see Sect. 3.1.3). The resulting spectra for
various polynomial orders p (see Sect. 2.5) are shown in

Fig. 10. Apparently, polynomial orders below p� 5 intro-
duce too much dissipation for the given mesh, since the
electromagnetic fields are not properly resolved. Additional
calculations were performed for orders up to p� 8. While
the resonance positions do not change noticeably, a 1%
change occurs in the absolute transmittance values for p� 6
and p� 8.

In the second step, we then identify a resonance of in-
terest at λ � 1�5426 μm, for which we would like to know
the magnetic field distribution. We could either start another
time-domain simulation and obtain the field distribution via
the on-the-fly Fourier transform (Sect. A.6.1), or we can
just use the time-harmonic solver instead. Since our mesh
merely comprises 1404 elements, the latter is a computation-
ally efficient choice. Thus, we prepare another simulation
with the same system, but with a time-harmonic solver in-
stead of the time-domain algorithm. The resulting system of
equations (20) is solved using the direct solver UMFPACK
and yields the field distribution at resonance (Fig. 9).

The time-domain simulation with p � 5 required
roughly 400�000 time steps to simulate 10�000 optical cy-
cles at λ � 1μm. Using a 14-stage LSRK method amounts
to 5�6�106 evaluations of the right-hand side of Eq. (10).
On a single Intel Core 2 Quad processor with 2�5GHz the
total CPU time for this calculation is approximately 11h.
For the same order, the memory requirements are below
0�1GB. During one time-domain simulation we evaluate the
spectrum for 2001 frequencies.

The frequency-domain computation of the field distri-
bution required the formation and solution of a system of
linear equations with 93282 unknowns. The total time to
obtain a solution for a single frequency is approximately
16s. On the other hand, solving the system required roughly
1�6GB peak memory.

Finally, we investigate the quality of our geometrical
model. So far, the ring resonator is meshed using straight-
sided (linear) elements. Consequently, higher polynomial
orders will lead to more converged results on a polygonal

Figure 9 (online color at: www.lpr-journal.org) Two slab waveguides coupled to a cylindrical ring resonator. Left panel: Sketch of
the physical system. A perfectly matched layer surrounds the computational domain to absorb outgoing radiation. Central panel: The
mesh which has been used for the DG computations. Right panel: False colour plot of the Hz component of a mode at λ � 1�5426 μm
computed with the time harmonic DG solver for p� 5.
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Figure 10 (online color at: www.lpr-journal.org) Transmittance into the upper right waveguide port of the system sketched in Fig. 9. Left
panel: Transmittance for various polynomial orders p using linear meshes. Right panel: Transmittance for the polynomial order p� 6,
where the resonator is modelled with linear and curvilinear elements, respectively. The corner points in both meshes are identical.

approximation of the resonator. A smoother model of the res-
onator either requires smaller elements or the utilisation of
curvilinear elements (Sect. A.5). Figure 10 shows the influ-
ence of the different geometric discretisation. As compared
to the exact model with curvilinear elements, the results
obtained with linear elements shows a small blueshift.

4.2. Split-ring resonators

In our second example we investigate split-ring resonators
(SRRs), which are often used as building blocks for meta-
materials. As a first step to understand how such a meta-
material’s properties arise from the properties of individual
building blocks, it is interesting to study the coupling of just
two SRRs which form an SRR dimer [66].

Since we investigate isolated structures instead of a pe-
riodic arrangement, we use a modified three-dimensional
scattering setup as outlined in Sect. A.6.3. We place two
equally shaped gold SRRs of height h� 200nm, gap height
gh � 100nm, width w � 200nm, gap width gw � 80nm,
and thickness t � 30nm in the total-field region (Fig. 11).
The dispersion of gold is modelled with a standard Drude
model [70]. This model is a good approximation of the ma-
terial parameters in the near-infrared region. Furthermore,
we include a glass substrate (ε � 2�25) into the system.
The remainder of the computational domain is filled with
vacuum (ε � 1). Perfectly matched layers (Sect. A.4) sur-
round the computational domain in both the vacuum and
the substrate region. Illuminating the system with a plane
wave source (normal incidence) via the TF/SF technique
(see Sect. A.1.1) and integrating the Poynting vector on the
TF/SF interface yields the scattering, absorption, and extinc-
tion cross-sections. The electric field of the incident wave
is parallel to the axis from the first SRR to the second SRR,
i. e., it corresponds to a horizontal polarisation in Fig. 11.
The symmetry of the system can be exploited by enforcing
PEC boundary conditions on the mirror plane. As a result,
the computational effort is reduced by a factor of two.

Figure 11 (online color at: www.lpr-journal.org) A two-
dimensional sketch of a computational setup used to study the
coupling between SRR dimers. To reduce the computational ef-
fort, a mirror plane with PEC boundary conditions is included. The
incident plane wave is horizontally polarised.

To study the coupling between the two SRRs we vary
the distance d between both scatterers. For each distance we
create a tetrahedral mesh and calculate the cross sections
using the DGTD method. Typical spectra for d � 120nm
are depicted in Fig. 12. Using a Lorentz fit, we locate the
resonance wavelength from the extinction cross sections
(Fig. 13). Apparently, a strong red shift is observed for small
separations which can be attributed to electric dipole-dipole
coupling [66].

For all computations we use fourth order (p� 4) poly-
nomials. Depending on the distance between the SRRs, the
corresponding meshes consist of 24�000 to 30�000 tetrahe-
drons. Each simulation requires less than 750MB of mem-
ory. A simulation time which corresponds to 30 optical
cycles for λ � 1μm translates into about 15�000 time steps
with a 14-stage LSRK scheme (see Sect. 3.1.3). Hence, we
need 210�000 evaluations of the right-hand side of Eq. (10).
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Figure 12 (online color at: www.lpr-
journal.org) Scattering, absorption, and ex-
tinction cross sections for an SRR dimer with
d � 120nm. Please note that the cross sec-
tions have been normalised to the number of
SRRs, i. e., by a factor of 0.5.
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Figure 13 (online color at: www.lpr-
journal.org) Resonance wavelengths as ob-
tained from the extinction cross sections for
SRRs separated by various distances d. The
horizontal line indicates the resonance wave-
length of a single SRR, which corresponds to a
dimer with d � ∞.

In total, the required simulation times on a single core of an
Intel Xeon X5570 CPU (2�93GHz) lie between 28 and 34h.
Coarse computations with p� 2 yield surprisingly accurate
results in less than 3h.

Once the resonance positions are determined, we can
investigate the field distribution on resonance. As opposed
to the two-dimensional system in the previous section, we
use another time-domain simulation in conjunction with
the on-the-fly Fourier transform (Sect. A.6.1) to avoid the
high memory consumption of the time-harmonic solvers.
Figure 14 shows the absolute value of the time-harmonic
electric field in a plane through the centre of both SRRs.
One can clearly observe strongly localised electric fields
near the arms of the SRRs. The mode profiles for differ-
ent spacings d reveal that for small gaps something like a
capacitor is formed between the right arm of the left SRR
and the left arm of the right SRR. This capacitor has sig-

Figure 14 (online color at: www.lpr-journal.org) Absolute value
of the time-harmonic electric field in a plane through the centre of
the SRR dimer with d � 120nm. Note the strongly localised fields
near the sharp corners.
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nificant influence on the resonance of each individual SRR
and is a possible explanation for the resonance shift of the
SRR dimer.

5. Outlook

Even though reading this review might have been exhausting
to the reader, our discussion of the discontinuous Galerkin
technique in nanophotonics is by no means exhaustive. In
this concluding section we describe a couple of possible
extensions, open problems, and potential areas of research.

5.1. Improving the spatial discretisation

The spatial discretisation we have presented in Sect. 2 is not
ideal in a number of ways. Though tetrahedrons allow us to
model arbitrary geometries, we usually do not require this
freedom in the entire computational domain.

For example, a computational domain could be enclosed
by an axes-aligned perfectly matched layer. While the actual
physical domain with arbitrary scatterers will benefit from
conventional tetrahedral meshes, such boundary regions
could be easily tessellated into hexahedral elements [61].
Here, nodes would be positioned in terms of a tensor prod-
uct of one-dimensional node distributions. As derivatives
would only incorporate degrees of freedom along a line,
performance gains are expected immediately. Furthermore,
the surface-to-volume ratio of a cuboid is lower than that
of the tetrahedrons it can be divided into. Hence, we have
less degrees of freedom associated with element boundaries.
As we have to store these values twice, hexahedrons lead
to a more efficient scheme. Similarly, layered systems will
benefit from prism-shaped elements.

Unfortunately, such hybrid meshes pose significant tech-
nological challenges to mesh generation and handling. Ap-
propriate data structures are needed to allow a mesh to hold
elements of different types and to relate them with each
other. More fundamentally, sophisticated algorithms which
create optimal meshes with mixed element types for arbi-
trary geometries are required.

Besides the element shape, the set of basis functions is
another aspect of the DG discretisation to refine. While the
nodal scheme is well tested and convenient due to the close
relation between expansion coefficients and field values, it
supports fields of non-vanishing divergence (see Sect. 3.2.2).
Expressed in other terms, this means that the nodal basis
contains superfluous degrees of freedom. To eliminate this
redundant information one can construct a modal, vectorial
basis which locally satisfies the divergence condition, i. e., in
an element-wise fashion [53, 54, 71]. However, since the lo-
cally divergence-free basis functions are not invariant under
affine transformations, such an implementation dramatically
increases the memory consumption. In addition, the calcula-
tion of the numerical flux also requires more computational
effort in a modal representation when compared to the nodal
version. Thus, it is not clear yet whether a locally divergence-
free basis actually leads to performance improvements.

Finally, one usually assumes that the fields in each ele-
ment are discretised with the same local order of accuracy p.
In addition to the local mesh refinement, DG also allows the
local refinement (or coarsening) of p. Consider a structure
with just a few small features which need to be resolved by
a couple of small elements. Compared to the other elements,
the feature region is discretised by considerably more de-
grees of freedom, and probably more than necessary. Hence,
one could locally reduce the order of the basis functions.
Following the discussion of Sect. 3.1.2 this will increase the
time step, as the distance between adjacent nodes is larger
for lower orders.

5.2. Time stepping

In contrast to FDTD, the spatial discretisation of DGTD
is strictly separated from the time evolution of the fields.
Though Runge-Kutta schemes show satisfactory perfor-
mance, it might be worthwhile to investigate alternative
time stepping techniques. The main motivation lies in the
observation that in nanophotonics the time step is often lim-
ited by just a few exceptionally small or awkwardly shaped
elements. If a time stepper could treat these elements sep-
arately, one could maintain a larger time step for the bulk
of the elements. Hence, depending on the mesh dramatic
performance boosts can be expected.

One possible strategy is to use explicit solvers with dif-
ferent time steps for differently sized elements [36, 69, 72].
For example, we might divide the elements into the cate-
gories small, medium, and large. Fields in small elements
are evolved in steps of Δt, fields in medium elements in steps
of 2Δt, and the largest elements in steps of 4Δt. Problems
arise because the numerical flux links small and medium
elements and we have to make sure that fields in both el-
ements are known at the same time. Appropriate interpo-
lation schemes or interwoven time stepping schemes are
required. While such schemes are available and employed,
e. g., in finite volume calculations [73], they are usually
restricted to lower orders. Higher-order schemes [74] (or
schemes of mixed order) appear more suitable to accompany
the higher-order spatial discretisation of DGTD. Recently,
higher-order Taylor approximations [75] and third-order
Adams-Bashforth schemes [76] were employed to design
local time-stepping schemes for large electromagnetic prob-
lems. Both methods are suited for an efficient implementa-
tion on GPUs. For selected large problems, the authors have
demonstrated significant performance gains over standard
LSRK techniques with a global time step.

Alternatively, one can employ hybrid implicit-explicit
time stepping schemes [68]. Implicit time steppers require
the solution of a system of linear equations, which is in con-
trast to the explicit nature of the usual DGTD update process.
However, implicit schemes are unconditionally stable and
allow large time steps with comparatively small numerical
errors. By applying an implicit scheme to the smallest cou-
ple of elements only, one can increase the overall time step
while keeping the computational effort per time step within
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reasonable bounds. The fields in the remaining elements are
evolved in the usual explicit manner.

5.3. Material models and coupled system
dynamics

The material models presented in this article should be suf-
ficient for most linear experiments in nanophotonics. How-
ever, nonlinear material responses [77] have attracted inter-
est of a large number of research groups and become more
important each day.

Classical nonlinearities of χ�2� and χ�3� type are respon-
sible for the optical Pockels and Kerr effects, wave mixing
phenomena, etc., and are often found in substrate materi-
als such as GaAs. The inclusion of nonlinear effects in the
DGTD framework is not easy. The main problem is to find
an efficient and accurate expression for the numerical flux.

In addition, nonlinear system dynamics arise when deal-
ing with more sophisticated material models, too. For exam-
ple, the simple Drude theory of metals could be extended
to a hydrodynamic model, which describes the free metal
electrons in terms of charge and current densities [78]. One
obtains additional equations which have to be solved con-
currently with Maxwell’s equations. The coupling between
both types of equations via currents and driving fields intro-
duces nonlinearities and leads to the generation of higher
harmonics. Other examples of coupled systems include the
interaction of classical light fields with quantum mechani-
cal systems. For example, the radiation dynamics of light
emitted from quantum wells or atoms can be significantly
influenced by the surrounding media [77].

While the linear regime seems to be well understood, it
appears that, so far, it has not been reported yet how to in-
corporate non-linear material models in the DG framework
for Maxwell’s equations. Once this issue is solved, it will
open a whole new research area to the powerful machinery
that is the DG method.

We believe that the discontinuous Galerkin method is on
a good way to become one of the most efficient and versatile
simulation tools for all kinds of nanophotonic systems. We
are eager to see which further developments the future holds.

A. Appendix: Essential extensions for
practical use

The algorithm presented in the main part of this article is
able to deal with straight-sided objects made out of non-
dispersive materials. These objects are enclosed in a compu-
tational domain whose boundaries either perfectly reflect or
absorb a good portion of incoming light.

At this point, we are unable to simulate metallic struc-
tures in the near-infrared and visible spectrum, where a
perfect electric conductor no longer presents a valid approx-
imation to the dispersive material properties. Plasmonics,
and thus a complete area of nanophotonic research, would
be out of reach.

We might also be interested in the scattering properties
of isolated particles. To access these in a well-defined way,
we need control over both incident and outgoing radiation.
A method to add energy to the system and, in particular, to
inject arbitrary pulses is required. In addition, one has to im-
prove on the absorbing boundary conditions to properly ter-
minate the computational domain and avoid non-negligible
reflections from the outer boundaries.

Furthermore, many realistic systems present us with
significant modelling issues. Photonic crystals often use
circular and spherical shapes as building blocks, e. g., circu-
lar holes in a silicon membrane or SiO2 beads as building
blocks of opals. Thus, a proper simulation requires an accu-
rate description of round objects which quickly leads to a
large number of rather small elements when using straight-
sided elements.

Last but not least, we have not yet considered how to
extract physical quantities of interest from mere field distri-
butions. How can we efficiently obtain spectra from time-
domain simulations?

The next few sections will address all these issues and
present all the necessary techniques to obtain a versatile
simulation tool which is applicable to a wide range of prob-
lems.

A.1. Sources

When modelling a physical system one usually thinks in
terms of materials and geometrical structures. Equally im-
portant, though, is how the system is illuminated as the
properties of the incident light decide whether we will ob-
serve interesting physics or not. Consequently, control over
strength, polarisation, propagation direction, and frequency
(spectrum) of an incident wave is desired for a number of
possible illumination patterns, which include plane waves,
waveguide modes, focussed laser beams, point sources,
shaped beams [79] and many more.

In principle, almost arbitrary radiation patterns can be

included via properly set initial conditions for�E and �H. Un-
fortunately, even short pulses show significant field strengths
in rather large volumes. Hence, additional computational
effort is needed just to model the illumination. Furthermore,
some patterns such as a dipole source in close vicinity to
a scatterer cannot easily be represented using initial condi-
tions. As soon as the initial fields are non-zero within the
scatterer, wrong results will be obtained unless the scatterer
is incorporated during the calculation of the initial field pat-
tern. If this were the case, however, there would be no need
for a simulation in the first place. Finally, frequency-domain
simulations do not support initial conditions. Thus, we need
another way to deal with incident fields. The method of
choice is the total-field/scattered-field technique, which is
efficiently implemented via the numerical flux.

A.1.1. The total-field/scattered-field technique

The total-field/scattered-field (TF/SF) technique is very pop-
ular for incorporating plane wave sources in FDTD simula-
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Figure 15 (online color at: www.lpr-journal.org) Illustration of the total-field/scattered-field technique as discussed in Sect. A.1. a) The
computational domain is split into a total-field and a scattered-field region. The blue line indicates their mutual interface. b) Zoom on
the elements highlighted in a). One element stores total field components �Et while the other stores scattered field components �Es.
According to Sect. 2.3, the field differences across element interfaces are given by the fields in the neighbouring element minus the field
in the local one, as indicated by the arrows. c) After the field differences for all elements have been calculated according to b), the field
differences on the total-field/scattered-field interface are modified. Using the incident field�Ei we can convert�Es to�Et and vice versa.

tions [20, 80]. It relies on the linearity of Maxwell’s equa-
tions, which allows us to split the electromagnetic fields into
two contributions:

�Et ��r� t� ��Ei ��r� t���Es ��r� t� �

�Ht ��r� t� � �Hi ��r� t���Hs ��r� t� �
(22)

The subscripts “t” indicate the total, i. e., physical fields,
whereas “i” and “s” represent incident and scattered fields,
respectively. The incident field is the known analytical ex-
pression for the desired illumination pattern, e. g., the field
distribution of a plane wave. With its help, one can calculate
scattered fields from total fields and vice versa.

Acknowledging this, we exploit that elements only cou-
ple to their immediate neighbours and divide the compu-
tational domain into two regions. In the TF region we are
interested in the total fields. Similarly, we solve for the scat-
tered fields in the SF region. Because of the linearity of
Maxwell’s equations and ansatz (22), Maxwell’s equations
remain valid for both the TF and the SF region. Hence, we
solve the equations

Q ��r� �∂tqt ��r� t���∇ �

�F�qt� � 0

Q ��r� �∂tqs ��r� t���∇ �

�F�qs� � 0

in the respective domains. In the event of the DG discretisa-
tion, we will eventually encounter the field differences

Δ�Et ��r� t� ��E�t ��r� t���E�t ��r� t� �

Δ�Es ��r� t� ��E�s ��r� t���E�s ��r� t� �

which we need for the computation of the numerical flux.
As previously introduced in Sect. 2.3, “�” represents the
value of the neighbouring element while “�” represents the
local one. As long as we are in the interior of either the

TF or the SF region, the evaluation of the field differences
is straightforward. However, right at the interface between
both regions we cannot immediately use the field values of
the neighbouring element. For example, the neighbour of an

element in the TF region stores�Escat, and not�Etot as would
be needed. Fortunately, we can use relation (22) to obtain

Δ�Et ��r� t� ��E�s ��r� t���E�t ��r� t���Ei ��r� t� �

Δ�Es ��r� t� ��E�t ��r� t���E�s ��r� t���Ei ��r� t� �
(23)

Similar statements hold for the differences of the magnetic
field. To include TF/SF sources in an existing code, we do
not have to distinguish between total fields and scattered
fields or even implement independent discretisations of Max-
well’s equations in both regions. Instead, it is sufficient to
update the field differences on the TF/SF boundary by either
adding or subtracting the incident field according to (23).
Hence, the TF/SF technique is an ideal extension to the DG
method. The TF/SF procedure is illustrated in Fig. 15.

As long as analytical (or semi-analytical) expressions
for both the electric and the magnetic components of the
incident field are available, we can readily use the source.
Field distributions for a number of relevant sources can be
found in many text books, for example, see [81, 82].

A.1.2. Point sources

Typically, the mathematical trick of the TF/SF technique
presented in the last section is used for beam sources such
as plane waves. Alternatively, one might utilise the actual
source terms in Maxwell’s equations. This method has con-
siderable appeal for the modelling of point sources, which
are easily represented by singular current distributions

�js ��r� t� ��j0 � f �t� �δ 3 ��r��r0� �

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org



Laser Photonics Rev. (2011)

REVIEW
ARTICLE

25

where δ 3��� denotes the three-dimensional Dirac distribu-

tion. In addition, we have defined the polarisation vector�j0,
the source’s time dependence f �t�, and its position�r0. In

principle, one can include such a source by adding�j0 � f �t�
to the expansion coefficients of the electric field at a sin-
gle node.

As it turns out, Lagrange polynomials as used for the
field expansion (see Sect. 2.5) are notoriously bad at resolv-
ing the – theoretically infinite – field values in the vicinity
of�r0. If one is really interested in the field distribution near
a point source, one has to locally refine the mesh. Following
the discussions of Sect. 3.1.2, this will drastically reduce the
time step and is, thus, unfavourable.

Therefore, we have proposed to model current sources
via the TF/SF technique as well [32]. In contrast to the usual
layout of the computational domain, the total-field region
encloses the scattered field region, which in turn contains
the point source. For this setup, the field distribution on
the TF/SF interface is semi-analytically computed using
free space Green’s functions and quadrature rules to nu-
merically perform the required integrations. Following this
approach, point sources can be simulated both accurately
and efficiently.

A.1.3. Typical time dependencies

The total-field/scattered-field technique, which we apply to
both point and beam sources, requires the incident field dis-

tribution�Ei ��r� t� according to Eq. (23). The most common
source, a plane wave, can be written as

�Ei ��r� t� ��E0 �Re
�

exp
�
�iω0t ��φ0

��
�

t � � t �
�k ��r���k�� � c �

(24)

Here, �E0 represents the polarisation and amplitude of the

incident electric field,�k is the wave vector and characterises
the direction of propagation, ω is the (angular) frequency of
the incident wave, and φ0 denotes the initial phase. The spa-
tial shape of the plane wave is absorbed into the local time
parameter t �, wherein the speed of light, c, in dimensionless
units is identical to the refractive index of the medium. Eq.
(24) is a naı̈ve approach to model a plane wave. Though
clearly being a valid description, it is disadvantageous for
numerical simulations for a number of reasons:

– The plane wave exists for all times, it has neither a well-
defined beginning nor an end. As the sum of incident
and scattered field must match the total field, the initial
condition in the total-field region must match the incident
wave. If it does not, artificial, non-physical scattering will
be introduced by the TF/SF interface. However, modify-
ing the initial condition is not trivial, especially in the
presence of scatterers. If we knew how an initial field in
the presence of a scatterer could be calculated, we would
not need the simulation anyway.

– A Fourier transform is often employed for data acquisi-
tion and analysis (see Sect. A.6.1 for a detailed discus-
sion). Accurate results require the fields of interest to
decay until the end of the simulation. The plane wave as
given by Eq. (24) does not decay at all.

– Obviously, it incorporates waves of only a single fre-
quency ω0. This eventually leads to a steady state. For
such computations frequency domain simulations seem
more appropriate.

To improve on our simple approach we replace the harmonic
time dependence by

�Ei ��r� t� ��E0 �Re
�

f
�
t ���r� t�

��
� (25)

Again, t � ensures the spatial shape of a propagating plane
wave is maintained. The newly introduced complex-valued
scalar function f �t� represents the time-dependence of the
amplitude at the origin of the coordinate system.

The freedom of choosing f �t� is essential for the success
of time-domain simulations. For time-harmonic calculations,
we are obviously stuck with f �t� � exp��iωt�φ0�. Let us
consider the important choice

f �t� � i � exp

�
�iω0 �t � t0��

�t � t0�
2

2σ2

�
� (26)

It represents a harmonic oscillation with frequency ω0 with
a Gaussian envelope centred around t0 with width σ . Due to
this envelope, all problems which we have discussed earlier
are accounted for:
– For t � 0, the electromagnetic fields are sufficiently close

to zero for all positions�r within the total-field region,
provided that t0 is sufficiently large. Hence, the artificial
scattering introduced by the mismatch of the initial (zero)
condition and the incident field is minimised.

– Similarly, for large values of t the Gaussian envelope will
exponentially suppress the amplitude of the incident field.
Only a finite amount of energy is injected into the system.
Losses in the system, either via dispersion (Sect. A.2)
or absorbing boundary conditions (Sects. 2.4 and A.4),
eventually lead to a decay of the electromagnetic fields.
Thus, errors due to residual fields in subsequent Fourier
transformations are minimised.

– Last but by far not least, the Fourier transform of the real
part of the time-dependence (26) is proportional to

exp

�
�

σ2

2
�ω �ω0�

2

	
� exp

�
�

σ2

2
�ω �ω0�

2

	
�

Please note that the minus sign between both exponen-
tial functions is a consequence of the coefficient “i” in
Eq. (26). Evidently, the energy of the incident pulse is
distributed across a whole frequency band instead of just
a single frequency. There is no contribution for ω � 0,
thus we avoid the creation of static fields. The larger σ ,
i. e., the longer the duration of the pulse, the narrower
the band of significantly contributing frequencies will
be. Conversely, low values of σ , which correspond to
ultra-fast pulses in the time-domain, lead to very broad
frequency bands.
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Here, the last point is particularly important for time-domain
methods. A single time-domain simulation with such a
broad band excitation is sufficient to determine the sys-
tem’s response to a vast number of plane waves of different
frequencies. Thus, using appropriate signal processing tech-
niques, one time-domain simulation is equivalent to many
frequency-domain simulations. Depending on the desired
spectral resolution and the system, either calculation can
be faster.

For spatial profiles other than a plane wave, dispersion
is often a problem. For example, the shape of a focussed
laser beam heavily depends on its frequency. Similar state-
ments hold for waveguide modes and other profiles. In this
case, one calculates the spatial field pattern for a central
frequency ω0 and uses a slowly ramped (large σ ) Gaussian
pulse (26) for the time-dependence. This leads to a very
sharp, well-defined peak in the frequency spectrum while at
the same time avoiding the problems which would be other-
wise introduced by a standard harmonic time dependence.

Other time-dependencies might be interesting to match
experiments involving ultra-fast phenomena or to achieve
coherent control [60,79,83]. In particular, the application of
time-reserved pulses to achieve spatio-temporal localisation
of radiation is most appealing [84]. The higher-order spatio-
temporal discretisation of the DGTD method appears to be
ideally suited for such problems.

A.2. Dispersive media

Dispersive materials are often encountered when dealing
with nanophotonics. The refractive indices of many di-
electrics show only small variations with frequency. It is
often a reasonable assumption to use a constant value for
the permittivity. In contrast, metals such as silver and gold
exhibit dramatic dispersion in the visible and near-infrared
regime, where the real part of the permittivity changes its
sign and absorption becomes a dominant effect.

Dispersive materials enter Maxwell’s equations via the
constitutive relation

�D�ω� � ε �ω� ��E�ω� � (27)

This equation features the electric displacement�D, which de-

pends on both the permittivity ε and the electric field�E. Note
that all quantities are frequency-dependent! Apparently, this
formulation is ideal for Eq. (20), the frequency-domain ver-
sion of Maxwell’s equations. There, it is sufficient to replace
the constant ε (hidden in the system operator H ) by the
frequency-dependent ε �ω�. Apart from the system operator
now being frequency-dependent and complex-valued, this
does not change the algorithm at all.

On the other hand, Eq. (27) poses severe problems
for the time-domain formulation. After Fourier transforma-
tion, the time derivative of (27) for frequency-independent
ε �ω�� ε is given by

∂t�D�t� � ε �∂t�E�t� � (28)

With this, we recover Eq. (1), Maxwell’s curl equations
for dielectric materials. In the general case, however, the
constitutive relation will transform like

�D�t� �
t�

�∞

ε
�
t� t �

�
��E

�
t �
�

dt � �

Several methods to deal with dispersion have been devel-
oped for FDTD [20]. Here, we will present a technique
based on auxiliary differential equations, which is best
suited for inclusion into a DGTD framework [32, 65]. It re-
quires only minimal changes to the frequency-independent
case and is useful for a couple of other extensions as well.

A.2.1. Auxiliary differential equations

Our time-domain formulation relies on analytical models
for the dispersion. Our goal will be to find an expression for

�iω�D�ω� � ∂t�D�t� �

which is easily transfered from the frequency- to the time-
domain. As a first step, we separate the permittivity into

ε �ω� � ε∞� χ �ω� �

where ε∞ is a constant background permittivity and χ �ω�
is the frequency-dependent susceptibility. Inserting this re-
lation into (27) yields

�iω�D�ω� ��iωε∞ ��E�ω���j�ω� � (29a)

�j�ω� ��iωχ �ω� ��E�ω� � (29b)

Here, we have defined an auxiliary field�j�ω� which rep-
resents a polarisation current. Transforming (29a) into the
time-domain yields

∂t�D�t� � ε∞∂t�E�t���j�t� �

Except for the newly introduced field�j�t�, the last expres-
sion is just the time-derivative of Eq. (28). In particular, no
convolution integral enters Maxwell’s curl equations. The
time-evolution of the auxiliary current is governed by the
Fourier transform of (29b). For properly chosen susceptibil-
ity models, i. e., rational functions with respect to iω , this

will lead to auxiliary differential equations (ADEs) for�j�t�
(and probably additional auxiliary fields), which have to be
simulated in parallel to Maxwell’s curl equations.

A.2.2. Drude model

In the course of the derivation of the Drude model, one
assumes that the metal’s conduction electrons behave as
charged free particles which are subjected to an external
electric field. In other words, they form an ideal classical
gas. All interactions with other electrons and core ions are
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absorbed in a phenomenological collision frequency γD. For
the susceptibility we find

χD �ω� ��

ω2
D

ω � �ω � iγD�
(30)

with the sign convention (16). In addition to the collision
frequency, we have introduced the plasma frequency ωD. In
practice, one can consider γD, ωD, and ε∞ as free parameters.
Using a fitting procedure, one can reproduce both real and
imaginary parts of the permittivity for metals in the near-
infrared regime with surprising accuracy. Inserting (30) into
(29b) yields

�iω�jD �ω� � ω2
D
�E�ω�� γD�jD

after a few algebraic manipulations. The necessary time-
domain equations now read

ε∞∂t�E�t� � �∇��H�t���jD �t� �

∂t�jD �t� � ω2
D
�E�t�� γD�jD �t� �

(31)

As soon as we want to simulate metals using a Drude model,
we incur costs of one ADE per electric field component.
For each additional Drude pole, we have to introduce yet
another ADE per electric field component.

A.2.3. Lorentz oscillators

The Drude model is fairly limited when it comes to the
description of metals in the visible regime. There, higher
photon energies induce interband transitions of the electrons.
Such transitions are not covered by the Drude model. Addi-
tional Lorentz oscillators provide a simple model for such
processes as well as effects associated with bound charges.
The resulting susceptibility

χL �ω� �
ΔεL �ω2

L

ω2
L � iγLω �ω2

(32)

translates easily into the time-domain. In this expression,
ΔεL represents the strength, ωL the resonance frequency, and
γL the damping coefficient of the oscillator. Again, we have
used the sign convention (16). Inserting (32) into (29b), one
obtains

�iω�jL �ω� � ΔεLω2
L
�E�ω���pL �ω�

with the abbreviation

�p�ω� ��

ω2
L
�j�ω�� γLΔεLω2

L
�E�ω�

γL� iω
�

The latter can be manipulated further to obtain

�iω�p�ω� ��ω2
L
�j�ω�� γLΔεLω2

L
�E�ω�� γL�p�ω� �

Again, applying a Fourier transform yields the time-domain
formulation

ε∞∂t�E�t� � �∇��H�t���jL �t�

∂t�jL �t� � ΔεLω2
L
�E�t���pL �t� (33)

∂t�pL �t� ��ω2
L
�jL �t�� γLΔεLω2

L
�E�t�� γL�p�t� �

In contrast to the Drude model, we need to store two auxil-
iary fields�jL and�pL. Yet, it is also possible to add an arbi-
trary number of Lorentz poles at the price of two additional
auxiliary fields for each pole.

A.2.4. Implementation and efficiency considerations

The ADEs (31) and (33) can be readily included into the
DG discretisation scheme. In analogy to the electromagnetic
fields we expand the auxiliary fields in terms of Lagrange
polynomials and obtain a set of expansion coefficients. As
the auxiliary equations themselves do not include spatial
derivatives, the spatial discretisation merely introduces the
mass matrix M� on both sides. Multiplying with the inverse
mass matrix recovers the very same auxiliary equations (31)
and (33) we had for the continuous fields, but this time for
the expansion coefficients. Hence, the system operator con-
tains diagonal ADE blocks (compare Sect. 3.2.4 and Fig. 7).
The absence of spatial derivatives in the ADEs also ensures
that we can use the same flux as for the dielectric formula-
tion.

At first glance it seems quite expensive to store addi-
tional field components. A single Lorentz pole, for example,
doubles the number of unknowns in three-dimensional sim-
ulations. It is, however, important to note that in most simu-
lations only a small fraction (typically below 10%) of the
elements will be filled with a metal. A little book keeping
allows us to restrict the necessary ADEs to these elements
only. As a consequence, the storage of auxiliary fields can
be avoided on all non-metallic elements. Furthermore, mem-
ory is usually not an issue for time-domain simulations,
where the CPU time consumption generally is the limiting
factor. However, because of the absence of matrix opera-
tions evaluating the Drude-Lorentz ADEs is very fast. As a
consequence, the inclusion of metals in a DGTD framework
merely leads to slight performance impairments.

To add these ADEs into an existing DG framework, two
simple steps should be sufficient.
1. The expansion coefficients for the auxiliary fields must

be integrated into the vector of expansion coefficients
q̃. As discussed previously in Sect. 3.2.4, we suggest to
store all degrees of freedom of a single element in a
contiguous block of memory.

2. For most elements, the system operator H without
ADEs can be immediately applied. For all other ele-
ments, one first applies the existing operator. Then, one
applies the corrections due to the dispersion ADEs in a
post-processing step.

With the vector q̃ and the system operator H thus modi-
fied, the existing Runge-Kutta solver can be used to do the
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time stepping of both physical and auxiliary fields at the
same time.

A.2.5. Material parameters

Quite a few publications have dealt with the experimental ac-
quisition of material parameters for a wide range of metals.
Johnson and Christy have tabularised the optical properties
of gold, silver, and copper for various photon energies in
the optical and near-infrared regime [70]. They also provide
commonly used fit parameters for a Drude model. Ordal
et al. have compiled tables for a number of metals, includ-
ing non-noble metals like aluminium [85]. Fit parameters
can also be found in their paper. Vial et al. improve on the
simple Drude metal for gold using an additional Lorentz
term [86]. They report a much better fit in the visible spec-
trum, especially for the imaginary part of the permittivity.
Unfortunately, the present review cannot cover this topic in
more detail, but the references may provide a starting point
for a more detailed research.

A.2.6. Notes on the frequency-domain

As mentioned previously, auxiliary fields and differential
equations are not needed in the frequency-domain. One can
directly use tabulated parameters without the need to model
a dispersion relation. In particular, one is not restricted to
materials for which accurate analytical models are available.

However, H will now depend on the frequency. Eigen-
value problems as stated by Eq. (19) require a frequency-
independent matrix H . One can either approximate H �ω�
for some frequency of interest ω0, or one can directly in-
clude the dispersion using the ADE technique. In the former
case, one only considers solutions with frequencies close
to ω0 and hopes that the material parameters do not change
too much in this regime. In the latter case, one obtains valid
solutions in the whole spectral range, where “valid” means
“with respect to the analytical model”.

A.3. Optically anisotropic materials

For the derivation of the discontinuous Galerkin discretisa-
tion we have used Maxwell’s equations (1) as its starting
point. For simplification we have assumed the material prop-
erties to be both dispersionless and isotropic. In the previ-
ous section we have seen how to allow dispersive materials
within the DG framework. In the following we will tackle
the problem of anisotropic material parameters which are
often encountered in the field of nanophotonics.

In particular, light propagation in crystals is often gov-
erned by optical anisotropy, e. g., birefringence. Liquid crys-
tals are of special interest, as their optical axes can be re-
aligned by applying external electric or magnetic fields.
Another potential application is the simulation of effective
materials. Certain structures interact with light on a sub-
wavelength scale and, thus, may often be considered as

effective media whose properties are determined by their
respective building blocks. Specially tailored materials with
effectively anisotropic permittivity tensors are potential can-
didates to facilitate optical cloaking, i. e., rendering an object
“invisible” to an observer [7, 87].

A.3.1. Update equations

For simplicity we restrict our discussion to the important spe-
cial case of two-dimensional systems in transverse-electric
polarisation with relevant field components Ex, Ey, and Hz.
We maintain an isotropic permeability μ and assume a ten-
sorial permittivity

ε �
�

εxx εxy

εyx εyy

�
�

Retracing the steps of the spatial discretisation we finally
arrive at [64]

∂t Ẽ
�

x � ηxx
�
M�

�
�1
�S �

y H̃�z

�ηxx
�
M�

�
�1
�F�

f

�
n̂ �
�
�F f ��F�f

��
Ex

�ηxy
�
M�

�
�1
�S �

x H̃�z

�ηxy
�
M�

�
�1
�F�

f

�
n̂ �
�
�F f ��F�f

��
Ey

�

(34)

where we have introduced the inverse permittivity tensor

η �

�
ηxx ηxy

ηyx ηyy

�
� ε�1 �

Equation (34) is the semi-discrete formulation for the
field component Ex for anisotropic materials and, thus,
represents a generalisation of Eq. (10). Please note that�
n̂ �
�
�F f ��F�f

��
Ex

represents the contribution due to the nu-

merical flux across the element’s face f which would be
added exclusively to Ex under normal conditions, i. e., for
isotropic materials.

An expression similar to Eq. (34) can be found for Ey.
For Hz we find no modifications as compared to the original
semi-discrete form. However, the numerical flux undergoes
some changes which we describe in the next section.

A.3.2. Numerical flux

The original expression for the numerical upwind flux (6)
involves field differences across the element interface and
scalar material properties ε and μ via the impedance Z and
the conductance Y . As we have a tensorial permittivity, it is
clear that the numerical flux needs to be modified. To this
end, one can either choose a different kind of flux, e. g., a
central flux [63], or derive a modified expression for the
upwind flux. As it turns out, the tensorial permittivity – at
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a given interface between elements – can be reduced to an
effective scalar value

εeff �
detε
n̂T ε n̂

�

As before, n̂ denotes the outwardly oriented normal vector
of an element’s face. Using εeff instead of ε in the definitions
of Z and Y while keeping the remaining formulae leads to a
numerically stable scheme which preserves the convergence
properties of the DG discretisation [64]. Thus, wave prop-
agation in systems with anisotropic materials is properly
accounted for.

A.4. Absorbing boundary conditions

Being a volume method, the discontinuous Galerkin tech-
nique cannot inherently solve infinitely extended systems.
In contrast to, e. g., Green’s functions techniques, the basis
functions are spatially localised. In particular, there are no
dedicated basis functions for radiation into the infinity of
space. Though this property basically leads to the explicit
time-stepping scheme and the sparsity of the system matrix,
it complicates the simulation for many physical situations.

In nanophotonics, one is often interested in studying
isolated particles, i. e., particles which are surrounded by
free space and perhaps lie on a substrate. One might also be
interested in a transmittance spectrum for a periodic array
of building blocks. There, the incident illumination is both
transmitted and reflected into free space.

All energy which is radiated into infinity will be lost
for the actual system of interest, because infinity does not
contain any scatterers. Hence, if we have to terminate our
computational domain, its boundary should perfectly absorb
incident light irrespective of its angle of incidence, wave-
length, and polarisation. Analytical absorbing boundary con-
ditions such as the Silver-Müller condition (see Sect. 2.4)
locally enforce boundary conditions in order to inhibit back-
wards propagating, i. e., reflected waves. Such a procedure
works well for only a limited number of angles of inci-
dence, e. g., for normal incidence. Other angles undergo
non-negligible reflections.

To minimise the deviation of the angle of incidence
from some ideal value, say 0�, one can increase the dis-
tance between the boundary of the computational domain
and the scatterer. For example, one might place a metallic
nanoantenna in the centre of a large spherical computational
domain. Thus, outgoing spherical waves will impinge on the
boundary of the computational domain almost perpendicu-
larly. The downside of this approach is that it significantly
increases the number of unknowns, where most elements
will basically simulate free space. For this reason analytical
absorbing boundaries often do not suffice in practice.

An alternative technique has been found most useful to
solve this problem. The idea is to divide the computational
domain into an actual region of interest and a surrounding
layer made of a strongly absorbing artificial material. This
layer’s material properties are designed to perfectly match

Figure 16 (online color at: www.lpr-journal.org) Sketch of the
PML concept. The computational domain is divided into a physical
region and an absorbing layer. Impinging waves pass the mutual
interface of both regions without reflections. Within the PML the
electromagnetic waves undergo continued attenuation – even
after they have eventually been reflected at the computational
domain’s boundary. To the electromagnetic fields in the physical
region the re-entering waves merely present minor perturbations.

the impedance of the region of interest, thus avoiding re-
flection at their mutual interface regardless of the angle of
incidence. Hence, this layer is called a perfectly matched
layer (PML).

Any wave which comes from the interior and hits the
PML will pass the interface unobstructed (see Fig. 16). In
the PML itself, the wave will continue to propagate until
it impinges on the boundary of the computational domain.
Depending on the boundary condition, e. g., a Silver-Müller
absorbing boundary, the wave will be reflected at least par-
tially. Again, it propagates through the PML and passes the
interface to the region of interest. At this point, the wave’s
amplitude must have decayed sufficiently to avoid substan-
tial influence on the physical system. Hence, the PML must
consist of a lossy material. Nowadays, PMLs are a standard
technique for the terminating open systems. Numerous for-
mulations are available. In the following, we will present
two different approaches.

A.4.1. Uniaxial perfectly matched layers

The uniaxial perfectly matched layer (UPML) approach is
very convenient for the DG method [32, 61]. Consider an
element with (scalar) material properties ε and μ . If this
element were to be an element within a UPML layer, one
would change its material properties to

ε �
� Λε� μ �

� Λμ� Λ�

�
�����

sysz

sx
0 0

0
sxsz

sy
0

0 0
sxsy

sz

�
�����

� (35)

The PML parameters si, i� x� y� z are chosen as

si �ω�� 1�
σi

iω
� (36)
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where σi controls the damping of a wave propagating along
the i-direction. A numerical study to determine optimised
UPML parameters was carried out in [32]. We observe that
si is both complex-valued and dispersive. Please note that
Eq. (36) also obeys the sign convention (16).

As this ansatz introduces a modified tensorial material
constant ε � �ω� with dispersive properties, we consequently
apply the ADE technique as introduced in Sect. A.2.1. We
are looking for an expression for

�iω�D�ω� ��iωε � �ω��E�ω�

which easily transforms into the time-domain. In the follow-
ing, we will only consider the x-component of the electric
field to simplify the notation. Analogous procedures lead
to expressions for the other two components and for the
magnetic field. Inserting (35) yields

�iωDx �ω� ��iωεEx � jx �ω� (37a)

jx �ω� ��iωε �
�

sysz

sx
�1

�
�Ex �ω� � (37b)

Using definition (36) we can rewrite (37b) to obtain

�σx jx �ω� ��iω � jx �ω�� ε � �σx�σy�σz� �Ez �ω��

� εσyσzEx �ω� �

With the auxiliary field

px �ω� � jx �ω�� ε � �σx�σy�σz� �Ez �ω�

we can eliminate jx from both equation (37a) and the pre-
vious one. Applying the – then trivial – Fourier transform,
one obtains

∂tEx �t� � ε�1
�
�∇��H�t�

�
x

��σx�σy�σz� �Ex �t�� ε�1 px �t�

∂t px �t� �
�
σ2

x �σxσy�σxσz �σyσz
�
� εEx �t��σx px �t� �

Apparently, UPMLs introduce one additional field com-
ponent per electromagnetic field component. Please note
that in the region of interest, i. e., the domain which is sur-
rounded by the PML, we have σx � σy � σz � 0. In this
case, we do not need to store the auxiliary fields as both the
initial condition and the time derivative of the field is zero.
Following the DG discretisation procedure, one obtains the
matrix form

∂t Ẽx �t� � ε�1
�
M�

�
�1

�
�S �
� �̃H�t�

�
x

��σx�σy�σz� � Ẽx �t�� ε�1p̃x �t� � (38)

∂t p̃x �t� �
�
σ2

x �σxσy�σxσz �σyσz
�
� εẼx �t��σxp̃x �t� �

Please note the convenient absence of additional matrix-
vector products in Eq. (38). This is an immediate conse-
quence of the locality of the UPML ADEs which do not
feature spatial derivatives.

Though UPMLs are fairly easily formulated for simple
dielectric materials, the derivation is more complicated for
dispersive materials. In this case, it is useful to write

� iωDx �ω�

��iω
�
ε∞ � χ �ω�

�
�

�
1�

�
sysz

sx
�1

��
�Ex �ω�

��iωε∞Ex �ω�� iω
�

sysz

sx
�1

�
�Ex �ω�

� iωχ �ω�Ex �ω�� iω
�

sysz

sx
�1

�
�χ �ω�Ex �ω� �

The first three terms are the contribution from the dielectric
material properties, the UPML for dielectric materials, and
the dispersive material part as already known from previous
discussions. The last term can be generically written as

kx �ω� ��iω
�

sysz

sx
�1

�
�χ �ω�Ex �ω�

�

�
sysz

sx
�1

�
� jx �ω� �

where jx �ω� is the polarisation current as given by Eq.
(29b). Eventually, the combination of dispersive materials
and a UPML layer leads to an additional auxiliary field for
each electric field component. This is also true if the disper-
sion is modelled using multiple Drude and Lorentz poles.

A.4.2. Stretched coordinate formulation

Alternatively, PMLs can be implemented in a stretched-
coordinate formulation [88, 89]. In essence, in the PML
region we map real-valued x� y� z onto the complex plane.
As a result, the product of a real-valued wave vector and the
– now complex-valued – position vector gains an imaginary
part. Thus, formerly propagating waves are converted into
evanescently decaying ones. Stretched coordinates can be
introduced into Maxwell’s equations via the substitutions

∂
∂x
�

1

sx

∂
∂x

�
∂
∂y
�

1

sy

∂
∂y

�
∂
∂ z
�

1

sz

∂
∂ z

�

Similarly to the UPML case in the previous section, we
define a complex-valued stretching factor

si �ω�� 1�
σi

iω�αi
� (39)

As compared to Eq. (36), we have added the real number α
which corresponds to a complex frequency shift. The above
stretching factor is also commonly used for FDTD simula-
tions [20], where one often replaces the “1” in Eq. (39) by a
real stretching factor κi. However, instead of including a real
stretching in the equations, one can simply stretch the mesh
itself in the PML region. As this is easily accomplished
during mesh generation, we can always set κi � 1 without
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sacrificing generality. The remaining parameters must be
carefully optimised to minimise the numerical errors. One
such study was carried out in [89] for a three-dimensional
reference system.

To highlight the essential points, we again restrict the
derivation to the necessary changes to the Ex-component. In
the frequency domain, the relevant component of Maxwell’s
equations read

�iωεEx �ω� �
1

sy
∂yHz �ω��

1

sz
∂zHy �

Using a similar trick as in the derivation of the UPML for-
mulation, we obtain

�iωεEx �ω� � ∂yHz �ω��∂zHy �ω��Gxy �ω��Gxz �ω� �

Gxy �ω� ��

�
1

sy
�1

�
�∂yHz �ω� �

Gxz �ω� �
�

1

sz
�1

�
�∂zHy �ω� �

Here, we have introduced two auxiliary fields Gxy and Gxz.
They incorporate the effect on the x-component of the elec-
tric field due to a transformation along the y- or z-direction,
respectively. Inserting the stretching factor (39) yields

�iωGxy �ω� � σy∂yHz �ω�� �αy�σy� �Gxy �ω� �

�iωGxz �ω� ��σz∂zHy �ω�� �αz�σz� �Gxz �ω� �

Using the Fourier transform, one obtains the time-domain
formulation

∂tEx �t� � ε�1
� �∂yHz �t��∂zHy �t��Gxy �t��Gxz �t�� �

∂tGxy �t� � σy∂yHz �t�� �αy�σy� �Gxy �t� �

∂tGxz �t� ��σz∂zHy �t�� �αz�σz� �Gxz �t� �

For each component of the electromagnetic fields we need to
store two additional field components, i. e., the state vector q
contains two additional components. Furthermore, we note
that both auxiliary differential equations contain spatial
derivatives. In the event of the DG discretisation spatial
derivatives lead to coupling terms between neighbouring
elements. Hence, the numerical flux has to be modified as
well. Consequently, one obtains the semi-discrete scheme

ε�∂t Ẽ
�

x �
�
M�

�
�1
�

�S �
� �̃H�

�
x
�

�
G̃�xy� G̃�xz

�
�
�
M�

�
�1

F�

f �

�
n̂ �
�
�̃F f ��̃F�f

��
Ex

�

∂tG̃
�

xy � σy
�
M�

�
�1

S �

y � H̃�z �
�
α�y �σ�y

�
�G�xy

�σy
�
M�

�
�1

F�

f �

�
n̂ �
�
�̃F f ��̃F�f

��
Gxy

�

∂tG̃
�

xz ��σz
�
M�

�
�1

S �

z � H̃�y �
�
α�z �σ�z

�
�G�xz

�σz
�
M�

�
�1

F�

f �

�
n̂ �
�
�̃F f ��̃F�f

��
Gxz

�

(40)

Note that n̂ �
�
�̃F f ��̃F�f

�
represents a state vector similar to

q̃. Hence, the indices Ex, Gxy, and Gxz correspond to the
respective components of q̃.

The missing parts in the stretched-coordinate formula-
tion are the auxiliary components of the numerical fluxes.
Observing that the spatial derivatives in the ADEs represent
both terms of the original curl operator, it follows that�

n̂ �
�
�F��F�

��
Ex
�
�
n̂ �
�
�F��F�

��
Gxy

�
�
n̂ �
�
�F��F�

��
Gxz

�

Rewriting the definition (6) and identifying the origin of the
flux as the curl operator, we have

�
n̂ �
�
�F��F�

��
�E
� n̂�

Z� �Δ�H�α � n̂�Δ�E
Z��Z�

�

Having the definition of the numerical flux in mind, it is
evident that the operator n̂� represents the curl operator.
Splitting this operator into two parts [89] yields

�
n̂ �
�
�F��F�

��
Gxy

� ny

	
Z� �Δ�H�α � n̂�Δ�E

Z��Z�



z

�

�
n̂ �
�
�F��F�

��
Gxz

��nz

	
Z� �Δ�H�α � n̂�Δ�E

Z��Z�



y

�

In conclusion, employing a stretched coordinate formulation
into the DG framework requires us to split the numerical
flux. This is conceptually similar to the split field approach
originally used by Berenger to introduce PMLs.

A.4.3. Implementation and discussion

From an analytical point of view, both the UPML and the
stretched-coordinate formulation should be equivalent. In
their numerical performance, however, they show significant
differences. First of all, the UPML formulation introduces
one additional auxiliary field for each electromagnetic field
component. In comparison, the stretched coordinate ADEs
require two additional fields per component of the electric
and magnetic fields. Consequently, UPMLs are more mem-
ory efficient.

However, this is only true if the PMLs are used to ter-
minate dielectric materials. Since absorption is included via
a modified material tensor in the UPML formulation, addi-
tional auxiliary equations are necessary for the termination
of dispersive materials. On the other hand, the coordinate
stretching approach is material-independent since the spatial
derivatives in Maxwell’s curl equations are directly mod-
ified. Hence, stretched coordinates can be combined with
dispersive (and in principle even nonlinear) materials with-
out further changes to the numerical scheme.

Concerning the computational effort it is helpful to com-
pare Eqs. (38) and (40). Obviously, the inclusion of auxiliary
fields in the UPML formulation does not lead to additional
matrix-vector products. Instead, field components at any
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given node i only depend on other fields at the very same
node. Hence, UPMLs lead to a local formulation. In contrast,
stretched-coordinate ADEs feature spatial derivatives which
lead to matrix-vector products for both the actual deriva-
tives and the associated flux through the element boundaries.
Hence, the stretched-coordinate formulation requires signif-
icantly more computational effort.

Apart from the material independence of the stretched-
coordinate PMLs another point works in their favour.
The complex frequency-shifting parameter α in Eq. (39)
presents an additional parameter which can be tuned for
optimal performance. In particular, α �� 0 greatly improves
the absorption of low-frequency waves. Compared to the
UPML formulation, this can reduce numerical reflection
errors by one order of magnitude [89]. Both formulations,
however, lead to significantly more accurate results than
a simple termination of the computational domain using
a Silver-Müller boundary condition (see Sect. 2.4). Never-
theless, it is advantageous to use a Silver-Müller boundary
condition in conjunction with PMLs, which helps to slightly
reduce the reflection errors. More importantly, the error
becomes less sensitive to the PML parameters [89]. Thus,
we conclude that PMLs should always be terminated with
a Silver-Müller boundary condition, which is easily (and
efficiently) implemented via a modified numerical flux (see
Sect. 2.4).

A.5. Curvilinear elements

One of the key strengths of the DG discretisation is that it
does not rely on structured grids, but employs geometry-
adapted meshes instead. This allows to accurately represent
thin films, small features, tilted planes and more. However,
curved objects remain challenging to model, particularly
since we strive for meshes with as few elements as possible.
Specifically, we wish to avoid very small elements which
drastically limit the maximum stable time step. For this rea-
son, it makes sense to introduce curvilinear elements [34,90]
as a means to reduce the number of elements while at the
same time increasing the accuracy of the geometrical repre-
sentation.

When revisiting the derivation of the semi-discrete sys-
tem (10), we find that no assumptions were made on the
specific shape of the elements. The only place where the
shape of an element actually enters is in the construction of
the matrices (9). As discussed in Sect. 2.6, for straight-sided
elements we can generate the matrices of each element from
only five template matrices, evaluated on a straight-sided
reference element Vref.

If we wish to represent a curved element, this neces-
sarily leads to a non-affine mapping between the coordi-
nates�r� �x�y�z� of the curved element and the coordinates
�s � �u�v�w� of the straight-sided reference element. This
mapping can be described by a spatially dependent Jacobian
matrix J � ��s�.

For a given non-affine mapping, we then have to eval-
uate the matrices individually for every curved element.

In practice, one typically calculates the volume and sur-
face integrals numerically by employing suitable cubature
rules [91]. Then, the mass, stiffness and face-mass matrices
need to be stored individually for every curved element. This
leads to a dramatic increase in the memory consumption of
the calculation, but also significantly improves the accuracy
of the geometric description. Fortunately, in most systems
only a small fraction of the elements actually needs to be
curvilinear. Therefore, even rather large three-dimensional
systems can be treated without running into memory con-
straints.

An alternative approach which requires considerably
less memory than the conventional scheme presented here
was recently proposed by Warburton [92]. In essence, he re-
places the Lagrange polynomials by Lagrange polynomials
which are weighted by one over the inverse square of the
Jacobian:

Li ��r��
Li ��r��
detJ �

�

Employing this substitution renders the mass matrices in-
dependent of the element. Thus, only a single mass matrix
needs to be stored. On the other hand, this modification also
introduces correction terms which eventually require numer-
ical integrations. As a result, this approach trades memory
against speed.

The key problem in using curvilinear elements is find-
ing an appropriate mapping between the curved elements
and the reference element. There are multiple approaches
to tackle this problem: For simple geometries such as an
individual cylinder or a sphere, it might be possible to find
an analytic expression for the coordinate transformation.
For more complex systems, one can try to numerically mod-
ify the interpolation nodes such that they lie on the curved
surface [26, 34]. This approach allows an almost exact treat-
ment of arbitrary structures, but it significantly increases
code complexity since one needs access to the geometric
description of the physical system during the setup of the
DG calculation. Finally, the most common approach is to
employ a mesh generator which generates higher-order el-
ements. Such higher-order elements usually contain addi-
tional vertices, for example quadratic elements contain one
additional vertex at the centre of every edge. For such a
higher-order element, one can then explicitly generate a
polynomial mapping [24, 93].

While the last approach only yields a (usually lower-
order) polynomial approximation to the curved structure,
it represents the most general and convenient method. In
practice, already quadratic elements are often sufficient to
reach the desired accuracy.

A.6. Data recording and analysis

The natural output of discontinuous Galerkin simulations are
either time- or frequency-dependent expansion coefficients.
Using the local expansion basis, it is easy to convert these
coefficients into field distributions.

For comparisons with experiments it is important to
obtain quantities which have actually been measured. The
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field distribution itself is usually not accessible. Most ex-
periments cannot even resolve the time-dependence of the
electromagnetic fields. Instead, frequency spectra of inte-
grated quantities like the transmittance of a material slab are
often desired. This section briefly describes a few recurring
tasks related to simulation data recording and analysis.

A.6.1. On-the fly Fourier transform

Most systems are experimentally characterised in the fre-
quency-domain. Obviously, such quantities are naturally
obtained from frequency-domain computations. This sec-
tion, however, illustrates how to convert time-dependent
data into spectral data.

Obviously, the Fourier transform

f �ω� �

∞�

�∞

f �t� � exp�iωt� dt (41)

will do the trick. More precisely, as we deal with discretised
time steps a discrete Fourier transform is needed, i. e.,

f �ω��
T

∑
i�1

f �ti� � exp�iωti� �Δti � (42)

Here, f �t� is an arbitrary time-dependent quantity, f �ω� its
Fourier transform for frequency ω , T is the number of time
steps, and Δti represents the i-th time step. The popular fast
Fourier transform (FFT) [94, 95] is not the ideal choice to
evaluate Eq. (42). Though it is arguably the fastest method
to extract the complete information from a given time series,
it is subject to a few limitations:
– The time steps must be equally large. Time stepping

schemes with adaptive time steps cannot be implemented
if we want to use conventional FFT. In principle, how-
ever, generalisations to non-equidistant time steps are
available, e. g., see [96].

– Due to the divide and conquer strategy used by FFT, it is
essential that the complete time series is available at the
same time. For a single data point this is not a problem.
If one is, however, interested in recording fields on a
plane or in a volume, one often ends up with tens of
thousands of data points, each with its own series of time
steps. As it turns out, storing these series can be a severe
issue, even if the simulation itself easily fits into the main
memory.
Furthermore, the full spectrum is not always needed.

Most often, one is interested in a certain frequency range
with a certain resolution. For example, a metamaterial might
show an interesting behaviour between 800 and 1800nm.
A resolution of 5nm leaves us with a total of 201 wave-
lengths and, thus, frequencies of interest. As the number of
frequencies is orders of magnitudes smaller than the num-
ber of time steps, it is convenient to perform an on-the-fly
Fourier transform.

To this end, we specify frequencies ω j for which the
fields f should be recorded. After a time step, one updates

the Fourier coefficients according to

f �ω j� :� f �ω j�� f �tc� � exp�iω jtc� �Δtc �

Here, the subscript “c” denotes the current time step. Us-
ing this iterative update procedure, it is not necessary to
store the complete time series, as we only need one value
a time. In particular, the memory consumption of the on-
the-fly Fourier transform does not depend on the number of
time steps.

However, its accuracy does. The transition from contin-
uous time (41) to discrete time (42) caps the limits of the
integration. If the conditions

f �t�� 0 for t ���∞� 0� �

f �t�� 0 for t �
�
t f � ∞

�

are satisfied, the error of the discrete Fourier transform only
depends on Δt, which is usually sufficiently small due to
the explicit time stepping scheme. The first condition is
easily fulfilled by setting all initial expansion coefficients
to zero. The second condition states that the fields must
decay during the simulation, where t f is the final simulation
time. Even though this can never be achieved perfectly, the
system needs to be simulated long enough to allow for a
sufficient decay. Problems arise especially for systems with
high quality factors because they require extremely long
simulation times. If it is too short, oscillations appear in
the spectrum.

In essence, the Fourier transform – whichever way im-
plemented – allows us to obtain a spectrum from just a
single time-domain simulation. This is an important point,
as we do not have to launch multiple simulations with inci-
dent waves of slightly different frequencies. It is often cited
as a key benefit of time-domain methods.

A.6.2. Harmonic inversion techniques

In the previous section we have discussed the Fourier trans-
form as a means to extract frequency-domain quantities out
of time-domain simulations. Inconveniently, the accuracy
of the discrete Fourier transform heavily depends on the
simulation time. The underlying reason is that the Fourier
transform applies to any time signal irrespective of its phys-
ical origin and, thus, leads to very general and conservative
results. In the context of nanophotonics, however, we are
usually interested in resonances and modes, each charac-
terised by complex oscillation frequencies ωk (which in-
clude finite life time effects via the imaginary part) and
amplitudes ak. Hence, we decompose the electric field, or
any other field, as

Ex ��r0� t� �
K

∑
k�1

ak � exp��iωkt� �

The harmonic inversion problem is to obtain the unknown
parameters for a given time series. By specifying a finite
number K of modes within a certain frequency range, it is
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possible to reduce this problem to the solution of a gener-
alised eigenvalue problem [97]. Sophisticated implementa-
tions such as Harminv are freely available [98] and provide
resonance frequencies and corresponding quality factors for
the input time signal.

Harmonic inversion techniques are most useful for high-
Q resonators, where reliable results concerning resonance
frequencies and quality factors are available after just a few
optical cycles [44]. On-the-fly Fourier transforms are better
suited for recording fields on planes or in volumes.

A.6.3. Power flux, transmittance, and cross-sections

So far, we have only considered how to obtain spectral in-
formation from time-domain simulations. However, to be
able to directly compare our simulations with most exper-
iments one crucial element is still missing. Even though
exact field distributions are easily obtained from both time-
and frequency-domain calculations, corresponding measure-
ments are usually not available. Instead, nanophotonic exper-
iments typically provide us with intensity or power spectra
taken by collecting a beam with a lens and focussing it on
a detector plane. Normalising the resulting spectrum for
an array of scatterers against a reference spectrum leads,
for example, to transmittance and reflectance spectra. More
sophisticated setups even allow the measurement of scatter-
ing, absorption, and extinction cross-sections of individual
particles [66, 99]. This section explains how to obtain such
data from DG simulations.

The time-averaged Poynting vector

�S�ω� � 1
2 Re

�
�E�ω���H� �ω�

�
(43)

describes the power flow per time and area averaged over
a full period T � 2πω�1. To calculate the time-averaged
Poynting vector one needs frequency-dependent electromag-
netic fields. In particular, the time-averaged Poynting vector

cannot be obtained as a Fourier transform of �E�t���H�t�.
In case of DGTD simulations, the techniques presented in
Sect. A.6.1 must be applied to the individual field compo-
nents to obtain frequency-domain quantities.

The time-averaged rate at which energy flows through a
(detector) surface D is given by

W �ω� �

�

D

n̂ ��S�ω� d2r � (44)

As before, n̂ is the unit normal of surface D. We now want
to calculate the transmittance of a periodic array of scat-
terers, which is modelled by a single scatterer and peri-
odic boundary conditions normal to the direction of prop-
agation (see Fig. 17). Along the latter, we terminate both
ends of the system with perfectly matched layers to absorb
transmitted and reflected light. A plane wave is injected
using the total-field/scattered-field (TF/SF) technique (see

Sect. A.1.1), whose Poynting vector we denote by�Sinc �ω�.
A planar detector surface D is included behind the array. On

Figure 17 (online color at: www.lpr-journal.org) Sketch of a
typical setup for transmittance calculations. A scatterer, in this
case a crescent moon shaped particle (c) is placed on a substrate
(d) in a unit cell, which is periodically arranged along the x- and
y-directions via periodic boundary conditions. The illumination is
provided via the total-field/scattered-field injection plane (b). The
reflected and transmitted waves are absorbed by the perfectly
matched layers (a) and (f). Integration and subsequent normalisa-
tion of the fluxes on the planes (b) and (e) yields the reflectance
and transmittance, respectively.

this surface we calculate the Poynting vector�Strans �ω� of
the transmitted light. With this information the transmittance
T is easily obtained via

T �ω� �

�
D n̂ ��Strans �ω� d2r�
D n̂ ��Sinc �ω� d2r

� (45)

Similarly, scattering, absorption, and extinction cross
sections can be determined with a slightly modified setup
(see Fig. 18). Instead of using periodic boundaries, we
surround the whole computational domain by perfectly
matched layers (see Sect. A.4). Within the computational
domain we define a closed surface D as the TF/SF interface.
Within the total-field region a scatterer interacts with an
injected plane wave, whose Poynting vector is again given

by �Sinc �ω�. The scattering and absorption cross sections
Cscat and Cabs, respectively, are given by

Cscat �ω� �

�
D n̂ ��Sscat �ω� d2r���Sinc �ω�

�� �

Cabs �ω� ��

�
D n̂ ��Stot �ω� d2r���Sinc �ω�

�� �

In the previous formula we have used the outwardly oriented
normal vector n̂ of the TF/SF interface. The scattered-field
and total-field Poynting vectors�Sscat and�Stot on the same
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Figure 18 (online color at: www.lpr-journal.org) Sketch of a
typical scattering simulation setup. A scatterer, in this case a
sphere, is placed within the total-field region, i. e., inside the inner
box. The box itself is used as an integration surface according to
Sect. A.6.3. The computational domain is surrounded by PMLs
along all directions to absorb outgoing scattered waves. For better
visibility only corner and edge regions of the boundary layer is
shown. The plane below shows a slice through the centre of the
system.

interface can be directly taken from the simulation, as the
discontinuous Galerkin technique comprises field values on
both sides of an interface. The extinction cross section Cext,
finally, is given by

Cext �ω� �Cscat �ω��Cabs �ω� �
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[39] J. Schöberl, Comput. Visual. Sci 1, 41 (1997),

http://sourceforge.net/projects/netgen-mesher/.
[40] H. Si, Tetgen, http://tetgen.berlios.de.
[41] C. Geuzaine and J.-F. Remacle, Int. J. Numer. Methods Eng.

79, 1309 (2009); http://geuz.org/gmsh/.
[42] T. Warburton, J. Eng. Math. 56, 247 (2006).
[43] R. Pasquetti and F. Rapetti, Numer. Algorithms (Netherlands)

55, 349–366 (2010).
[44] J. Niegemann, W. Pernice, and K. Busch, J. Opt. A, Pure

Appl. Opt. 11, 114015 (2009).
[45] M. H. Carpenter and C. A. Kennedy, NASA Technical Mem-

orandum 109112 (1994).
[46] R. Diehl, K. Busch, and J. Niegemann, J. Comput. Theor.

Nanosci. 7, 1572–1580 (2010).
[47] J. Niegemann, R. Diehl, and K. Busch, submitted (2010).
[48] H. O. Kreiss and L. Wu, Appl. Numer. Math. 12, 213–227

(1993).
[49] J. Niegemann and K. Busch, AIP Conf. Proc. 1147, 22–29

(2009).
[50] R. B. Lehoucq and D. C. Sorensen, SIAM J. Matrix Anal.

Appl. 17, 789 (1996), http://www.caam.rice.edu/software/

ARPACK/.
[51] R. J. Spiteri and S. J. Ruuth, SIAM J. Matrix Numer. Anal.,

40, 469 (2002).
[52] A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven, J.

Comput. Phys. 228, 7863 (2009).
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Anal. 28, 440 (2008).

[72] S. Piperno, ESAIM-Math. Model. Numer. Anal.-Model.

Math. Anal. Numer. 40, 815 (2006)

[73] C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck,

IEEE Trans. Microwave Theory Tech. 52, 1067 (2004).
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