Übungen zur Modernen Theoretischen Physik I (SS 14) - English Sheet -

Prof. Dr. Gerd Schön	Sheet 2
Andreas Heimes, Dr. Andreas Poenicke	Besprechung 07.05.2014

1. Norm and Continuity (2 points)

Given the Schrödinger-equation $i\hbar\partial_t\psi(x,t) = H(x,t)\psi(x,t)$ with the coordinate and time dependent Hamiltonian $H(x,t) = -\frac{\hbar^2}{2m}\partial_x^2 + V(x,t)$ and $V(x,t) = V^*(x,t)$.

- (a) (1 point) An arbitrary state $\psi(x, t_0)$ is normalized at time t_0 , i.e. $\int_{-\infty}^{\infty} dx |\psi(x, t_0)|^2 = 1$. Show that $\int_{-\infty}^{\infty} dx |\psi(x, t)|^2$ is time-independent.
- (b) (1 point) Show that the probability density $\rho(x,t) = |\psi(x,t)|^2$ is locally conserved, this means that the continuity equation

$$\partial_t \rho(x,t) + \partial_x J(x,t) = 0$$

holds. Here the probability-current is defined as $J(x,t) = \frac{1}{m} \operatorname{Re} \left[\psi^*(x,t) \frac{\hbar}{i} \partial_x \psi(x,t) \right]$.

2. Wave-packet and uncertainty relation (3 points)

A particle can be described by a wave-packet

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \, g(k) e^{i(kx - \omega_k t)},$$

with momentum-distribution

$$g(k) = \sqrt{a} \exp(-a^2 k^2/4)/(2\pi)^{1/4}$$

where $\omega_k = \hbar k^2 / 2m$.

- (a) (1 point) First focus on the time instant t = 0. Show that $\psi(x, 0)$ is a Gaussian as well. What is the width of this function and how does it dependent on a?
- (b) (1 point) The spread in coordinate and momentum is defined by $\Delta x = \sqrt{\langle x^2 \rangle \langle x \rangle^2}$ and $\Delta p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2}$, where

$$\langle A \rangle(t) = \int_{-\infty}^{\infty} dx \, \psi^*(x,t) \, A \, \psi(x,t)$$

is the expectation value of the operator A. Show that for t = 0 the uncertainty relation $\Delta x \Delta p = \hbar/2$ holds.

(c) (1 point) Now calculate $\psi(x,t)$ for arbitrary t and discuss the evolution of $|\psi(x,t)|^2$ with time. What do you now obtain for $\Delta x \Delta p$?

3. Delta-potentials (5 points + 1 bonus-point)

In the following we solve the one-dimensional Schrödinger-equation for a particle with mass m and energy E in the potential V(x):

$$\left[-\frac{\hbar^2}{2m}\partial_x^2 + V(x)\right]\psi(x) = E\psi(x)$$

- (a) (3 points) First we discuss the single Delta-potential $V(x) = -v_0 \delta(x)$ mit $v_0 > 0$.
 - (i) Derive, as you have already done in exercise 3(a) at the first sheet, the connecting conditions for ψ and $\partial_x \psi$ at x = 0.
 - (ii) Given that E < 0, show that there exists a bound-state and that its energy is given by $E = -mv_0^2/2\hbar^2$.
 - (iii) An incoming particle from the left with energy E > 0 is partly reflected and partly transmitted. Calculate the transmission coefficient and show that the transmitted wave picks up a phase. Discuss also the limit $E \to \infty$.
- (b) (2 points) Now we consider the double Delta-potential $V(x) = -v_0[\delta(x + a/2) + \delta(x a/2)]$ with $v_0 > 0$. Solve the one-dimensional Schrödinger-equation and show that

$$e^{-\kappa a} = \pm \left(1 - \frac{\hbar^2 \kappa}{m v_0}\right),\tag{1}$$

where $E = -\frac{\hbar^2 \kappa^2}{2m}$ is the energy of the particle and $\kappa \in \mathbb{R}$. Solve graphically the transcendent equation (1).

- (c) Resonant tunneling (1 bonus-point):
 - Now E > 0 and $V(x) = v_0[\delta(x + a/2) + \delta(x a/2)]$ with $v_0 > 0$. What condition for $k = \sqrt{2mE}/\hbar$ has to be fulfilled so that the reflection coefficient vanishes?