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10 Fresnel Diffraction by a Slit

We consider a monochromatic plane wave impinging normally on an opaque screen with a

slit (of width w and height h) in it (Fig. 1).
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Figure 1: A rectangular shaped aperture.

a) Starting from the Fresnel diffraction integral expressed as

U(r) =
eikz

iλz

∫∫ ∞
−∞

dξdη U(ξ, η) ei k
2z

[(x−ξ)2+(y−η)2] (1)

with k = 2π
λ

, put the origin of the coordinate system into the center of the rectangular

opening and enter the slit function U(ξ, η). Then, normalize all distances to make the

expression independent of the wavelength λ. Write the integral as a product of two

independent integrals. Please state your substitutions explicitly. [ 3 Point(s) ]

b) Reformulate the integral from a) in terms of the so-called Fresnel integrals given by

C(t) =

∫ t

0

cos
(π

2
x2
)

dx, (2)

S(t) =

∫ t

0

sin
(π

2
x2
)

dx. (3)

Finally, calculate the intensity |U(x, y)|2 at distance z in terms of C and S. Again,

please provide the individual steps leading to your final result. [ 5 Point(s) ]
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c) Use a suitable computer program which is able to evaluate Fresnel integrals (e.g. Math-

ematica or Maple) to plot the intensity distribution for different aperture sizes and

distances. Consider the following cases: w = h = 1λ, w = h = 2λ, w = h = 10λ and

w = 1λ, h = 2λ. For the distances, use z = 1λ, 10λ, 100λ, 1000λ, 106λ and 109λ.

[ 2 BONUS Point(s) ]

a) We place the origin of our coordinate system in the middle of the rectangular slit, where

U(ξ, η) is equal to 1 in the slit area and 0 outside. Thus the integral boundaries are

adjusted to be

U(r) =
eikz

iλz

∫ w/2

−w/2
dξ

∫ h/2

−h/2
dη ei k

2z
[(x−ξ)2+(y−η)2] (4)

Now we can make the equation independent of the wavelength, by introducing

x̃ =
x

λ
, ỹ =

y

λ
, z̃ =

z

λ
, ξ̃ =

ξ

λ
, η̃ =

η

λ
, w̃ =

w

λ
, h̃ =

h

λ
. (5)

Then, dη̃ = dη/λ and dξ̃ = dξ/λ. With these substitutions and k = 2π/λ at hand, the

equation takes the form

U(r̃) =
ei2πz̃

iz̃λ2
λ2

∫ w̃/2

−w̃/2
dξ̃

∫ h̃/2

−h̃/2
dη̃ eiπ 1

λ2z̃
λ2[(x̃−ξ̃)

2
+(ỹ−η̃)2] (6)

=
ei2πz̃

iz̃

∫ w̃/2

−w̃/2
dξ̃

∫ h̃/2

−h̃/2
dη̃ eiπ

z̃
[(x̃−ξ̃)

2
+(ỹ−η̃)2]. (7)

The integrands depend either on η̃ or ξ̃, that’s why the integral factorizes to

U(r̃) =
ei2πz̃

iz̃

∫ w̃/2

−w̃/2
dξ̃ eiπ

z̃
(x̃−ξ̃)2 ·

∫ h̃/2

−h̃/2
dη̃ eiπ

z̃
(ỹ−η̃)2 . (8)

This is the desired result.

b) Starting from the previous solution (8), we can define a function F as

U(r̃) =
ei2πz̃

i

[
1√
z̃

∫ w̃
2

− w̃
2

dξ̃eiπ
z̃ (x̃−ξ̃)

2

]
︸ ︷︷ ︸

=:Fw̃(x̃,z̃)

[
1√
z̃

∫ h̃
2

− h̃
2

dη̃eiπ
z̃
(ỹ−η̃)2

]
︸ ︷︷ ︸

=:Fh̃(ỹ,z̃)

(9)

First, we consider the function Fw̃(x̃, z̃), where the argument suggests a substitution of

the form

ξ′ =

√
2

z̃

(
x̃− ξ̃

)
. (10)

Here, the factor
√

2 was introduced to make the argument look as needed for Fresnels

integrals. Using this substitution, we find the limits of the integration as

a = −w̃
2
⇒ x̃+ =

√
2

z̃

(
x̃+

w̃

2

)
, b =

w̃

2
⇒ x̃− =

√
2

z̃

(
x̃− w̃

2

)
, (11)



For the substitution, we also need the differential as

dξ′ = −
√

2

z̃
dξ̃ ⇒ dξ̃ = −

√
z̃

2
dξ′. (12)

Insertion of these substiutions into Fw̃(x̃, z̃) of (9) yields:

Fw̃(x̃, z̃) = − 1√
z̃

√
z̃

2

∫ x̃−

x̃+

dξ′eiπ
2
ξ′2 (13)

= − 1√
2

∫ x̃−

x̃+

dξ′eiπ
2
ξ′2 . (14)

Since we need the lower limit to be zero to apply Fresnel’s integrals, we split the

integrations by the scheme∫ x̃−

x̃+

=

∫ 0

x̃+

+

∫ x̃−

0

= −
∫ x̃+

0

+

∫ x̃−

0

. (15)

Thus, with this splitting and (14) we get

Fw̃(x̃, z̃) =
1√
2

(∫ x̃+

0

dξ′eiπ
2
ξ′2 −

∫ x̃−

0

dξ′eiπ
2
ξ′2
)
. (16)

Now we use Euler’s formula eiθ = cos(θ) + i sin(θ) and subsitute Fresnel’s integrals to

obtain

Fw̃(x̃, z̃) =
1√
2

[
C(x̃+) + iS(x̃+)− C(x̃−)− iS(x̃−)] (17)

=
1√
2

[
C(x̃+)− C(x̃−) + i

(
S(x̃+)− S(x̃−)

)]
. (18)

Now we put it all toghether. Analogous to (19), we define

ỹ+ =

√
2

z̃

(
ỹ +

h̃

2

)
, ỹ− =

√
2

z̃

(
ỹ − h̃

2

)
, (19)

The desired intensity is then given as

|U(r̃)|2 = |Fw̃(x̃, z̃)|2|Fh̃(ỹ, z̃)|2 (by (9)) (20)

=
1

4

[
|C(x̃+)− C(x̃−)|2 + |S(x̃+)− S(x̃−)|2

]
×
[
|C(ỹ+)− C(ỹ−)|2 + |S(ỹ+)− S(ỹ−)|2

]
. (21)

c) The Matlab plots are shown in the following.



Fresnel intensity for short distance z (different from Fraunhofer)

Figure 2: Fresnel intensity in arbitrary units for z/λ = 100. From top to bottom (w/λ, h/λ): (1,1),

(1,2), (2,2), (10,10). Left: I(x/λ), Middle: I(x/λ, y/λ) (with slit), Right: same as in middle.



Fresnel intensity for large distance z (similar to Fraunhofer)

Figure 3: Fresnel intensity in arbitrary units for z/λ = 109 (Compare with Fraunhofer patterns

for that distance!). From top to bottom (w/λ, h/λ): (1,1), (1,2), (2,2), (10,10). Left: I(x/λ),

Middle: I(x/λ, y/λ) (with slit), Right: same as in middle.



Figure 4: Fresnel Intensity in arbitrary units for w/λ = 1, h/λ = 1, from top to bottom: z/λ =

100, 101, 102, 103, 106, 109. Left: I(x/λ), Middle: I(x/λ, y/λ) (with slit), Right: same as in middle.



Figure 5: Fresnel Intensity in arbitrary units for w/λ = 2, h/λ = 2, from top to bottom: z/λ =

100, 101, 102, 103, 106, 109. Left: I(x/λ), Middle: I(x/λ, y/λ) (with slit), Right: same as in middle.



Figure 6: Fresnel Intensity in arbitrary units for w/λ = 10, h/λ = 10, from top to bottom:

z/λ = 100, 101, 102, 103, 106, 109. Left: I(x/λ), Middle: I(x/λ, y/λ) (with slit), Right: same as in

middle.



Figure 7: Fresnel Intensity in arbitrary units for w/λ = 1, h/λ = 2, from top to bottom: z/λ =

100, 101, 102, 103, 106, 109. Left: I(x/λ), Middle: I(x/λ, y/λ) (with slit), Right: same as in middle.

11 Fraunhofer Diffraction by a Slit

We consider the same system as in the previous problem, but now using the Fraunhofer

approximation.



a) Write down the scalar field on the screen in the Fraunhofer approximation. As before,

choose the center of the rectangular slit as the origin, substitute the functions U and

make the expression independent of the wavelength λ. Then, perform the integration

to obtain the field and the intensity distributions at distance z. Express Your solutions

in terms of the unnormalized sinc function sinc(x) := sin(x)/x.[ 4 Point(s) ]

b) Again, use a suitable computer program to plot the intensity distributions for the same

parameters as given in 12c).[ 2 BONUS Point(s) ]

a) We start with the Fraunhofer approximation given by

U(r) =
eikz

iλz
ei

k
2z (x2+y2)

∫∫ ∞
−∞

U(ξ, η)e−i k
z
(xξ+yη)dξdη. (22)

=
eikz

iλz
ei

k
2z (x2+y2)

∫ w/2

−w/2
dξ

∫ h/2

−h/2
dη e−i k

z
(xξ+yη), (inserted U for slit) (23)

Here we entered the same aperture function U as before, which amounts to adjusting

the integration boundaries.

Now we rescale all lengths in the system again to get rid of the wavelength by intro-

ducing the substitutions

x̃ =
x

λ
, ỹ =

y

λ
, z̃ =

z

λ
, ξ̃ =

ξ

λ
, η̃ =

η

λ
, w̃ =

w

λ
, h̃ =

h

λ
. (24)

Then, dη̃ = dη/λ and dξ̃ = dξ/λ. With these substitutions and k = 2π/λ at hand, the

equation takes the form

U(r) =
ei2πz̃

iz̃λ2
ei

2π
2z̃λ2 λ

2(x̃2+ỹ2)λ2

∫ w̃/2

−w̃/2
dξ̃

∫ h̃/2

−h̃/2
dη̃ e−i 2π

z̃λ2 λ
2(x̃ξ̃+ỹη̃) (25)

=
ei2πz̃

iz̃
ei

2π
2z̃ (x̃2+ỹ2)

∫ w̃/2

−w̃/2
dξ̃

∫ h̃/2

−h̃/2
dη̃ e−i 2π

z̃ (x̃ξ̃+ỹη̃), (26)

=
ei2πz̃

iz̃
ei

2π
2z̃ (x̃2+ỹ2)

∫ w̃/2

−w̃/2
dξ̃ e−i 2π

z̃ (x̃ξ̃)︸ ︷︷ ︸
=:Gw̃(x̃,z̃)

∫ h̃/2

−h̃/2
dη̃ e−i 2π

z̃
(ỹη̃)︸ ︷︷ ︸

=:Gh̃(ỹ,z̃)

, (27)



The integral for the function G can be evaluated as

Gw̃(x̃, z̃) =

∫ w̃
2

− w̃
2

e−i 2π
z̃
x̃ξ̃dξ̃ (28)

=

[
− z̃

i2πx̃
e−i 2π

z̃
x̃ξ̃

]ξ̃= w̃
2

ξ̃=− w̃
2

(elementary integration) (29)

= − z̃

i2πx̃

[
e−i2π x̃

z̃
w̃
2 − ei2π

x̃
z̃
w̃
2

]
︸ ︷︷ ︸

=−2i sin(2π x̃
z̃
w̃
2 )

(evaluate at boundaries) (30)

= w̃
sin
(
2π x̃

z̃
w̃
2

)
2π x̃

z̃
w̃
2

(31)

= w̃ sinc(2π
x̃

z̃

w̃

2
), (32)

where the (unnormalized) sinc function (Latin, sinus cardinalis) is defined as sinc(x) :=

sin(x)/x. There is also the normalized version for this function with x 7→ πx

in the definition. The normalized version would be even nicer to express

the solution here, but the use of the unnormalized sinc function is more

common in physics. When using this function in computer programs, one

should take care which version is actually used then.

Now, we can write down the full expression for U as

U(r̃) =
ei2πz̃

iz̃
ei

2π
2z̃ (x̃2+ỹ2)w̃h̃ sinc(2π

x̃

z̃

w̃

2
) sinc(2π

ỹ

z̃

h̃

2
). (33)

From this we also find the intensity as

I(r̃) =
(w̃h̃)2

z̃2
sinc(π

x̃

z̃
w̃)2 sinc(π

ỹ

z̃
h̃)2. (34)

This is the desired solution.

b) The Matlab plots are shown in the following.



Fraunhofer intensity for short and large distance z (similar to Fresnel)

Figure 8: Fraunhofer intensity in arbitrary units for z/λ = 100 (all other distances look basically

the same, see following plots). From top to bottom (w/λ, h/λ): (1,1), (1,2), (2,2), (10,10). Left:

I(x/λ), Middle: I(x/λ, y/λ) (with slit), Right: same as in middle.



Figure 9: Fraunhofer Intensity in arbitrary units for w/λ = 1, h/λ = 1, from top to bottom:

z/λ = 100, 101, 102, 103, 106, 109. Left: I(x/λ), Middle: I(x/λ, y/λ) (with slit), Right: same as in

middle.



Figure 10: Fraunhofer Intensity in arbitrary units for w/λ = 2, h/λ = 2, from top to bottom:

z/λ = 100, 101, 102, 103, 106, 109. Left: I(x/λ), Middle: I(x/λ, y/λ) (with slit), Right: same as in

middle.



Figure 11: Fraunhofer Intensity in arbitrary units for w/λ = 10, h/λ = 10, from top to bottom:

z/λ = 100, 101, 102, 103, 106, 109. Left: I(x/λ), Middle: I(x/λ, y/λ) (with slit), Right: same as in

middle.



Figure 12: Fraunhofer Intensity in arbitrary units for w/λ = 1, h/λ = 2, from top to bottom:

z/λ = 100, 101, 102, 103, 106, 109. Left: I(x/λ), Middle: I(x/λ, y/λ) (with slit), Right: same as in

middle.

— Hand in solutions in lecture on 11.06.2011 —


