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7 Light Propagation in Anisotropic Media

The dispersion relation in a general anisotropic medium is given by the Fresnel equation(
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a) Show that the Fresnel equation can be recast into the form
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Here, we introduced the phase velocity vp = ω
|k| of the wave, the phase velocities along

the coordinate axes vi = c√
εi

and the normalized wave vector components si = ki

|k| .

[ 4 Point(s) ]

b) Now, we want to demonstrate that, in general, there are two solutions (phase velocities)

for every given propagation direction s = (sx, sy, sz). To find these solutions, assume

that εx < εy < εz and insert

v2
x = v2

y + qx, v2
z = v2

y − qz, v2
p = v2

y + q (3)

into the Fresnel equation (2). Calculate the two possible solutions q′, q′′ for q and show

that they must have opposite sign, i.e., q′ · q′′ ≤ 0. Here, we choose q′ ≥ 0. Show that

then, the following inequality holds:

− qz ≤ q′′ ≤ 0 ≤ q′ ≤ qx. (4)

[ 4 Point(s) ]

c) There are two distinct directions, where only one solution exists, so q′ = q′′. These

directions form the two optical axes of the crystal. Show that these optical axes must
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lie in the (x, z)-plane and demonstrate that the angle β which the z-axis encloses with

the two axes is given by
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√
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a) Multiplying the Fresnel equation with ω4
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Then, inserting εi
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= 1
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, si = ki

k
and vp = ω

k
leads to
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Exploiting the fact that s2
x + s2

y + s2
z = 1, we insert this factor in front of the last term

v4
p and sort the terms according to si:
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which is readily rewritten (just factor the binomials) in the desired form of (2)
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[ 4 Point(s) ]

b) From εx < εy < εz we know that vx > vy > vz. Thus, both qx and qz must be positive.

We need to express the parentheses of (2) in terms of q and qi. Therefore, subtracting

the substitutions (3) given in the problem text from each other yields the expressions

v2
p − v2

x = q − qx, v2
p − v2

y = q, v2
p − v2

z = q + qz.



Inserting these expressions into Eq. (2) yields
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Collecting the powers of q, we find
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The two solutions for q are therefore given by
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Forming the product, we find
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Since both qx and qz are positive, c = −s2
yqxqz must be negative. Thus, q′ · q′′ ≤ 0.

Further, if q > qx or if q < −qz, then all terms on the left-hand side of Eq. (7) would

be positive. Thus, a solution would not be possible!

c) Since q′ · q′′ ≤ 0, q′ = q′′ can only be fulfilled if q′ = q′′ = 0. Since q′ · q′′ = c, we know

that c = 0. Consequently, in (9) both equations have to be fulfilled simultaneously

(ruling out b = ±1), so we find that b = 0 as well. Explicitly, we have the conditions

c = −s2
yqxqz = 0

b = s2
xqz + s2

y (qz − qx)− s2
zqx = 0

Since we only consider the truely biaxial case (εx < εy < εz), qx and qz can not be zero.

Thus,
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Inserting the first condition into the second, we end up with

sy = 0 and s2
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Thus, the axes must lie in the (x,z)-plane and the angle β with the z-axis can be

introduced via sx = sin β and sy = cos β. Solving for β then results in
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8 Reflection at Faraday Rotators

We consider the reflection of a normally incident linearly polarized plane wave

Ei(z, t) = Eiêxe
i(kz−ωt) (14)



at an air-material interface. We want to determine the polarization and intensity of the

reflected wave.

Inside the material, the transmitted wave propagates as two circularly polarized plane waves

with refractive indices n+ and n− as

Et = Et,+

(
1

+i

)
ei(k+z−ωt) + Et,−

(
1

−i

)
ei(k−z−ωt), (15)

with the two dispersion relations

k± = n±ω/c. (16)

For the electric field amplitudes we assume Ei, Et,± ∈ C.

a) Consider the incoming linearly polarized wave as a superposition of circularly polarized

waves (compare Prob. 5). Show, that the incoming circular parts can only excite

transmitted/reflected circular parts of the same polarization orientation. [ 1 Point(s) ]

b) Use the result from a) to determine the amplitude of the reflected waves in terms of

n± for each polarization state independently. Hint: Use the continuity conditions for

the E- and H-field components to derive a set of equations relating Et and Er to Ei

(transmitted, incoming and reflected amplitude), incorporating the respective indices of

refraction. Be aware of phase jumps and use µ = µ0 (a commonly used approximation

for optical frequencies). [ 1.5 Point(s) ]

c) Show that the full reflected wave fulfills
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[ 1 Point(s) ]

d) What is the polarization state of the reflected wave? [ 0.5 Point(s) ]

a) (Remark for teaching assistants: The derivation here follows the standard treat-

ment of normally incident light (see, e.g., Griffiths, Introduction to electrodynamics),

albeit spiced up by the two polarization states, see Fig. 1).

Defining the complex polarization vectors

p± =

(
1

±i

)
, (18)

we can write êx = 1
2
(p+ + p−) and the incoming plane wave as

Eiêxe
i(kz−ωt) = ( Ei

1

2︸︷︷︸
=:Ei,+

p+ + Ei
1

2︸︷︷︸
=:Ei,−

p−)ei(kz−ωt), (19)

the superposition of two circularly polarized plane waves with opposite orientation and

half the amplitudes of the linearly polarized wave.



+

vacuum

Figure 1: The fields and wave vectors involved in the reflection process.

At the interface z = 0, the total parallel electric field components must be continuous.

Due to the normal incidence, we already only deal with parallel components. Using

this continuity condition in combination with (15) and (19) at z = 0 yields

(Ei,+p+ + Ei,−p−)e−iωt + Ere
i(krr‖−ωt) !

= (Et,+p+ + Et,−p−)e−iωt. (20)

This condition must hold at all points r‖ = (x, y, 0) on the interface, thus the reflected

wave vector kr can only have a z-component kr = krêz (that does not occur in the

above equation). Dividing by the common exponential factor e−iωt we end up with

(Ei,+p+ + Ei,−p−) + Er − (Et,+p+ + Et,−p−) = 0, (21)

where Er is the unknown complex valued amplitude of the reflected plane wave.

(Remark for teaching assistants: Most of the arguments leading to this expres-

sion should already be known to the students. This is just an elaborate derivation

here. However, they should mention that the continuity conditions lead to this last

expression.)

We note that the complex polarization vectors are orthogonal

p∗± · p± =

(
1
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)
·
(
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)
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= 1 + (∓i)(±i) (23)

= 2, (24)
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·
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= 1 + (±i)(±i) (26)

= 0. (27)

Now we can project (21) onto the vectors p±, i.e., we multiply from the left with p∗±



(the complex conjugate). We start with the + part:

0 = p∗+ · (Ei,+p+ + Ei,−p− + Er)− p∗+ · (Et,+p+ + Et,−p−) (28)

= (Ei,+ p∗+ · p+︸ ︷︷ ︸
=2

+Ei,− p∗+ · p−︸ ︷︷ ︸
=0

+p∗+ · Er)− (Et,+ p∗+ · p+︸ ︷︷ ︸
=2

+Et,− p∗+ · p−︸ ︷︷ ︸
=0

) (29)

= 2Ei,+ + p∗+ · Er − 2Et,+. (30)

Defining

Er,± :=
1

2
p∗± · Er, (31)

we end up with two distinct continuity equations for the two orthogonal circular polar-

izations:

Ei,± + Er,± = Et,±. (32)

Thus, each of the two polarization states can be investigated separately.

b) (Remark for teaching assistants: Again, the derivation here follows the standard

treatment of normally incident light (see, e.g., Griffiths, Introduction to electrodynam-

ics). Since we reduced the problem in part a) to the standard case, one can exactly

follow the text book treatment here.)

We can look at one polarization first and thus can drop the ± subscript. The electric

field amplitudes involved by (32) then obey

Ei + Er = Et. (33)

This is one equation for the two unknowns Er and Et. Hence, we need a second

condition to solve this system of linear equations. This condition comes from exploiting

the continuity of the parallel component of the magetic field H, which reads

Hi,‖ + Hr,‖ = Ht,‖. (34)

We can look at the polarizations independently, so we start with the magnetic field

associated with the p+ state and use Maxwell’s equation

− ∂

∂t
B = ∇× E, (35)

with E(r, t) = Ep+ei(kr−ωt) and B = µ0H. Substituting this into Maxwell’s equation

above yields

∂

∂t
H = −E

µ0

∇× (p+ei(kr−ωt)) (amplitude E is constant) (36)

= −i
E

µ0

(k× p+)ei(kr−ωt) (performed curl) (37)

⇒ H =
E

ωµ0

(k× p+)ei(kr−ωt) (integrated exponential) (38)

=
1

ωµ0

k× E. (39)



(Remark for teaching assistants: This relation for plane waves should be known

to the students by now from earlier exercises or the lecture, they may use it without

derivation. Here we have shown that it is also valid for circular polarization.)

Now we compute the magnetic fields for the incoming, reflected and transmitted parts

for one polarization:

Hi,+ =
1

ωµ0

ki × Ei,+ (by (39)) (40)

=
1

ωµ0

ki × p+Ei,+ei(kir−ωt). (by (19)) (41)

The reflected and transmitted parts can be computed analogously. Putting these mag-

netic fields into the continuity condition yields for the interface r‖ = (x, y, 0) the equa-

tion

1

ωµ0

(ki × p+Ei,+eikir‖ + kr × p+Er,+eikrr‖ − kt,+ × p+Et,+eikt,+r‖)e−iωt = 0. (42)

All wave vectors involved are parallel to êz (due to the normal incidence), hence the spa-

tial exponential parts are all equal to 1. Dividing by the frequency part and multiplying

by ωµ0:

ki × p+Ei,+ + kr × p+Er,+ − kt,+ × p+Et,+ = 0. (43)

Enter the phase-jump at the interface: We have kr = −ki and ki = kiêz, as well as

kt,+ = kt,+êz. Plugging this into above equation gives

(êz × p+)(kiEi,+ − kiEr,+ − kt,+Et,+) = 0. (44)

This equation can only be fulfilled if at least on of the factors in the product is 0, but

the vector part is

êz × p+ = êz × (êx + iêy) (45)

= êz × êx︸ ︷︷ ︸
=êy

+i êz × êy︸ ︷︷ ︸
−êx

(46)

= êy + iêx (47)

6= 0. (48)

Hence, the scalar part in the parentheses of (44) must be zero, giving

kiEi,+ − kiEr,+ − kt,+Et,+ = 0. (49)

Now we plug in the dispersion relations (16) for both sides of the interface (with n = 1

for air), giving
ω

c
Ei,+ −

ω

c
Er,+ −

ω

c
n+Et,+ = 0. (50)

Now we divide by ω
c

and end up with the desired second equation for the electric field

amplitudes, where the derivation for the p− polarization is identical:

Ei,± − Er,± = n±Et,±. (51)



The solution of (32) and for given incoming amplitude Ei,± is

Er,± =
1− n±
1 + n±

Ei,±, (52)

Et,± =
1 + n±

2
Ei,±. (53)

Only the reflected part is needed now.

c) The vectors p± are orthogonal and the amplitude Er has been expressed in terms of

these polarization vectors by the components Er,± in (31), by which Er is determined

completely. Thus the reflected wave part is given as the sum of

Er = (Er,+p+ + Er,−p−)ei(−kiz−ωt) (by (31)) (54)

= (
1− n+

1 + n+

p+Ei,+ +
1− n−
1 + n−

p−Ei,−)ei(−kiz−ωt) (by (52)) (55)

=
1

2
Ei

(
1−n+

1+n+
+ 1−n−

1+n−

i(1−n+

1+n+
− 1−n−

1+n−
)

)
ei(−kiz−ωt). (by (18) and (19)) (56)

For the intensity its sensible to introduce the abbreviations

a :=
1− n+

1 + n+

, b :=
1− n−
1 + n−

, (57)

such that the reflected part is written as

|Er|2 =
|Ei|2

4
[(a+ b)2 + (a− b)2] (by (56) and (57)) (58)

=
|Ei|2

4
(a2 + 2ab+ b2 + a2 − 2ab+ b2) (expanded squared terms) (59)

=
|Ei|2

4
· 2 · (a2 + b2) (collected like terms) (60)

=
|Ei|2

2

[(1− n+

1 + n+

)2

+
(1− n−

1 + n−

)2
]

(substituted (57)) (61)

Dividing by |Ei|2 yields the desired result (17), where by (14), the incoming plane wave

fulfills |Ei|2 = |Ei|2.

d) The reflected wave is given by (56). Its polarization vector is complex valued, where

the real part has a different magnitude as the imaginary part. Thus the reflected wave

is elliptically polarized.

— Hand in solutions in lecture on 04.06.2012 —


