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5 Polarization States Of Plane Waves

We want to investigate superposition states of different kinds of polarizations.

a) We consider two circularly polarized plane waves with opposite sense of rotation at

r = 0 (E0 ∈ R):

E1(r = 0, t) = E0

(
êx cos(ωt) + êy sin(ωt)

)
E2(r = 0, t) = E0

(
êx cos(ωt+ φ)− êy sin(ωt+ φ)

) (1)

Show that at r = 0 the superposition E(t) = E1(t) + E2(t) is a linearly polarized plane

wave. [ 3 Point(s) ]

b) Show that an elliptically polarized plane wave at r = 0,

E(r = 0, t) = êxA cos(ωt) + êyB sin(ωt) with A,B ∈ R, (2)

can be written as the superposition of a circularly polarized plane wave and a linearly

polarized plane wave (also at r = 0). [ 2 Point(s) ]

a) In this problem, we use these trigonometric identities (see Bronstein, e.g.):

sin(α) + sin(β) = 2 sin
(α + β

2

)
cos
(α− β

2

)
, (3)

cos(α) + cos(β) = 2 cos
(α + β

2

)
cos
(α− β

2

)
. (4)
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Substituting (1) into E(t) and collecting like vector entries yields

E1(t) + E2(t) = E0êx

[
cos(ωt) + cos(ωt+ φ)

]
︸ ︷︷ ︸

2 cos(ωt+φ/2) cos(−φ/2)

+ E0êy

[
sin(ωt)− sin(ωt+ φ)

]
︸ ︷︷ ︸

2 cos(ωt+φ/2) sin(−φ/2)

(5)

= 2E0

[
êx cos(φ/2)− êy sin(φ/2)

]
︸ ︷︷ ︸

time-independent

cos(ωt+ φ/2)︸ ︷︷ ︸
polarization-independent

(6)

Thus, the polarization vector is determined by the angle φ/2 in the vector parts. The

polarization direction is constant in time (this is the linear polarization state). The

E-field oscillates along this direction with frequency ω and phase shift φ/2. This is

depicted in Fig. 1 and Fig. 2.

b) This result is obtained by adding a zero-term:

E(r = 0, t) = êxA cos(ωt) + êyB sin(ωt) (7)

= êxA cos(ωt) +êyA sin(ωt)− êyA sin(ωt)︸ ︷︷ ︸
=0

+êyB sin(ωt) (8)

= A
[
êx cos(ωt) + êy sin(ωt)

]
︸ ︷︷ ︸

circularly polarized

+ (B − A)êy sin(ωt)︸ ︷︷ ︸
linearly polarized

. (9)

This is the superposition of two waves, one is circularly polarized with amplitude A

and one is linearly polarized with amplitude B −A. Note that the polarization vector

changes its orientation in space with time now (this is the circular polarization state,

depicted in Fig. 1).
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Figure 1: Polarization states as viewed from the positive z-axis. Left: The time independent

polarization direction of part a). Note the minus sign, denoting the direction opposite to êy.

Right: The rotating polarization states, discernible by the time dependent angle ωt.

6 Optical Tweezer[6 extra points]

The optical tweezer [L. Novotny et al., Phys.Rev.Lett., 79, 645 (1997)] is one of the best

examples for the application of the Maxwell Stress Tensor. We consider the force, which acts

on a particle placed within a laser beam. For simplicity approximate the laser by a so-called



-1

0

1

0

4
z

8-1

0

1

Figure 2: Electric field vectors along the z-axis for a circularly polarized plane wave at t = 0

propagating in positive z-direction. Animations of such waves can be found in the Maple worksheet

that comes along with this solution or the Internet, e.g., Wikipedia. These may be shown in the

problem session on a beamer.

Gaussian beam, for many experimental situations this is a reasonable well approximation.

The electric field of a Gaussian beam is given in terms the radius r (radial distance from the

center axis of the beam) and z (axial distance from the beam’s narrowest point) in cylinder

coordinates by the following expression:

E(r, z) = E0
w0

w(z)
exp

(
− (r/w(z))2) exp

(
−ik r2

2R(z)

)
exp (i (ξ(z)− kz))



where

w0 − minimum beam radius

w(z) = w0

√
1 +

(
z

z0

)2

− beam radius

z0 =
πw2

0

λ

R(z) = z

(
1 +

(z0

z

)2
)

ξ(z) = arctan

(
z

z0

)
k =

2π

λ

Given the electric field, a simple way to approximate the force on a small particle (electric

field assumed homogeneous over the size of the particle) is given by

~F =
α

2
~∇E2

where α is the particle’s polarizability.

(i) Numerically calculate the force component in radial direction and visualize your result

in a plot. Argue how your result explains the action of an optical tweezer.

A rigorous treatment, beyond the Rayleigh limitations above, yields the following expression

for the force ~F

~F =

∫
∂V

〈T · ~n〉dS

where 〈. . .〉 denotes a time average and T is the (electric) Maxwell stress tensor given by

T = ε0ε ~E ~E −
1

2
ε0εE

2

(ii) For the above expression of the force, repeat your considerations from (i).

See Mathematica notebook file Tweezer.nb

— Hand in solutions in lecture on 21.05.2012 —


