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3 Energy Velocity Of EM Waves In Matter

The energy carried by an EM wave travels with the energy velocity ve :=
〈
S
〉
/
〈
w
〉
, where

S denotes the magnitude of the Poynting vector and w the energy density of the wave. For

waves with a definite frequency ω, the cycle-averaged mean values of these quantities in

complex notation are given by

〈
w
〉

:=
1

4
Re

(
EE∗

d(ωε)

dω
+ HH∗

d(ωµ)

dω

)
, (1)〈

S
〉

:=
1

2

∣∣Re
(
E×H∗

)∣∣ . (2)

Here, ε ≡ ε0εr(ω), µ ≡ µ0µr(ω), with real and positive εr(ω) and µr(ω).

Now, we consider a linearly polarized modulated plane wave

E(r, t) = E0(r, t)êze
i(kr−ωt) (3)

with ω =
k
√
εµ
, (4)

with a slowly varying envelope E0(r, t) ∈ C, such that we have D(r, t) = ε(ω)E(r, t) and

B(r, t) = µ(ω)H(r, t).

a) Slowly varying means that E0 does not change significantly on the length and time

scales on which the term ei(kr−ωt) oscillates. Explain in detail why, for this case, the

derivatives of E0 can be neglected relatively to the derivatives of ei(kr−ωt) and find

∂tE(r, t) and ∂riE(r, t) in this approximation. Remark: This is known as the widely

used slowly varying envelope approximation (SVEA). [ 2 Point(s) ]

b) Use Maxwell’s equations to show that the corresponding magnetic field H(r, t) in the

SVEA is given by an expression similar to (3) with H0(r, t) as the slowly varying

amplitude of the magnetic field and determine the polarization direction of H(r, t).

Show that H0(r, t) ∝
√

ε(ω)
µ(ω)

E0(r, t) and find the proper proportionality factor in the
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SVEA. With this magnetic field, express
〈
S
〉

and
〈
w
〉

in terms of the electric field

envelope E0. [ 4 Point(s) ]

c) Show that the energy velocity ve can be expressed in terms of d
dω

(ω
√
εµ). Hint: It is

more straightforward to look at
〈
w
〉
/
〈
S
〉

first. [ 3 Point(s) ]

d) Show that the energy velocity equals the group velocity vg = dω
dk

of the wave. Hint:

Recall the derivation rule for inverse functions to compute the inverse of the group

velocity 1/vg. [ 1 Point(s) ]

4 Effects Of Dispersion

We consider a Gaussian pulse with carrier frequency ω0 = k0c in 1D given by

E(x, t) = E0êz

∫
dk e−α(k−k0)2ei(kx−ω(k)t), α > 0, E0 ∈ C, (5)

which propagates in a dispersive medium. For a wide pulse (αk2
0 � 1), the region of ω(k)

around k0 affects the wave propagation most significantly and we may approximate the

dispersion relation by a truncated Taylor series

ω(k) ' ω0 + ω′ · (k − k0) + ω′′ · (k − k0)
2, (6)

where we used shorthand notations for the derivatives of the dispersion relation evaluated

at k0 as ω0 = ω(k0), ω
′ = ω′(k0) and ω′′ = ω′′(k0).

a) Find the expression for the wave packet in terms of x and t by carrying out the inte-

gration over k in this approximation. [ 3 Point(s) ]

Hint: You will need the value of the integral
∫

dx exp(ax2 + bx),Re(a) < 0. With the

help of the completion of squares, this can be recast into the integral
∫

dx exp(a(x+z0)
2)

with value
√

π
−a , where z0 is a complex number. Express (5) as an integral over κ =

k − k0 and apply this result.

b) In a Gaussian function g(x) = Ae−(x−x0)2/(2σ2), we call A the peak amplitude, σ the

pulse width and x0 the peak position. We assume that we can use the slowly varying

envelope approximation (SVEA) — You do not have to prove that. Then the pulse

intensity I(x, t) ∝ |E(x, t)|2. Interpret the behavior of the peak amplitude, pulse width

and peak position of I in dispersive media for the electric field found in a). [ 2 Point(s) ]

c) For the solution found in a), us a computer algebra program of Your choice and plot

the real part of the electric field (the physical wave) along with the modulus of the

envelope at various times, such that the pulse broadening and pulse motion is clearly

visible. Choose sensible values for the needed parameters and keep the broad pulse

condition αk2
0 � 1 in mind. Based on these plots, explain that the SVEA is applicable

here as discussed in problem 3a) — no calculations are necessary. Create the same

plots for a narrow pulse and explain, why the SVEA fails then. What do You observe

for the time evolution of the carrier wave here? [Remark: The solution of part a) was

derived using the prerequisite αk2
0 � 1, so in principle we are not allowed to drop this

condition all of a sudden. A real narrow pulse would have a slightly different function,

since higher order derivatives of ω were necessary then. However, the principal features

for such a pulse can be seen clearly here as well.] [ 2 BONUS Point(s) ]

— Hand in solutions in tutorial on 14.05.2012 —


