
1 Review of Electromagnetism

1.1 Maxwell’s equations in Vacuum

Electromagnetism provides most of the basic underlying laws for theoretical optics.
Therefore it is very important to give a brief but catchy description of light matter
interaction by means of Maxwell’s equations and their direct consequences. Conserva-
tion laws are deduced and the Maxwell stress tensor is derived.

∇ · E =
ρ

ε0
, Coulomb′s Law (1.1)

∇× E = −∂tB, Faraday′s Law (1.2)

∇ ·B = 0, Gauß′ Law formagnetic fields (1.3)

∇×B = µ0j+
1

c2
∂tE Ampere′s Law (1.4)

Here, c2 = 1
ε0µ0

is the square of the vacuum speed of light c, E the electric field
vector, B the magnetic induction, ρ the electric charge density and j the electric current
density. The electric and magnetic field exert forces on the charge density ρ and the
current density j according to

f = ρE+ j×B Lorentz Law (1.5)

f is a force density or more accurately a momentum current density. In simple cases
such as a moving charges, the current density equals j = ρv leading to the common form
for the Lorentz force density f = ρ (E+ v ×B) where v is the velocity of the charge
carriers. In cgs-units, this reads f = ρ

(
E+ v

c
×B

)
and the factor v/c suggests that the

second term can be derived from the first term using the principles of special relativ-
ity. At first sight that aspect seems not to be of a great importance, but as theoretical
optics and nonlinear optics are more and more focusing on so called slow light effects,
the emphasis of the factor v/c here is important. A brief overview of special relativity
is given in the last chapter.

The electromagnetic (EM) field is a dynamical system whose state is completely de-
termined by specifying the functions E(r, t) and B(r, t). As a dynamical system, the
electromagnetic field contains and transports energy, momentum, angular momentum,
etc., which are completely described when E and B are specified.
There is a difference between a physical quantity, the state of a system, and the value

of a physical quantity in a given state of the system. Relations between physical quan-
tities are independent of any concrete state of a system. These are the natural laws,
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like Maxwell’s equations. In any given state of the system, all physical quantities are
associated with a corresponding value (e. g., the values of the momentum density distri-
bution when the electromagnetic field is in the state of a plane wave). In classical physics
(including electromagnetism) this means that in a given state certain variables (values,
functions, etc.) are specified and physical quantities can be computed by inserting these
variables in the corresponding expressions for physical quantities. In quantum mechan-
ics 1. + 2. are true, 3. does not apply anymore (physical quantities may not be given
by definite values then, but rather by probabilistic distributions of possible values).

When EM-fields are described by real valued functions, the energy density w of the
EM-field equals

w(r, t) =
1

2
ε0E

2(r, t) +
1

2µ0

B2(r, t), (Energy density) (1.6)

and the associated energy current density, the Poynting vector S, reads as

S(r, t) =
1

µ0

E(r, t)×B(r, t) (Poynting vector) (1.7)

The source or drain density σ of the energy of the electromagnetic field (gain or dissi-
pation: σ being not the conductivity) is

σ(r, t) = −j(r, t) · E(r, t). (1.8)

The above quantities are related through (proof via Maxwell’s equations)

∂tw(r, t) +∇ · S(r, t) = σ(r, t) (Continuity equation) (1.9)

The equation (1.9) has the general structure of a continuity equation, here it is energy
conservation. It says that the energy density inside an infinitesimal volume around r can
change by either energy “streaming in or out” of the volume described by S or having
a source or drain of energy inside the volume (described by σ). If we have no source or
drain, then energy is conserved. Electric charge and the electric current density are also
related by a continuity equation (proof via Maxwell’s equations):

∂tρ(r, t) +∇ · j(r, t) = 0 (Current density relation) (1.10)

In other words: charge is conserved, meaning, charge cannot vanish at one position and
instantly appear somewhere else in space, which would also conserve charge globally.
Instead charge has to move continuously along a path in space, creating a current. What
follows is that charge is even conserved locally, expressed by the continuity equation.

Momentum density of the EM-field can be used for applications like the optical
tweezer. That means, coherent light is used to track particles only by the influence
of electromagnetic forces. The following derivation of Maxwell’s stress tensor can also
be found in standard text books on electrodynamics, e.g. [1]. We want to know, what
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momentum the fields carry. We consider a point charge q in an EM-field and consider a
small region of space (volume V ) that contains this charge (see Fig. 1.1).

dPmech

dt
= F(t) (Electromagnetic force) (1.11)

=
y

V

f(r, t)dV ,

Pmech is the mechanical momentum carried by the charge. F is the force acting on the
charge by the fields and f is the force density, i.e., force per volume, see Fig. 1.1.

Figure 1.1: Point charge q in an EM-field. The Lorentz force (force density f) acts
on the charge and changes its mechanical momentum Pmech.

The external fields exert a force acting on the charge, which moves to a new position.
Thus, the charge acquired momentum that flowed from the fields into the charge. The
charge causes a field itself, which is associated with this charge. Thus, the charge motion
also changed the total field (external field + charge field). So instead of regarding this
as an interaction between external fields and charge, we can also look at the problem as
an interaction between external fields and field carried by the charge, oppressing q and
the associated charge density ρ in the equations. Mathematically, this is facilitated by
using Maxwell’s equations and the Lorentz force law by

f = ρE+ j×B. (1.12)

ρ = ε0∇ · E (1.13)

j =
1

µ0

∇×B− ε0∂tE (1.14)

⇒ f = ε0E (∇ · E) + 1

µ0

(∇×B)×B− ε0 (∂tE)×B (1.15)

We can draw the conclusion that the force exerted on a small volume of charges by
external fields is fully determined by the total field configuration, fields due to charges in
the volume + external fields. A force is a momentum current (momentum per time) and a
force density f is a momentum current density (momentum per time and volume), similar
to a charge current density j (charge per time and area). We have to reformulate the
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above expressions to derive the continuity equation for the momentum current density.
From these equations above the momentum current density or force density, or more
precisely, the stress tensor, associated with the EM-field is derived. The last term of
(1.15) reads

− (∂tE)×B = B× ∂tE = −∂t (E×B) + E× (∂tB)
︸ ︷︷ ︸

=−∇×E

(1.16)

Inserting this into the equation for f above yields

f = ε0E (∇ · E)− ε0E× (∇× E)− 1

µ0

B× (∇×B)− ε0∂t (E×B) (1.17)

= ε0

(

E (∇ · E)− E× (∇× E)
)

+
1

µ0

(

B (∇ ·B)
︸ ︷︷ ︸

=0

−B× (∇×B)
)

− ∂t (ε0E×B) (1.18)

Substituting that result into the force term (1.11) and bringing all time derivatives to
one side yields

d

dt

(

Pmech +
y

V

ε0E×BdV

)

=
y

V

(

ε0 (E (∇ · E)− E× (∇× E)) (1.19)

+
1

µ0

(B (∇ ·B)−B× (∇×B))
)

dV (1.20)

Since Pmech is the momentum of the particle, we have that
t
V

ε0E × BdV is the

momentum of the electromagnetic field. The change of the total combined momentum
(fields+mechanical) in the volume V per time is given by the expression on the right, the
momentum current associated with the fields. Both terms seperately obey an identity
of the following form (proof by calculation)

1

2
∇
(
B2
)
= (∇ ·B)B+B× (∇×B) (1.21)

Therefore, we can transform the r.h.s. to have the form of a divergence term so that we
can apply Gauss’ theorem:

B (∇ ·B)−B× (∇×B) = B (∇ ·B) + (B ·∇)B− 1

2
∇
(
B2
)

=: ∇ ·
(←→
T
)

(1.22)

The definition of the divergence of a 2nd-rand Tensor T is

[

∇ · ←→T
]

k
=

3∑

i=1

∂xi
Tik(r). (1.23)

Finally we define the stress Tensor by applying Gauss’ theorem for both E and B and
using (1.9) for the energy-density we derive
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Tik =ε0EiEk +
1

µ0

BiBk − w(r, t)δik (1.24)

=ε0EiEk +
1

µ0

BiBk − [
1

2
~E2 +

1

2µ0

~B2]δik

By application of the outer (dyadic) product we introduce the Maxwell Stress Tensor

←→
T = ε0E : E+

1

µ0

B : B− 1

2

(

ε0E
2 +

1

µ0

B2

)

1 (1.25)

(1.26)

With this definition, we can write the conservation of total momentum (fields+mechanical)
as follows

d

dt

{

Pmech +
y

V

Pem(r, t)dV

}

=
y

V

div
←→
T dV (1.27)

=
{

∂V

(←→
T · n̂

)

dA (1.28)

The momentum density of the EM-field equals

Pem(r, t) = ε0E(r, t)×B(r, t) =
1

c2
S(r, t). (1.29)

Finally, we gain the expression for the Lorentz force density

∂tPem(r, t) +∇ ·
(

−←→T
)

= −f(r, t) (1.30)

= −ρ(r, t)E(r, t) + j(r, t)×B(r, t) (1.31)

This is a continuity equation for the momentum Pem associated with the EM-field: Pem

is the momentum density (where the momentum actually is),
←→
T the momentum current

density (where the momentum goes due to the regular dynamics of the fields) and the
Lorentz force density is the source or drain density of the EM-field’s momentum, i.e.,
the fields loose momentum when charges or currents have to be accelerated/generated.
The components Tik of the stress tensor have the following meaning: It is the force

per unit area in direction êi acting on the surface being normal in direction êk. Thus,
Tii are pressures (forces normal to surfaces), whereas Tik, i 6= k are shears (forces parallel
to surfaces). Note that only the total fields enter in the equations, which contain all
information about the charge distributions on which the forces act.
The integral of all these force densities over a finite surface ∂V is the total net force

acting on the volume, causing it to spin/get deformed or be pushed/ pulled into some
direction. This effect is exploited technically by optical tweezers, which can hold micro-
scopic objects (e.g., organic cells) by pure light force from a laser.
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The EM-field also contains angular momentum. The corresponding angular momen-
tum density with respect to an arbitrarily chosen origin is given as usual in terms of the
(EM-field’s) momentum density as

l(r, t) = r× p(r, t). (1.32)
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1.2 Maxwell’s equations in Matter

The so-called microscopic Maxwell’s equations are:

∇ · E =
ρ

ε0
Coulomb′s Law (1.33)

∇× E = −∂tB Faraday′s Law (1.34)

∇ ·B = 0 Gauß′ Law formagnetic fields (1.35)

∇×B = µ0j+
1

c2
∂tE Ampere′s Law (1.36)

If we consider EM-fields in matter, it is useful to separate charges and currents into
external contributions and those that are provided by or contained in the matter.

Note: “External” does not mean “outside of matter” but rather “controllable from
the outside”. The changes in charge and current densities in matter depend in very
complicated and usually unknown ways on the fields because they interact with each
other.

ρ = ρext + ρmat (1.37)

j = jext + jmat (1.38)

From our experience, we know that the complicated variations of ρmat and jmat on
atomic scales are not resolved on the much larger scales of optical wavelengths. This
suggests that we do not need to consider the local (on atomic level) fields as de-
scribed by the microscopic Maxwell’s equations above. In contrary fields that are
averaged, and therefore smoothed, over atomic distances, actually volumes V0, are com-
monly used. These are the so-called macroscopic fields and lead to the so-called macro-
scopic Maxwell’s equations (see Fig. 1.2).

E(r, t) 7→ 〈E(r, t)〉 := 1

V0

∫

V0

d3r′ E (r− r′, t) . (1.39)
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Figure 1.2: Microscopic and macroscopic electric field in matter

Then, it is natural to further split ρmat and jmat into free (i.e. highly mobile beyond the
atomic scale) contributions and bound (to the atoms or molecules, i.e., mobile only on the
atomic scale) contributions and to associate new fields (polarisation P , magnetisation
M) with the bound contributions:

ρmat = ρfree + ρpol
︸︷︷︸

=−∇·P(r,t)

(1.40)

jmat = jfree + jpol
︸︷︷︸

=∂tP(r,t)

+ jmag
︸︷︷︸

=∇×M(r,t)

(1.41)

D = ε0E+P (1.42)

H =
1

µ0

B−M (1.43)

M is the magnetisation, and P is the electric polarisation and its time derivative equals
jpol because of the continuity equation for charge.
This gives the macroscopic Maxwell’s equations, the Maxwell’s equations in matter:

∇ ·D = ρext + ρfree (1.44)

∇× E = −∂tB (1.45)

∇ ·B = 0 (1.46)

∇×H = jext + jfree + ∂tD (1.47)

The above equations contain the averaged fields and not the true local fields. Thus
Maxwell’s equations in matter are generalizations to the microscopic Maxwell’s equa-
tions. Thus, through the averaging process, the electromagnetic field and matter become
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1.2 Maxwell’s equations in Matter

intertwined and it becomes difficult to separate the two subsystems and the physical
quantities associated with them. This is most easily seen through the fact that the
macroscopic Maxwell’s Equations are invariant under the transformation. Proof: We
assume an arbitrary vector field N

∇ · (∇×N) = 0 (1.48)

∇× ∂tN = ∂t(∇×N) (1.49)

P 7→ P+∇×N

M 7→ M− ∂tN

}

⇒
{

E 7→ E, D 7→ D+∇×N,
B 7→ B, H 7→ H+ ∂tN.

(1.50)

That transformation is called gauge transformation of macroscopic Maxwell’s equa-
tions:

∇ ·D =∇(ǫ0E+P+∇×N) = ρfee + ρext + 0 Coulomb′s Law (1.51)

=∇ǫ0E+∇P+∇ · (∇×N) (1.52)

∇×E =∂tB Faraday′s Law (1.53)

∇ ·B =0 Gauss′ Law (1.54)

∇×(H+ ∂tN) =jext + jfree Ampere′s Law (1.55)

The last equation yields

∇×(H+ ∂tN) =jext + jfree + ∂tD+ ∂t∇×N (1.56)

=∇×∇×∂tN (1.57)

for visible light the linear approximation is feasible.

In Optics i. e., for frequencies and wavelengths of the order of visible light, lineariza-
tions are often used

D ∼ E, B ∼ H. (1.58)

In this lecture we will restrict ourselves to such linear relations. The consequences
of nonlinear relations between the various fields are the subject of Nonlinear Optics
(see lecture by Prof. Jürg Leuthold). In particular for time-harmonic fields (e−iωt), such
linear relations lead to the simple relations

D(ω) = ε0ǫ(ω)E(ω), (1.59)

B = µ0µ(ω)H(ω), (1.60)
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with the following material parameters

ǫ(ω) : Dielectric function (Permittivity)
µ(ω) : (Permeability).

In the time-domain, these simple products become the rather complicated convolution
integrals

D(t) = ε0

∞∫

−∞

dt′ ǫ (t− t′)E(t′), (1.61)

B(t) = µ0

∞∫

−∞

dt′ µ (t− t′)H(t′), (1.62)

in which ǫ (t) and µ (t) are the Fourier transforms of ǫ(ω) and µ(ω).

• named after Hans Kramers (dutch) and Ralph Kronig (german-american)

• very general relation that expresses causality (defined in time-space) in the Fourier
transformed frequency-space

• Let us consider the response X(t, ~r ) of physical system with respect to property
G(t, t′;~r, ~r ′) when the system is experiencing an external distortion f(t′, ~r ′). We then
have

X(t, ~r ) =

∫ +∞

−∞

d~r ′
∫ +∞

−∞

dt′G(t− t′;~r − ~r ′)f(t′, ~r ′) (1.63)

by definition
X(t, ~r ) is generally called a response function
G(t− t′;~r − ~r ′) is often called a Green’s function
the relation is widely explored for instance in “linear response theory”
assume local behavior in time space, we have G(t− t′;~r−~r ′) = δ(t− t′)G(t− t′, ~r−~r ′)

furthermore Causality requires: G(t − t′) = 0 for t < t′, if we assume a local behavior
in position space, we have G(t− t′;~r − ~r ′) = δ(~r − ~r ′)G(t− t′). Therefore (we suppress
from now on the argument ~r, it is not relevant for Kramers-Kronig)

X(t) =

∫ t

−∞

dt′G(t− t′)f(t′) (1.64)

as a particular example, in the lecture we had (in frequency space)

~D = ǫ0 ~E + ~P = ǫ0ǫ(ω) ~E(ω) (1.65)
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1.2 Maxwell’s equations in Matter

with D Electric displacement field, electric field E and dielectric Polarization P of
medium.
Oftenly one assumes, that the polarization depends linearly on the incident field E,

such that in frequency space

~P (ω) = ǫ0χe(ω) ~E(ω) (1.66)

which defines the electric Susceptibility χe and with the first line gives:
ǫ0 ~E+ ~P = ǫ0 ~E+ ǫ0χe(ω) ~E(ω) = ǫ0 ~E (1 + χe(ω)) = ǫ0ǫ(ω) ~E(ω) which yields the relation
ǫ(ω) = (1 + χe(ω))
in time space we have (Fourier-transform of product is this convolution integral )

~P (t) =

∫ t

−∞

dt′χe(t− t′) ~E(t′) (1.67)

therefore P is the repsonse of the system (medium) caused by an electric field E and the
electric susceptibility relating the two must obey causality, i.e. χe(t− t′) = 0 for t < t′

Now using a Fourier-transform on χe(t− t′)

χe(ω) =

∫ +∞

−∞

eiω(t−t
′)χe(t− t′)d(t− t′) ≡

∫ +∞

−∞

eiωτχe(τ)dτ (1.68)

in the last step we used τ = t− t′

open questions:
1.) – how is the causality requirement expressed now in frequency space?
2.) – the result of the Fourier-transformation of a real-valued function χe(t − t′) is a
complex valued function. Therefore, χe(ω) = Re (χe(ω)) + iIm (χe(ω)). Is there a rela-
tion between Re (χe(ω)) and Im (χe(ω))?

To analyze this function χe(ω) , we continue the function to the complex frequency
plane that is we replace ω → ω1 = ω + iη
We wish to consider the closed contour integral

∮
χe(ω)

ω − ω0 + iη
dω (1.69)

Since the physical quantity χe(ω) has no poles etc. the integrand has a pole, where
ω − ω0 = 0, with the above substitution for ω this results in ω + iη − ω0 = 0, or by
rearranging ω = ω0 − iη, i.e. there is a pole in the lower complex frequency plane as
shown by the red cross in the figure.

• the integration path (the contour) is
along the blue line in the sketch

• no pole is included
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• the radius is extended to infinity, the integration
is splitted into an integral along the real axes
and into an part along the arc of the semi-circle

∮
χe(ω)

ω − ω0 + iη
dω =

∫ +∞

−∞

χe(ω)

ω − ω0 + iη
dω +

∫

semi−circle

χe(ω)

ω − ω0 + iη
dω (1.70)

• for an integrable function χe(ω) we have that the integral along the infinitely large
semicircle vanishes

• on the other hand, from Cauchy’s integral formula (proven in Mathematics)
∮ χe(ω)

ω−ω0
dω =

0 because there is no pole included in the integration contour
Therefore we have

0 =

∮
χe(ω)

ω − ω0 + iη
dω =

∫ +∞

−∞

χe(ω)

ω − ω0 + iη
dω + 0 (1.71)

0 =

∫ +∞

−∞

χe(ω)

ω − ω0 + iη
dω (1.72)

Furthermore, we use the identity (proof follows in a minute) (understood in the limit
of η → 0 and when integrated over)

1

ω − ω0 + iη
= P (

1

ω − ω0

)− iπδ(ω − ω0) (1.73)

P is the Cauchy principal value, defined for any function f(ω) by (limit δ → 0)

P

∫ +∞

−∞

f(ω)

ω − ω0

:=

∫ ω0−δ

−∞

f(ω)

ω − ω0

+

∫ +∞

ω0+δ

f(ω)

ω − ω0

(1.74)

Therefore using this identy (integration over δ-function is trivially done)

0 =

∫ +∞

−∞

χe(ω)

ω − ω0 + iη
dω (1.75)

= P

∫ +∞

−∞

χe(ω)

ω − ω0

dω − iπχe(ω0) (1.76)

replacing ω → ω′ and ω0 → ω we obtain

iπχe(ω) = P

∫ +∞

−∞

χe(ω
′)

ω′ − ω
dω′ (1.77)

now taking the real part on both sides (remember i ∗ i = −1)

−πImχe(ω) = P

∫ +∞

−∞

Reχe(ω
′)

ω′ − ω
dω′ (1.78)

Imχe(ω) = − 1

π
P

∫ +∞

−∞

Reχe(ω
′)

ω′ − ω
dω′ (1.79)
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and taking the imaginary part on both sides

πReχe(ω) = P

∫ +∞

−∞

Imχe(ω
′)

ω′ − ω
dω′ (1.80)

Reχe(ω) = +
1

π
P

∫ +∞

−∞

Imχe(ω
′)

ω′ − ω
dω′ (1.81)

to further simplify the expression, we will now consider a property of the Fourier-
transform
a physical quantity in time-space (a response function, which is measurable) is a real-

valued function say f(t). This function can always be splitted into two parts
f(t) = feven(t) + fodd(t)
where the even part has the property feven(−t) = feven(+t)
and the odd part has the property fodd(−t) = −fodd(+t)

now looking at the Fourier-transform f(ω)

f(ω) =

∫ +∞

−∞

eiωtf(t)dt (1.82)

now using the above split into even and odd part together with the identy
eiωt = cos(ωt) + i sin(ωt) we obtain

f(ω) =

∫ +∞

−∞

eiωt(feven(t) + fodd(t))dt =

∫ +∞

−∞

(cos(ωt) + i sin(ωt))(feven(t) + fodd(t))dt

(1.83)

=

∫ +∞

−∞

cos(ωt)feven(t)dt+ i

∫ +∞

−∞

sin(ωt)feven(t)dt

(1.84)

+

∫ +∞

−∞

cos(ωt)fodd(t)dt+ i

∫ +∞

−∞

sin(ωt)fodd(t)dt

(1.85)

we have cos(ωt) is an even function and sin(ωt) is an odd function of t
furthermore, an integral with symmetric boundaries

∫ +∞

−∞
yields zero when the inte-

grand is an odd function, because
∫ +∞

−∞
g =

∫ 0

−∞
g +

∫ +∞

0
g, both terms differ in sign

(think e.g. of the sine-function)
therefore in the above expression (repeated)

f(ω) =

∫ +∞

−∞

cos(ωt)feven(t)dt+ i

∫ +∞

−∞

sin(ωt)feven(t)dt (1.86)

+

∫ +∞

−∞

cos(ωt)fodd(t)dt+ i

∫ +∞

−∞

sin(ωt)fodd(t)dt (1.87)
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the second and third term on the right hand side are zero, since an even function times
an odd function yields an odd function, odd times odd is even, even times even is even

f(ω) =

∫ +∞

−∞

cos(ωt)feven(t)dt+ i

∫ +∞

−∞

sin(ωt)fodd(t)dt (1.88)

Now, consider the real and the imaginary part of f(ω)

Ref(ω) =

∫ +∞

−∞

cos(ωt)feven(t)dt (1.89)

Imf(ω) =

∫ +∞

−∞

sin(ωt)fodd(t)dt (1.90)
Therefore we can state: Ref(ω) is an even function of ω (cosine above)

Imf(ω) is an odd function of ω (sine above)
Above we had found:

Reχe(ω) = +
1

π
P

∫ +∞

−∞

Imχe(ω
′)

ω′ − ω
dω′ (1.91)

Imχe(ω) = − 1

π
P

∫ +∞

−∞

Reχe(ω
′)

ω′ − ω
dω′ (1.92)

multiplying both integrands with (ω′+ω)
(ω′+ω)

Reχe(ω) = +
1

π
P

∫ +∞

−∞

(ω′ + ω)Imχe(ω
′)

ω′2 − ω2
dω′ (1.93)

Imχe(ω) = − 1

π
P

∫ +∞

−∞

(ω′ + ω)Reχe(ω
′)

ω′2 − ω2
dω′ (1.94)

by using Reχe(ω
′) being even and Imχe(ω

′) being odd together with ω′ being obviously an
odd function of ω′ and the observation, that the integration is over symmetric boundaries,
we have

Reχe(ω) = +
1

π
P

∫ +∞

−∞

ω′Imχe(ω
′)

ω′2 − ω2
dω′ (1.95)

Imχe(ω) = − 1

π
P

∫ +∞

−∞

ωReχe(ω
′)

ω′2 − ω2
dω′ = − 1

π
ωP

∫ +∞

−∞

Reχe(ω
′)

ω′2 − ω2
dω′ (1.96)

since the integrands are now even functions of ω′ we can substitute
∫ +∞

−∞
= 2

∫ +∞

0

yielding

Reχe(ω) = +
2

π
P

∫ +∞

0

ω′Imχe(ω
′)

ω′2 − ω2
dω′ (1.97)

Imχe(ω) = −2ω

π
P

∫ +∞

0

Reχe(ω
′)

ω′2 − ω2
dω′ (1.98)
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1.2 Maxwell’s equations in Matter

Finally we wish to replace the susceptibility χe(ω) by the dielectric function ǫ(ω)
In the beginning we had the definition ǫ(ω) = 1 + χe(ω) or χe(ω) = ǫ(ω)− 1

with Reχe(ω) = Reǫ(ω)− 1 and Imχe(ω) = Imǫ(ω)
Using this in the above expressions yields finally

Reǫ(ω)− 1 = +
2

π
P

∫ +∞

0

ω′Imǫ(ω′)

ω′2 − ω2
dω′ (1.99)

Imǫ(ω) = −2ω

π
P

∫ +∞

0

Reǫ(ω′)− 1

ω′2 − ω2
dω′ (1.100)

Promised proof of:

1

ω − ω0 + iη
= P (

1

ω − ω0

)− iπδ(ω − ω0) (1.101)

1

ω − ω0 + iη
=

1

ω − ω0 + iη

ω − ω0 − iη

ω − ω0 − iη
=

ω − ω0 − iη

(ω − ω0)2 + η2
=

ω − ω0

(ω − ω0)2 + η2
− iη

1

(ω − ω0)2 + η2

(1.102)

This means (since ω and ω0 are real) we have calculated the real and imaginary part

Re
1

ω − ω0 + iη
=

ω − ω0

(ω − ω0)2 + η2
(1.103)

and

Im
1

ω − ω0 + iη
= −η 1

(ω − ω0)2 + η2
(1.104)

As the first step, we wish to consider the imaginary part of 1
ω−ω0+iη

As said in the beginning, this relation is understood in the limit of η → 0 and when
integrated over.
Therefore we consider an arbitrary function f(ω)

lim
η→0

∫

dωIm

(
1

ω − ω0 + iη

)

f(ω) = − lim
η→0

∫

dωη
1

(ω − ω0)2 + η2
f(ω) (1.105)

first substitution: y := ω − ω0 which results in dy
dω

= 1 which implies dy = dω and
ω = y + ω0

= − lim
η→0

∫

dy
η

y2 + η2
f(y + ω0) (1.106)

15



1 Review of Electromagnetism

now we employ a second substitution x := y/η which results in dx
dy

= 1/η which implies
dy = ηdx and y = ηx

= − lim
η→0

∫

dxη
η

η2x2 + η2
f(ηx+ ω0) = − lim

η→0

∫

dx
ηη

η2x2 + η2
f(ηx+ ω0) (1.107)

= − lim
η→0

∫

dx
1

x2 + 1
f(ηx+ ω0) (1.108)

now we can interchange the limit and the integration, yielding

= −
∫

dx
1

x2 + 1
f(ω0) = f(ω0)

(

−
∫

dx
1

x2 + 1

)

(1.109)

now, we remember that

−
∫

dx
1

x2 + 1
= − arctan(x)|+∞

−∞
= −(π/2− (−π/2)) = −π (1.110)

using this in the above expression

= −πf(ω0) (1.111)

Now putting everything together, we have

Im
1

ω − ω0 + iη
f(ω) = −πf(ω0) (1.112)

from this behavior we recognize the delta-function
Because, by definition the delta-function is defined by the action on a test-function

according to
∫
dωδ(ω − ω0)f(ω) := f(ω0)

Therefore, we have proven the equivalence

Im
1

ω − ω0 + iη
= −πδ(ω − ω0) (1.113)

Which proves the imaginary part of the relation

1

ω − ω0 + iη
= P (

1

ω − ω0

)− iπδ(ω − ω0) (1.114)

The proof for the real part follows accordingly.
The Kramers-Kronig relations are a manifestation of causality and are used in exper-

iments to determine ǫ(ω).
In matter, it is usually difficult to define the energy density, etc., for the EM-field

because the macroscopic Maxwell’s equations intertwine the EM-field with material de-
grees of freedom. However, for a (nearly) time harmonic EM-field described by complex

16



1.3 Wave Propagation

valued functions oscillating in time with eiωt, one finds for the energy density and the
energy current density

〈w(ω)〉 = 1

4
ε0 Re

(
d(ωǫ)

dω

)

|E(ω)|2 + 1

4
Re

(
d(ωµ)

dω

)

|H(ω)|2, (1.115)

〈S(ω)〉 = 1

2
Re
(

E(ω)×H∗(ω)
)

. (1.116)

Here, 〈 〉 denotes cycle averaging

〈f〉 = 1

T

T∫

0

dt f(t), (1.117)

where f(t) ∝ e−iωt and T = 2π
ω
.

• The correct form of the Maxwell stress tensor in matter is still a subject of debate.
There are at least three different formulations and very recent experiments (from
2009!) appear to suggest that the so-called Abrahams-formulation is correct.

• Remember that the above expressions for the energy density and energy current
density are approximate, too. Nearly time harmonic means narrow banded, i.e. the
envelope function of the fields varies slowly with respect to the carrier frequency
ω. This assumption is the so-called slowly varying envelope approximation.

1.3 Wave Propagation

From the macroscopic Maxwell’s equations we derive in the absence of charges and
currents and for non-dispersive materials (constant values of ǫ and µ) the wave equation:

∆E− ǫµ

c2
∂2
tE = 0, (d′Alambert Equation) (1.118)

(1.119)

To work out the main features, we consider the (simplified) 1D scalar case:

∆U(x, t)− ǫµ

c2
∂2
tU(x, t) = 0 (1.120)

In the linear case, we can work with solutions of the type ei(kx−ωt) and have to take
the real part afterwards (because actual physical fields are real). However, k and ω are
not independent. Instead, they have to fulfill the dispersion relation

k2 =
ω2

c2
ǫµ. (1.121)

In general, we have dispersive materials ǫ ≡ ǫ(ω) and µ ≡ µ(ω) and then the above
relation still holds.

⇒ ω ≡ ω (k) Dispersion Relation (1.122)

17
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Very often (i.e. for many materials, or in waveguides and periodic microstructures
(Photonic Crystals, Metamaterials) etc.) we have ω(k) 6= kc.
To analyze the consequences, we consider a wave packet (i.e., a superposition of the

fundamental solutions described above; remember that we have a linear PDE so that
superposition works!)

U(x, t) =
1√
2π

∞∫

−∞

dk A(k)ei(kx−ω(k)t) (1.123)

A(k) =
1√
2π

∞∫

−∞

dx U(x, 0)e−ikx, (1.124)

where A(k) is the spatial Fourier Transform of U(x, 0).

Figure 1.3: A spatially wide pulse U(x, t = 0) has a narrow spectrum A(k) in
k-space around some central wavenumber k0.

A (spatially) wide pulse (which is the regular case in optics)1 is characterized by a
narrow k-spectrum centered around the carrier wave frequency k0, see Fig. 1.3.

1Remark: In the area of ultrafast optics, people can produce pulses with only a few cycles of the
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1.3 Wave Propagation

In the case of a spatially wide pulse, only a few k-components around a central
wavenumber k0 contribute in A(k). Hence, the most relevant part of the dispersion
relation ω(k) is the one in the vicinity around k0. Then one can study the behavior of
the pulse approximately by substituting the dispersion relation by its Taylor expansion
around k0:

∆k = k − k0 (1.125)

ω(k) = ω(k0)
︸ ︷︷ ︸

=ω0

+∆k dω
dk

∣
∣
k=k0

+ 1
2
(∆k)2 d2 ω

d k2

∣
∣
∣
k=k0

+ ... (1.126)

= ω(k0) + ∆k ω′(k0) +
1
2
∆k2ω′′(k0) + ...

Hence, we obtain that the pulse maximum moves with the group velocity:

U(x, t) ≃ 1√
2π

ei(k0x−ω0t)

∞∫

−∞

d∆k U(k0 +∆k)ei(∆k(x−t(ω′(k0)+∆Kω′′(k0)/2+...))) (1.127)

=
1√
2π

A (x, t) ei(k0x−ω0t) (1.128)

=
1√
2π

A (x, t)
︸ ︷︷ ︸

slowly varying envelopemodulation

· φ (x, t)
︸ ︷︷ ︸

fastOszillation

(1.129)

To define the different velocities we follow a fixed point on the wave: φ0 is the Phase
attrivuted to that fixed point.

φ(x, t) = k0x(t)− ω0t = φ0 (1.130)

Phase velocity vph = x(t) =
ω0t

k0
− φ0

k0
[= c in Vacuum]

(1.131)

Group velocity vgr =
dx(t)

dt φ0

= (
dk

dω
)−1ω0 = (

dω

dk
)ω0 [= c in Vacuum]

(1.132)

Energy velocity vE =
〈S〉
〈w〉 [= c in Vacuum]

(1.133)

carrier wave under the envelope. That is not a wide pulse, the envelope is only a few femto-seconds

in time. Furthermore, in attosecond physics, people can now even produce “pulses” with single or

even just half an optical cycle.

19



1 Review of Electromagnetism

Very often ω(k) = ck
n(k)

, where n(k) is the refractive index (backward wave tube):

dω

dk
=

c

n
− ck

n2(k)
︸ ︷︷ ︸

=
ω(k)
n(k)

dn

dk
︸︷︷︸
dn
dω

dω
dk

, (1.134)

=
c

n
− ω

n(ω)

dω

dk

dn

dω
. (1.135)

⇒ vgr =
c

n(ω) + ω dn
dω

(1.136)

Going beyond the first order in the Taylor expansion above shows that non-linear
dispersion, i.e., ω(k) 6= vphk leads to pulse distortion.
In media, neither vph nor vgr or vE need to stay below the vacuum speed of light c.
A simple illustration uses an interferometric setup with an absorbing medium in one

arm that preferentially “eats off” from the tail of the pulse. Then the pulse appears

to propagate with superluminal velocity (see Fig. 1.4), though only the maximum peak
motion is superluminal.

Figure 1.4: Scheme for observation of superluminal behavior.

Even negative phase and group velocities have been demonstrated experimentally.
There is only one velocity that needs to obey v < c; this is the signal velocity (as
already recognized by Sommerfeld!). In the above case, this would correspond to the
velocity with which the rising front of the pulse propagates.
Nice visual examples for phase and group velocities can be found in the WWW on [2].
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