
3.3 Kirchhoff Formulation of Diffraction by a Planar Screen

So,

∂nG = (ik − 1

R
)
eikR

R
(3.28)

= ikG+O(R−2) (3.29)

⋍

R→∞
ikG. (3.30)

Note that the physical meaning of R → ∞ is really R ≫ |r|. Here, as discussed above,
we got rid of all terms decaying faster than R−1. Now, since U and hence, ∂nU is not
known explicitly, we can only derive a condition that the outward normal derivative of
U has to obey. Evaluating (3.24) only for the S2 part now and using the expansion of
the Green’s function for large R we get

x

S2

ds′ [G∂nU − U · (ikG)] =

∫

Ω2

dΩ G︸︷︷︸
h

1

R
asR→∞

(∂nU − ikU)R2 (3.31)

R→∞
h

∫

Ω2

dΩ R(∂nU − ikU). (3.32)

Here we recast the surface integral in spherical coordinates as the integral over the solid
angle Ω (basically, we performed a substitution of integration variables), where Ω2 is the
set of angles θ and ϕ defining the spherical shell S2 with constant radius R. However,
these details do not really matter, since this integral will vanish (become 0) for R → ∞,
if the integrand vanishes identically on the surface S2, i.e. if

lim
R→∞

R(∂nU − ikU) = 0. (3.33)

This is the required boundary condition that U has to obey which is known as the Som-

merfeld radiation condition or outgoing wave condition, because outward propagating
spherical waves indeed fulfill this condition. This was alluded to above and finally puts
all our assumptions about U on solid ground (as long as U fulfills that condition). Thus,
with the Sommerfeld radiation condition as a boundary condition for U , all that remains
in (3.24) is the contribution from the plane S1 and for diffraction problems involving a
screen, we then have

U(r) =
1

4π

x

S1

ds′ [(∂nU)G− U(∂nG)] + Sommerfeld radiation condition. (3.34)

Kirchhoff considered an opaque screen with a pinhole and stated the following assump-
tions for this case: The major contributions to the integral

s
S1

stem from Σ (where the
hole actually is), which is just a small portion of the plane S1. Thus, on the screen, he
introduced the Kirchhoff boundary conditions :

• Across the surface Σ the field distribution U and its derivative ∂nU are exactly the
same as that would be in the absence of the screen (assuming illumination of the
screen from the other side).
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3 Diffraction Theory

• Over the portion of S1 that lies in the geometrical shadow of the screen, the field
distribution U and its derivative ∂nU are identically zero (assuming illumination
of the screen from the other side).

These conditions reduce (3.34) further to

U(r) =
1

4π

x

Σ

ds [(∂nU)G− U(∂nG)], (3.35)

including Sommerfeld radiation condition,

using Kirchhoff boundary conditions.

Babinet’s Principle:

If we replace the screen by a complementary screen where apertures and non-transparent
parts are interchanged, the sum of the corresponding amplitudes U and U ′ are given by
an integral over the total boundary plane S1, resulting in

U(r) + U ′(r) = U0(r), (3.36)

where U0(r) is the undisturbed amplitude in the absence of the screens. This result is
known as Babinet’s principle.
For those points r where U0(r) vanishes, U(r) = −U ′(r), i.e. the diffracted waves have

opposite phases and equal absolute magnitudes, hence |U(r)|2 = |U ′(r)|2.

Consequence

Suppose we have light that is sharply focused at a point r0 on the observer’s surface
F and the intensity |U0(r)|2 is essentially zero elsewhere for r ∈ F . We can now use
Babinet’s principle in that region away from r0: If we put a diffracting object (e.g. a
small disk/sphere) in the light path, the resulting diffraction pattern (i.e., the intensity
|U ′(r)|2) will be the very same as for the complimentary object (i.e., a pinhole in a
screen) everywhere on F except at the image point r0.

Applications:

• Measure size of objects (e.g., blood cells): Compare diffraction patterns of objects
with those of holes of definite size (holes are easy to “drill”/etch!).

• Test validity of Kirchhoff’s boundary conditions (See below)

Note:

There exists a rigorous derivation for Babinet’s Principle from Maxwell’s equations for
the case where the complementary screens are made from ideal conductors (see Born and
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3.4 Fresnel-Kirchhoff Diffraction Formula

Wolf, Principles of Optics [5]). Thus, Babinet’s Principle has a wider range of validity
than that of Kirchhoff’s diffraction theory.
Now that the basic classical diffraction theory has been established by (3.35), we

will study two approximations, that are widely used in practice for actual diffraction
problems, namely the Fresnel and Fraunhofer approximations.

3.4 Fresnel-Kirchhoff Diffraction Formula

Simplification by Far-field Approximation:

Usually we have that |r− r′| ≫ 1

k
, i.e. the observation point r is usually many optical

wavelengths λ = 2π
k

away from the aperture at r′. In this case, we can apply a far-field
approximation (cos(n̂, r− r′) is the cosine of the angle between n̂ and r− r′):

∂nG = cos(n̂, r− r′)

(
ik − 1

|r− r′|

)
eik|r−r

′|

|r− r′| (3.37)

|r−r′|≫
1

k≃ cos(n̂, r− r′)ik
eik|r−r

′|

|r− r′| . (3.38)

Plugging this approximation into (3.35) we get

U(r)

|r−r′|≫
1

k≃ 1

4π

x

Σ

ds′ [∂nU(r′)− ikU(r′) cos(n̂, r− r′)]
eik|r−r

′|

|r− r′| . (3.39)

If the illuminating wave from the left is a spherical wave originating in r′′ of the form

U(r′) = A
eik|r

′−r′′|

|r′ − r′′| (3.40)

with complex amplitude A, we obtain the celebrated Fresnel-Kirchhoff diffraction for-

mula as

U(r′) =
A

iλ

x

Σ

ds′
eik(|r−r

′|+|r′−r′′|)

|r− r′| |r′ − r′′|
1

2
(cos(n̂, r− r′)− cos(n̂, r′ − r′′)) , (3.41)

in far-field approximation,

for illuminating spherical wave in r′,

where we used k = 2π
λ

and shifted the remaining factor of 1
2
to the cosine functions

for reasons that become clear later on.
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3 Diffraction Theory

Interpretation:

There is a nice symmetry between the illumination point r′′ and the observation point
r′. A point source at r′′ will produce at r the same effect that a point source of equal
intensity placed at r will produce at r′′.
Thus, we have the reciprocity theorem of Helmholtz

U(r) =
x

Σ

ds′ Ũ(r′)
eik|r−r

′|

|r− r′| (3.42)

with

Ũ(r′) :=
A

iλ

eik(|r
′−r′′|)

|r′ − r′′|
1

2
(cos(n̂, r− r′)− cos(n̂, r′ − r′′)) (3.43)

and can compare this with Fresnel’s ad-hoc Ansatz in (3.2).

3.5 Rayleigh-Sommerfeld Formulation of Diffraction

Now we face a bit of a problem: The Kirchhoff formulation of diffraction is widely
successful but it cannot be correct.
In particular, it is a well-known theorem of potential theory that if a two (or three)
dimensional potential function and its normal derivative vanish together along a finite
curve (surface) segment, then that potential function must vanish over the entire plane
(volume).

Note:

The fact that one theory is consistent and the other is not, is a fundamental statement
regarding the nature of the theories involved.
This does not necessarily mean that the former is more accurate than the latter.2

Let’s summarize the basic diffraction theory we have used so far. We started with the
theorem of Helmholtz and Kirchhoff in the form of

U(r) =
1

4π

x

S1

ds′ (∂nUG− U∂nG) (3.44)

where the following conditions had to be satisfied for the validity of this equation

• The scalar theory holds.

• U and G satisfy the homogeneous scalar wave equation (i.e., the Helmholtz equa-
tion).

2For example, the Newtonian theory of motion is not consistent with special relativity, yet quite

successful in predicting the motion of cars and bicycles. We could cite thousands of other examples

of inconsistencies in physical theories, which this work is too narrow to contain.
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3.5 Rayleigh-Sommerfeld Formulation of Diffraction

• The Sommerfeld radiation condition is satisfied.

Now suppose that the Green’s function G of the Kirchhoff theory were modified such
that,

• the derivation of the formula remains intact

• either G or ∂nG vanishes over the entire surface S1.

Then, the necessity of imposing boundary conditions on both U and ∂nU would be
removed, hence the inconsistencies of the Kirchhoff theory would be eliminated. Clearly,
for a planar screen this is easily accomplished with an adaptation of the method of image
charges from electrostatics to the present case of the Helmholtz equation. This has been
realized by Sommerfeld (see Fig. 3.5):

Figure 3.5: Point of observation r and its mirror location r′′. In the given coordi-
nate system with the origin lying somewhere in the aperture plane S1

(defining z = 0), for r = (x, y, z) the mirror point is r′′ = (x, y,−z).

Given the original Green’s function G(r, r′), we may add the function G(r′′, r′) with
the same phase (+) or with opposite phase (-) of the original Green’s function, yielding

G±(r, r
′) =

eik|r−r
′|

|r− r′| ±
eik|r

′′−r′|

|r′′ − r′| . (3.45)

As alluded to earlier, these new Green’s functions obey the same differential equation
(derivatives taken with respect to r′ ∈ V ) in the volume V as G(r, r′). The behavior on
the left side of the screen is not important for the diffraction problem in V . However,
these Green’s functions have the nice properties

G−(r, r
′) = 0 for r′ ∈ S1, ∂nG+(r, r

′) = 0 for r′ ∈ S1, (3.46)
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3 Diffraction Theory

where the derivative is still taken with respect to r′. Using these Green’s functions in
(3.44), we obtain the 1st Rayleigh-Sommerfeld solution as

UI(r) = − 1

4π

x

S1

ds′ U(r′)∂nG−(r, r
′) (3.47)

and the 2nd Rayleigh-Sommerfeld solution as

UII(r) =
1

4π

x

S1

ds′ ∂nU(r′)G+(r, r
′). (3.48)

Both are now consistent with potential theory.
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3.6 The Angular Spectrum Method

It turns out that,

• The Kirchhoff solution is the arithmetic average of the two Rayleigh-Sommerfeld
solutions.

• Kirchhoff and the two Rayleigh-Sommerfeld solutions are essentially the same pro-
vided that the aperture diameter is much greater than the wavelength.

• For small angles, all solutions agree.

• For circular apertures on the axis: differences between theories only close to the
aperture.

• In some sense the Kirchhoff theory is more general than the Rayleigh-Sommerfeld
theory. The latter requires that the diffracting screens be planar, while the former
does not. In practise, most apertures are planar, though.

• The first Rayleigh-Sommerfeld solution is the most simple to apply.

3.6 The Angular Spectrum Method

(Monochromatic)

Suppose that a wave is incident on a transverse xy-plane propagating with a non-zero
kz-component. Let’s look at the envelope function U in the xy-plane at z = 0:

U(x, y, 0) =
1

(2π)2

∞x

−∞

dkxdky A(kx, ky; z = 0)ei(kxx+kyy) (3.49)

It is unambiguously given by its spatial Fourier transform A as

A(kx, ky; z = 0) =

∞x

−∞

dxdy U(x, y, 0)e−i(kxx+kyx) (3.50)

A is called the angular spectrum of U . Note that it is a hybrid quantity in the sense that
the first two arguments are from the wavenumber space and the third is from position
space. Hence, we can view the function A(kx, ky, z) as propagating along the z-direction
in the same sense as U propagated in the diffraction problems in previous sections: Given
A(kx, ky, z = 0) in one plane, we want to find A(kx, ky, z) in all other planes, which in
turn defines U(x, y, z) as the Fourier transform

U(x, y, z) =
1

(2π)2

∞x

−∞

dkxdky A(kx, ky; z)e
i(kxx+kyy) (3.51)

and

A(kx, ky; z) =

∞x

−∞

dxdy U(x, y, z)e−i(kxx+kyy) (3.52)
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3 Diffraction Theory

Hence, A(kx, ky, z) readily contains all information we need to determine the interference
pattern of the diffracted wave. We determine this function now when its values are given
in one plane at z = 0.
U satisfies Helmholtz Equation

△U + k2U = 0, (3.53)

and by inserting the Fourier transform involving A defined above we can exploit the fact
that derivatives are mapped into products, i.e. we obtain

∂2
zA(kx, ky; z) +

(
k2 − (k2

x + k2
y)
)
A(kx, ky; z) = 0. (3.54)

This differential equation can easily be solved by

A(kx, ky; z) = A(kx, ky; z = 0)ei
√

k2−(k2x+k2y)z (3.55)

where we chose that sign (of the two possible solutions) such that the wave propagates
or decays in positive z-direction. These are the two cases to consider:

k2
x + k2

y < k2, propagating waves: carry energy away from the plane z = 0.

k2
x + k2

y > k2, evanescent waves: energy stays in vicinity of the plane z = 0.

Hence, for the latter case, this solution becomes the real decaying exponential function
(means non-propagating, i.e. standing wave)

A(kx, ky; z) = A(kx, ky; z = 0)e−µz (3.56)

with µ =
√

(k2
x + k2

y)− k2. The above expression does not carry energy away from the

aperture; waves are cut-off far away from the aperture.
Now, for large distances z (such that e−µz is practically 0), the free space propagation

of light looks like this in terms of the angular spectrum:

U(x, y, z) =

∞x

−∞

dkxdky A(kx, ky; z = 0)ei
√

k2−(k2x+k2y)z (3.57)

× Θ
(
k −

√
k2
x + k2

y

)
ei(kxx+kyy)

︸ ︷︷ ︸
linear dispersive filter with finite bandwidth

, (3.58)

where Θ denotes the Heaviside step function and cuts off all evanescent parts that cannot
be observed in the far-field.
Now suppose that an infinite opaque screen with a diffracting structure is introduced

in the plane z = 0. We define the amplitude transmittance function tA of this aperture,

tA(x, y) =
Ut(x, y; z = 0)

Ui(x, y; z = 0)
=

transmitted field amplitude

incident field amplitude
(3.59)
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3.7 Fresnel and Fraunhofer Diffraction

Hence, when tA(x, y) of a particular diffracting structure is given, the transmitted
field directly behind it is given in terms of the incident field as

Ut(x, y; z = 0) = Ui(x, y; z = 0)tA(x, y). (3.60)

In terms of the angular spectra of the respective waves, this takes on the form of a
convolution

At(kx, ky; z = 0) = Ai(kx, ky; z = 0) ⊗︸︷︷︸
convolution

T (kx, ky), (3.61)

where T is

T (kx, ky) =

∞x

−∞

dxdy tA(x, y)e
−i(kxx+kyy). (3.62)

Note:

The angular spectrum approach and the first Rayleigh-Sommerfeld solution yield iden-
tical predictions of diffracted fields. G.C Shesmann J.Opt.Soc 57, 546 (1967).

3.7 Fresnel and Fraunhofer Diffraction

We derive now typical and widely used approximations for the diffraction integrals.

General Diffraction problem:

We have the following ingredients:

Aperture (pinhole) in an opaque screen at z = 0: Plane coordinates (ξ, η)

Observation at r: Position r = (x, y, z)

As alluded to earlier, the 1st Rayleigh-Sommerfeld solution is the simplest one, hence
we start with that one:

U(r) =
1

iλ

x

Σ

ds′ U(r′)
eik|r−r

′|

|r− r′| cos θ︸︷︷︸
=z/|r−r′|

(3.63)

=
z

iλ

x

Σ

dξdη U(ξ, η)
eikr

r2
, (3.64)

where

r =
√
z2 + (x− ξ)2 + (y − η)2

= z

√

1 +

(
x− ξ

z

)2

+

(
x− η

z

)2

. (3.65)
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3 Diffraction Theory

These equations are (analytically) difficult to tackle, so that we seek certain reasonable
approximations. In practice, this is going to be a far-field limit, since usually diffractive
elements are used in far-field setups. Thus, we retain only the leading orders in z of the
distance r in the above expressions, which describe the significant contributions to the
far-fields. For the z-component, we then have z ≫ x− ξ and z ≫ y − η, leading to

leading order in amplitude part r2:

r ≃ z, (3.66)

leading order in phase factor eikr:

r ≃ z

(
1 +

1

2

(
x− ξ

z

)2

+
1

2

(
y − η

z

)2
)
. (3.67)

Note that we expanded the very same expression r up to two different orders in
z according to the terms that they contribute to. In the amplitude, no significant
information is gained when including terms ∼ z−2, but the integral would still look ugly
and hard to solve because of the parts involving ξ and η. For the phase factor however,
we need to retain terms up to order of z−2, otherwise we’d throw away too much relevant
physics, since the phase factor must depend on x and y to show any interference pattern
at all! This explains the term leading order : sufficient order such that the desired
physical effects are still visible in the equations but easier to treat/discuss.

3.7.1 Fresnel Diffraction

Plugging these expansions into the expression for the diffracted far-field U yields the
Fresnel diffraction integral,

U(r) =
eikz

iλz

∞x

−∞

dξdη U(ξ, η)ei
k
2z

[(x−ξ)2+(y−η)2] (3.68)

which is basically a convolution

U(r) =

∞x

−∞

dξdη U(ξ, η)h(x− ξ, y − η), (3.69)

h(x, y) =
eikz

iλz
e

ik
2z (x2+y2), (3.70)

of the equivalent Fourier transform form:

U(r) =
eikz

iλz
e

ik
2z (x2+y2)

∞x

−∞

dξdη
(
U(ξ, η)e

ik
2z (ξ2+η2)

)
e
−ik
z

(xξ+yη). (3.71)

56



3.7 Fresnel and Fraunhofer Diffraction

General conclusion:

Despite its appearance, the accuracy of the Fresnel approximation is extremely good
at distances that are very close to the aperture. W.H.Southwell J.Opt.Soc Am. 71, 7
(1981)

3.7.2 Fraunhofer Diffraction

Fraunhofer diffraction assumes a stronger condition for the quadratic phase factor in the
Fourier transform. This factor in the Fresnel integral is approximately unity over the
aperture, when

z ≫ max
ξ,η

(
k

2
(ξ2 + η2)

)
. (3.72)

Then the Fresnel integral simplifies to the Fraunhofer diffraction integral

U(r) =
eikz

iλz
e

ik
2z (x2+y2)

∞x

−∞

dξdη U(ξ, η)e
−ik
z

(xξ+yη). (3.73)

The conditions for validity of the Fraunhofer approximation can be severe. For exam-
ple, for λ = 0.6µm and an aperture width of 2.5 cm, then z ≫ 1600m.

3.7.3 Examples of Fresnel Diffraction Patterns

We consider the transmission function

tA(ξ, η) ∈ C. (3.74)

It can

• modify amplitude: Transmission modulation,

• modify phase: Phase modulation.

Fresnel Diffraction by a Sinusoidal Amplitude Grating

A grating with period L and grating lines along the η-axis shall be described by

tA(ξ, η) =
1

2

(
1 +m cos(2π

ξ

L
)
)
. (3.75)

The structure is assumed to be illuminated by a unit-amplitude, normally incident plane
wave: Then the field U(ξ, η) directly behind the grating is equal to tA(ξ, η). By a
completion of squares follows

U(r) =
1

2

(
1 +m exp(−iπ

λz

L2
) cos(2π

x

L
)
)
, (3.76)

I(r) = |U(r)|2 = 1

4

(
1 + 2m cos(π

λz

L2
) cos(2π

x

L
) +m2 cos2(2π

x

L
)
)
. (3.77)
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Analysis

case A: π λz
L2 = 2nπ

I(x, y) =
1

4

(
1 +m cos(2π

x

L
)
)2
. (3.78)

This is a perfect image of the grating. ⇒ Talbot Images (Self-Images, Henry Fox
Talbot, 1836).

case B: π λz
L2 = (2n+ 1)π

I(x, y) =
1

4

(
1−m cos(2π

x

L
)
)2
. (3.79)

These are phase-reversed Talbot Images (Contrast Reversal).

case C: π λz
L2 = (2n− 1)π

2

I(x, y) =
1

4

(
(1 +

m2

2
) +

m2

2
cos(4π

x

L
)
)
. (3.80)

This is a Talbot-Subimage (half-period reduced contrast).

These phenomena also occur in Bose-Einstein-Condensates (BECs), see Phys. Rev. A
51 (1), R14 (1996). For multichromatic versions, see Opt. Com. 260 (2), 415 (2005).
For applications in distance measurements, see Meas. Sci. Technol. 111, 77 (2000).

3.8 The Principle of Holography

We consider the image of an object that an observer sees through the pinhole in an
otherwise opaque screen. If we could construct on the entire screen surface S a wave
profile (amplitude and phase) that was an exact copy of the wave emitted by the object,
the observer B could be placed arbitrarily and would not only see a mere picture of the
object, but the object itself as if it were really there (and not just a screen showing
the object). So instead of just recording the colors and intensities (only amplitudes, no
phases) of the object with photography, we need to store and restore the amplitude and
phase with holography.
If we could do this only on the pinhole Σ, the observer could “see” the object only for

a certain range of angles. The practical construction of such a wave profile is extremely
difficult.

⇒ Denis Gabor (for work done in the late 1940s) won the Nobel Prize in 1971 ”for
his invention and development of the holographic method”.

The principle is depicted in Fig. 3.6 and Fig. ??. The reference wave interferes on Σ
with the object wave. The resulting interference pattern is made to expose a photosen-
sitive material which changes its index according to the deposited dose/intensity. The
object structure is now encoded into this so-called hologram.
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3.8 The Principle of Holography

Figure 3.6: The object wave falling onto a screen Σ.

If the hologram is now exposed to the same reference wave, it acts as a diffractive
object with a certain transmittance function. The combination of this reconstruction
wave and transmittance function generates a wave, that recreates that from the original
object in amplitude and phase so that an observer B sees a wave that is identical to that
emitted from the original object. Hence, one cannot tell the difference and the object is
perceived as if it was really there.
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