4.2 Mathematical Description

It has the following properties:

R(0) = 0, (4.34)
R(—71) = R(1), (4.35)
|R(T)| < R(0). (4.36)
Note: If the mean m(t) is not equal to zero, one often uses the centered auto-correlation
function .
R(ty,ta) = ((X(t1) — m)(X(t2) — m)) (4.37)
For complex processes Z(t), we obtain analogous definitions and properties with
R(T) = (Z*(t)Z(t + 7)), (4.38)
and then we have
R(0) > 0, (4.39)
R(—71) = R*(7), (4.40)
IR(7)] < R(0). (4.41)

Cross-correlation Function:
For two random processes Z1(t), Z5(t), we define the cross-correlation function as:
Rio(T) = (Z7(t) Zo(t + T)). (4.42)
The cross-correlation function has the properties (stationarity assumed!):
|R12(7)] < v/ R11(0) Rao(0), (4.43)
Ris(—7) = R3,(7) (4.44)
For instance, the cross-correlation function could be constructed for the field variables

U(r,t) at two different points r; and ry in space.

Example: As an example for the auto-correlation function, we consider a finite sum of
periodic components (sources) with random amplitudes. The associated random process
is:

RZ(t) = Feremnt 4 kg emiwmt (4.45)
M
=3 Fgpeiont, (4.46)

Here, each realization ¥ Z(t) is labeled by k, where ¥¢,, are M complex random variables
that define the random amplitudes involved in the process. The amplitudes shall have
the following properties
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4 Classical Coherence Theory

o (*¢,,) = 0Vm: Each amplitude has zero mean.
e Bach amplitude *¢,, is itself a statistically stationary random process.

Then we have for the autocorrelation function

R(T)=(Z*(t)Z(t + 1)) (4.47)
— < <Z f:@ei”mt> (Z gneiwm“”)) > = (&G e enemieTinT - (4.48)

~
must be independent of ¢

Due to our assumption of stationarity, we known that R(7) may no longer depend on
t. Thus, we obtain the important result

(Emém) = 0 form # n, (4.49)

i.e., the periodic terms of different frequencies must be uncorrelated and we have that

M

R(T) =) (& &m)e ™. (4.50)

m=1

In other words: R(7) is a sum of periodic terms of frequencies wy, ...,wy; (as many as
are present in the sample functions). The spectral component of each frequency wy, is
proportional to the average "energy” (average "power”) associated with each periodic
component in the process. The auto-correlation function does not provide information
about the phases of the periodic components. Furthermore, strictly speaking, the above
example process is not ergodic since for ergodicity to hold, we must have that R(7) — 0
as T — o0, which is not given here.

This last deficit can be removed by considering the continuum limit, where the sum
over the frequency components becomes an integral and we obtain Fourier integrals:

(Z(t)) = 0 (451)

20 = [ o Fepe (452)

Fe(w) = % /_ Z dt *Z(t)e“! (4.53)

) = [ [ ez et )
f=t+r (4.55)
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4.3 Stationary Optical Fields

* N\ 1 > > T . ei w—w’ teiw"r
@) =g [t ar B e (4.56)
—(2()Z(t47)
= S(w)d(w—w). (4.57)

Here, we used a standard representation for the Dirac delta function frequently en-

countered in physics,
1 oo
2 J_o

dt @ =)t — 5w — w). (4.58)

The spectral function S(w) associated with the correlation function R(7) is
1 [ .
S(w) = —/ dr R(T)e*" (4.59)

27 J_
= R(7) = /00 dwS(w)e ™7, (4.60)

Wiener-Khintchine Theorem:

The spectrum S(w) of a stationary random process of zero mean and its auto-correlation
function R(7) form a Fourier-transform pair.
This can be generalized to cross-correlation functions

(&1 (W)&a(w)) = Wia(w)d(w — W) (4.61)
N2
_ % /_ Z dt* 7, (1)t (4.62)
Wia(w) = % / T dr Ry(r)eer (4.63)
Rys(7) = /_OO dw Wip(w)e ™7, (4.64)

where Wis(w) is the Cross-spectral density.

4.3 Stationary Optical Fields

Equipped with the above mathematical framework, we are now able to the quantify the
degree of coherence. This is accomplished by introducing the mutual coherence function
and the complex degree of coherence.
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Ry
tl — ?
Ql Rl P P
R,
R,
QZ tZ — T
A B

Figure 4.9: Schematic setup of Young’s double slit experiment.

Young‘s Double-Slit Experiment:

The intensity I(P) observed at a point P due to the illuminated pin holes at ¢); and
()- is given as the average of the square of the sum of two fields (or, equivalently, two
complex analytic signals) V(Qq,t — t1) and V(Qa,t — t9), where the times t; and ¢, are
the result of different propagation lengths of the light paths R; and Ry from @) and Q-
to P. In other words, we have

V(Pt) = KiV(Qu,t — 1) + KoV (Qa,t — 1) (4.65)

where K; and K> take into account the (possible different) illumination strength and/or
diffraction by the two different pin holes. As a result, we obtain for the observed intensity

I(P) = {I(P,t)) (4.66)
= (VX(P,t)V(P.1)) (4.67)
= |KiP(V(Qu t — t)V(Qy,t — 1)) (4.68)
=I1(Q1)
+ KoV (Qayt = 1)V (Qa, t — 1)) (4.69)
=1(Q2)
+2Re[Ki Ky (V(Q1,t = 1)V(Qa t = 1)) |. (4.70)

TV
Cross-correlation function I'(Q1,Q2,7)
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4.3 Stationary Optical Fields

For a stationary process, we have

= (V(Qu,t)V(Qa,t + 7)) (4.71)

Thus, we find for the intensity

Ip)= IV0) + I2@m) +2Rey/TOG)TOEN@Q) Qoti — 1) (472)
~—— ~——
=[K121(Q1)  =|K2[?1(Q2)

Here, The first two terms denote the intensity, if only pinhole 1 or 2 would be there.

We have introduced the complex second-order (in the fields) coherence function (@1, Q2, t1—
t), according to

HQ1, Qo ty — ) = I;Egi)%]&) (4.73)
o P(Ql, Q2; 7')
= G (.00 0) )

where 0 < |y(Q1,Q2;7)|] < 1. Thus, v serves as a measure of coherence:

~ = 0: absence of correlations (completely incoherent)
v = 1: complete correlation (completely coherent)

In some cases, it is useful to separate the magnitude and phase of the second-order
coherence function:

Y(Q1, Qa,7) = [7(Q1, Q2, T)|eia(Q1’Q2’T)7@T (4.75)

Where oo = w1 — argy(Q1, Q2, 7).
Then, we have

1(p) = 1D(p) + IP(p) + 20/ TV () T? (0) 1(Q1, Q. )] cos(a —8)  (4.76)
We have 0 = wr = w(te — t1) = QE(RQ — R;)and \ = @

Furthermore, « varies slowly over 7-intervals that are Lé)hort compared with the coher-
ence time. Thus, if the change of Ry — R; in the detection plane is small in comparison
with the coherence length of the light, interference fringes (see Fig. 4.10) will be formed
as a function of § that have an amplitude |y|. The associated fringe visibility v(p) is

Imazv(p) B Imln(p)
[maz(p) + Imln(p)
It is also possible to consider the correlation functions for the intensity. The associated

normalized interference term is known as the fourth-order coherence function (because
two intensities, hence, four fields are involved).

v(p) =

= [7(Q1,Q2, 7)] (4.77)
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4 Classical Coherence Theory

000

Figure 4.10: Patterns formed in Young’s double-slit experiment, when using par-
tially coherent quasi-monochromatic light.
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4.3 Stationary Optical Fields

The Van Cittert-Zernicke Theorem

We have already come across the different coherence length of the sun and Betelgeuse
that we observe on Earth. The primary difference here is our vastly different distance
from the two stars. As a matter of fact, one can prove that increasing the spatial
separation from an incoherent source creates spatial coherence. This is the content
of the van Cittert-Zernicke theorem which has a lot of implications and applications in
projection systems and interferometric measurement techniques. We consider the spatial

Py

P,

Figure 4.11: Schematic illustration of the situation considered in the van Cittert-
Zernicke theorem.

coherence that is created at points P, and P through the incoherent emission from two
source points S; and Ss. If the following relations hold

2mce

|R11_R12|<<lc:A_w = Vi(Py,t) = Vi(P,t) (4.78)
21e
|Rys — Roy| < I, = Ao = Vo(Py,t) = Vo(Py,t) (4.79)
we obtain that
is correlated with
V (P, t) = Vi( Py, t) + Vo (P, t) (4.81)

although the sources S; and Sy are uncorrelated!
In other words: For sufficiently large distances from a completely incoherent source,
spatial coherence builds up.
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4 Classical Coherence Theory

incoherent secondary source o aperture A

Figure 4.12: Illustration of the analogy between the van-Cittert-Zernicke theorem
and the Huygens-Fresnel principle.

Detailed Analysis

In more detail, we consider the emission from a planar source and superimpose the
different uncorrelated sources and obtain

1k(R2 Ry)

ds I(s
Nai Pl VI(P) / i R1Rz

In this and the subsequent integrals o represents the domain of the source, i.e., the area
where the emitters that contribute to the total measured signal are located.

The above integral (together with the definition of I(s) below) is the celebrated van
Cittert-Zernicke theorem. The above integral actually looks like a diffraction integral,
and by now it should not come as a surprise that diffraction and coherence are related!
Furthermore, we have introduced

(P, Py; 0) = (4.82)

I(P) = /ds % (4.83)

The equation above represents the averaged intensity of P, and P.
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4.3 Stationary Optical Fields

planar source

incoherent source

normal to source plane

Figure 4.13: Radiation of an incoherent source as considered by the van Cittert-
Zernicke theorem.

Applications:

Michelson Stellar Interferometer :

This instrument assumes a circular stellar disk with uniform emission: Then the
fringe visibility vanishes for separations of the "pinholes” dy = ——~, where « is
o

the angular radius of the star. Therefore, we can obtain the size of a star from «
and its distance to earth (see Fig. 4.14).

Optical (low coherence) Coherence Tomography :

The low coherence of a source in a Michelson interferometer provides an effective
gating (see Fig. 4.15), which is necessary to obtain a good depth resolution. One
observes interference only for arm length difference of the order of the effective
coherence length. Depth-scanning is done via changing the reference arm length.
This avoids the (rather formidable) ultrafast (time-) gating technology that would
be required for a coherent (laser) source and replaces it with the low coherence
time (length). However, there is no free lunch: Now the information is scrambled
within the interference fringes and considerable image-processing is required. Nev-
ertheless, in many applications an OCT setup is much more robust than a true
(time-)gating setup and often there is sufficient time to do the image processing
on a computer after the OCT image is recorded.
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M3 M4

M1

F
O

M2

Figure 4.14: Sketch of a Michelson stellar interferometer.

low-coherence
light source

reference ey

ifor object
mirror

depth z

turbid object

slice at z

Figure 4.15: Sketch of the setup for imaging inside a turbid object using a Michel-

son design for optical coherence tomography.
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5 Quantum Optics & Quantum
Optical Coherence Theory

Until now, we have been concerned with the propagation of light according to the
Maxwell equations. In order words, we have studied aspects of classical electromag-
netic wave propagation. In this section, we develop the basics of the quantum theory of
light with a special emphasis on the similarities and differences to what we have studied
in the classical domain.

5.1 Review of Quantum Mechanics

First, we review the fundamental structure of quantum mechanics in the framework
provided by the Schrodinger equation and its standard interpretation (aka Copenhagen
interpretation; albeit an at least equally appropriate denomination would be the “Born
interpretation”, since Max Born has been awarded the 1954 Nobel Prize in Physics ”for
his fundamental research in quantum mechanics, especially for his statistical interpreta-
tion of the wavefunction”):

In quantum mechanics, a complex wave function, W(r, t), describes the state of a system,
say, a particle. This wave function does not have a direct physical interpretation.

Instead, |¥(r,)[>dr represents the probability of finding the particle at time ¢ in a
volume of size d*r around r. Obviously, a probability density has to be normalized so
that we have

/d3r]l11(r, DE = 1. (5.1)
RS
The complex nature of the wave function allows for interference effects similar to those
we have discussed in the earlier sections. However, since the interpretation of the quan-
tum mechanical wave function is fundamentally different from that of a classical wave,
significant differences occur (see below). In order to emphasize these points, many peo-
ple refer to W(r,t) as a probability amplitude.

In quantum mechanics, physAical quantities (so-called observables) are given by Hermi-
tian operators.! An operator O is said to be Hermitian if it coincides with its Hermitian

!An operator is just a mapping between functions, c.g. taking a derivative of a function, adding or
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5 Quantum Optics & Quantum Optical Coherence Theory

conjugate operator Ot. The Hermitian conjugated operator Ot is defined through the fol-
lowing condition which O has to satisfy for all complex and square-integrable functions

f(x) and g(r):
[ (0 w) otv = [ @) (0g)  vrg (52

Examples of observables are:
Energy — iho,
Momentum — ?V
Position — r* (denoting the regular multiplication with r)

Hermitian operators have

e real eigenvalues — this is what can be measured in a single measurement

e a complete and orthonormal set of eigenfunctions, i.e., the eigenvalue equation

O, ¢(r)= _o  o(r) (Eigenvalue equation) (5.3)
operator number
leads to a set of eigenvalues o, and associated eigenfunctions ¢, (r).
With this, we can decompose any wave function ¥(r) according to the set of eigen-
functions of the observable O as

U(r) = Z CaPa(T) (5.4)

and interpret |c,|? as the probability to measure the eigenvalue o, given that the
system is in state W(r). Note that the mathematics involved in this decomposition is
analogous to an expansion of a regular vector into eigenvectors of a given Hermitian
matrix.

The time evolution of a quantum mechanical system is given by the Schrodinger
equation

iho, U (r,t) = HU(r,t). (5.5)

Here, H represents the so-called Hamilton-operator which - in many cases - can be
derived from the Hamilton function of the corresponding classical system. For instance,
in classical mechanics, we often have a Hamilton function of the form

p?

H=—+V 5.6

Pov, (56)

where V' (r) is the potential energy. From this, we obtain the corresponding Hamilton-

operator (aka Hamiltonian) via substitution of the (classical) momentum and potential
through the corresponding (quantum mechanical) observables

R 132 h2
- H=—+4+VE)=——A+YV 5.7
D V() = A V() (57)

multiplying a function with a constant. We are only concerned with linear operators, so any linear
combination of the above mentioned operations yields a new operator.
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5.1 Review of Quantum Mechanics

The eigenvalues and -functions of the Hamiltonian H have a special significance since
they correspond to the available eigenenergies (i.e., energy levels of atoms etc.) that
are measurable. Furthermore, in many cases, the knowledge of the eigenvalues and -
functions of the Hamiltonian facilitate the construction of solutions of the Schrodinger
equation once the initial condition ¥(r,t = ) at time ¢ is known.

Eigenvalues and -functions of the Hamiltonian satisfy

Hpn(r) = Enpn(r), (5.8)

so that we can (i) decompose the initial condition into the eigenfunctions and (ii) based
on this, ca determine the full time-dependence of the wave function as

99(1‘,150) = ch@n<r)> (5'9)
U(rt) =Y cae T pu(r). (5.10)

In the above expression, we observe interference of several complex valued eigenfunctions
(aka eigenstates) that changes with time.

The interpretation of the above can straightforwardly be generalized: ¥(r,t) repre-
sents the state of the system, an abstract quantity that tells us which physical (actually
observable) quantities can be measured in this state. If we wish to measure the observ-
able O, we determine the corresponding set of eigenvalues and -functions {04}, {pa(r)}.
Then, we decompose the wave function into the eigenfunctions

U(r,t) = 3 calt)palr) (5.11)

e

so that

Palt) == lealt) = | / & (1) U (r, 1) (5.12)

is the time-dependent (!) probability to measure the eigenvalue o,.

To check this experimentally, we have to carry out a number of experiments on identi-
cal(!) systems that are all prepared in the same(!) state (i.e., are described by the same
wave function W). Then, the above probabilities translate into a histogram of relative
occurrences of measured values, i.e., a distribution of measured values.
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A
Ry

Figure 5.1: Distribution of measured values.

In classical physics we very often (but not always!) “see” only the average (or mean)
value of this distribution. This so-called expectation value represents the classical value
of the physical quantity (or observable) O in the state that is characterized by the wave
function W(r,t). In other words: In a given state, we assign a single value to each
physical quantity according to

(0)(t) == /d3r\P*(r,t)O\D(r,t) (5.13)
= |calt)? 0a (5.14)

This is quite distinct, from the situation in classical physics (recall the corresponding
discussion about classical physics in chapter 1).2

Owing to the probabilistic interpretation of quantum mechanics, we can also consider
other things than expectation values. In this sense, quantum mechanics is infinitely
richer than classical physics. For instance, we can consider the spread (or variance)
of the distribution around the expectation value. In physics, this spread is called the
uncertainty associated with observable O in state ¥(r,t) and is defined as

AO =1/(0?) — (0)2. (5.15)
If this value is large, the possible measurements can yield values that deviate (vary)

strongly from the expectation value <O> If it is small, measurements mostly yield

2The state/wave function determines the possible values and probabilities of physical quantities in a
particular measurement. Figuratively speaking, a quantum measurement is like rolling a dice, where
the state/wave function defines which dice to use: two-sided (aka a coin), six-sided, twelve-sided,
twenty-sided, etc. Sounds weird but is true.
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5.1 Review of Quantum Mechanics

values in the vicinity of the expectation value. If the variance is zero, a measurement
will definitely yield one single value (equal to the expectation value); the probabilities
for all other values are plain zero then.

With this, we can derive the so-called generalized (Heisenberg) uncertainty relation

AAAB > %|([A B}H <+ depends on V! (5.16)

[fl, B} — AB — BA (Commutator) (5.17)

The standard example for this uncertainty relation is the one for momentum and position
(operators), where

(&, Ds] = x?@x - ?8:533 (5.18)
__h (5.19)
i
—ih (5.20)
leads to 5
AxAp > B independent of ¥ (5.21)

Up to here, the theory makes statements of a probabilistic nature which - as already
alluded to above - have to be verified via repeated measurements on identically prepared
systems.

This leads to somewhat counter-intuitive situations which can be found in many (more
or less correct) popularizations, the prime example being “Schrodinger’s Cat”.

Finally, we have to define what happens after a measurement has been carried out,
i.e., after we have obtained a definite (i.e., 100 percent certain) value. There is not much
choice: After measuring the value o, the system’s wave function changes instantaneously
(collapses) into the wave function of the corresponding eigenfunction. This is perhaps
the most delicate part of the Copenhagen interpretation and a lot of criticism (violation
of the principle of relativity due to the instantaneous nature of the collapse etc.) has
been voiced plus alternative interpretations have been developed. However, to this day,
all criticisms regarding violations of such principles have been cleared up and none of the
alternative interpretations has even come near to describing all experiments let alone to
making verifiable predictions that are different from the framework discussed above.

As an example with extremely high relevance to optics, we discuss the 1D harmonic
oscillator:

3 252 1 2,2
H = % -+ 57”(,«) X (522)
hQ 2 1 2. 2
- Z 5.23
o s + 2mw x°, ( )
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~

H@n(r) - En(;pn(r); (524)

1

1 mw
pn(r) =4/ S e " H, <, / m%q:) (Hermite functions) (5.26)

where H,, are the Hermite polynomials.
We define the important ladder operators:

H 7 h
G = b + i£7 with 29 =1/ —; po = Vhmw (5.27)
Po o mw
gt P ii. (5.28)
Po To

These are non-Hermitian operators (and as such, no observables). The term ladder
operators becomes clear by direct calculation

apn(r) = Vnp,_1(r) (5.29)
AT on(r) = Vn+ 1 na(r) (5.30)

af)"
S onfr) = & w% oolr) (5.31)

The last equation means, that all eigenfunctions for the Hamiltonian of the harmonic
oscillator can be obtained from one single function o and consecutive application of the
raising (creation) operator a'.

Since a is a non-Hermitian operator (note that obviously a # a'), it is not guaranteed
that it possesses eigenvalues and -functions, let alone that any potential set of eigen-
functions would form a basis of the space of square-integrable functions. However, this
is precisely the case and we find

a¥,(r) = a¥,(r) (5.32)

on(r), aeC. (5.33)
For these states, we find
/d?’r\IfZ(r)\Ila(r) =1 (5.34)
/dgr\IfZ(r)\Ilg(r) — ¢ 1Al (overcomplete basis®) (5.35)

Based on the above, we find the important commutation relation of the ladder operators

[2,p] =ih= [a,a'] =1 (5.36)
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and can thus rewrite the Hamiltonian of the Harmonic Oscillator as
. 1
H = hw <a*a + 5) : (5.37)

We also define the number operator 7 = a'a

npn(r) = alap,(r) (5.38)
= a'vnpn-i(r) (5.39)
— (), (5.40)

whose eigenvalues count the oscillation quanta in a given state. It can be used to write
the Hamiltonian of the system in a different (better) form and see that the energy
eigenvalues of the harmonic oscillator are uniformly spaced

Hn(s) = o (45 ) ) (5.41)
with a lowest possible value of Fy = hw% # 0 (the zero-point energy).

In quantum optics (as in all higher applications of quantum mechanics) it has become
customary to switch to a more abstract notation, the so-called Dirac notation, where -
instead of the Hilbert space of square integrable functions - more abstract Hilbert spaces
are considered. For instance, instead of the wave function W(r) (that characterizes a
state) an abstract state vector |U) is introduced such that

U(r) := (r|V) |W) € abstract Hilbert space (5.42)
~—~—
€L2(C)

We also define a scalar product (p|¥) between two elements of the abstract Hilbert
space according to

[ e = [ @l o) (5.43)

~ [ e (5.44)

= (p|¥)  with 1= /d3r|r><r| (5.45)

Note that in this notation, |r)(r| represents a projection operator onto the abstract vec-

tor |r) that acts on vectors of the abstract Hilbert space. 1 is the identity operator, the

relation 1 = [ d3r|r)(r| is called completeness relation. It is a convenient way to express
the identity in terms of the projection operators |r)(r|.

Besides providing a highly economical notation, this reformulation allows us to reduce

many complex problems that involve derivatives etc. to simple algebraic problems which
eases quantum mechanical computations tremendously.
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One more time, the prime example is the harmonic oscillator. We will review the results
already discussed in terms of wave functions now in Dirac notation, where only algebraic
relations matter. We repeat the essential steps below.

pn(z) = (z|n), (5.46)
aln) = v/nln — 1), (5.47)
atln) = \/mm + 1), (5.48)
) = ezl Z \/_|n (5.49)
ala) = ala), (5.50)
(a]f) = 7ol (5.51)

/d2ala><a|. (5.52)

Expectation values of operators Ain a given state |U) defined by the corresponding
wave function W(r) are given by

(A) = / &3 U (x, 1) (A\Il(r,t)) (5.53)
(B|A|D). (5.54)

Within the framework of the Dirac notation, the time evolution of a quantum mechanical
state is described via the so-called time evolution operator U(t,ty). It determines the
state (and thus, the wave function) of the system at time ¢ from a given state at time
t024

iho,| W) = H|T) (Schrédinger equation) (5.55)
1U(t)) = U(t, t0)|P(to)) (time evolution) (5.56)

We can distinguish several cases:

O,lT = 0: Then U = e~ #:(t=%) i e the time evolution operator is the exponential func-
tion of the Hamiltonian multiplied by the passed time interval.

O,H +# 0: Here we have to consider two cases:

4In classical mechanics, the state of an oscillator is given by definite values of position and momentum.
A typical initial state is, e.g., an elongated spring held by a scientist (zg # 0,po = 0). When let
loose, these initial conditions cause the physical quantities xg and py to assume time dependent
values leading to the known oscillatory behavior determined by the classical equation of motion. In
quantum mechanics, however, we deal with wave functions ¥ that define the probability to measure
certain values of x and p. Here it is this probability distribution that changes with time and this
change is determined by the quantum mechanical equation of motion, the Schrédinger equation,
expressed in terms of the time evolution operator.
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A A A . t A
1. [U(t),]](t’)] = 0: U = exp(—+ [dt' (")), i.e. the time evolution opera-
to

tor is the exponential function of the time integral of the time dependent
Hamiltonian.

A A A A . t A A
2, [H(t), H(t’)] £0: U = Teexp(—1 [ dt' (")), with T being the time ordering
t
operator. ’

In classical physics, the time-evolution is associated with the physical quantities. If
we —loosely— associate the classical physical quantities with their quantum mechanical
expectation values, we have

(A)(t) = (W) AT (1)) (5.57)

However, we see that in the quantum mechanics we have discussed so far, the time
evolution comes entirely from the time-dependence of the state vector and the physical
quantities, i.e., the observables remain largely time-independent. This is the so-called
Schrédinger picture: The time evolution is associated with the wave function (or state
vector).

However, via the time evolution operator, we can equally well work with time-independent
wave functions (or state vectors) and instead define time-dependent observables accord-
ing to

(A)(t) = (U (¢, o) W (to) AU (¢, o) ¥ (to)) (5.58)
= (U(to)| U'(t,10) AU (1. to) [0 (to)). (5.59)

=A(t)

In this so-called Heisenberg picture, the wave functions (state vectors) remain time-
independent and the (physical) observables become time-dependent. More precisely,
they obey the so-called Heisenberg equation of motion:

d

A == [H A(t)} v 9AL (5.60)

~——
=0 in most of our cases

which —in the Heisenberg picture— replaces the Schrodinger equation for the state
vectors. Of course, the Heisenberg and Schrodinger pictures are completely equivalent
and it is only a matter of taste (or convenience) which one to use. In quantum optics,
the use of the Heisenberg picture is standard.

5.2 Quantization of the EM-field

First, we consider the quantization of a single mode associated with an optical resonator
of length L. Later on, we can generalize this to the case of multi-mode fields and con-
sider the limit of I — oc.
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Let the resonator be bounded by perfect mirrors that are located at z = 0 and z = L.
Furthermore, let the electric field be polarized along the x-axis. By the boundary con-
ditions, the classical modes in this "volume” V = L take on the form

E.(z,t) = 4/ % q(t)sin(kz), (5.61)

k= kpn=—"=m m=12,... (5.62)

2 2
B,(z,1) = “f%/vi%q(t)cos(kz), (5.63)

where ¢(t) and ¢(t) are time dependent amplitudes, the strengths of the resonator modes.
The classical Hamilton function for one of these modes can be determined by integrating
the associated energy density over the ”volume”. Thus, we obtain

o = %/dv (gOEQ(r,t) + iB%r,t)) (5.64)
— %(p2+w2q2)7 (565)

so ¢ and p = ¢ (unit mass) denote the canonical variables in the Hamilton formalism.

As described above, in many cases (and here, too) the quantization procedure sub-
stitutes the classical variables by Hermitian operators in a Hilbert space, that obey the
position-momentum commutation relation:

q q, (5.66)
p D, (5.67)
[q,p] = ih, (5.68)

With these substitutions, the Hamilton operator H for the electromagnetic field is given
by a harmonic oscillator (which we conveniently discussed already):

N 1 R
= 50"+, (5.69)

As we have seen before, we may now introduce the so-called annihilation and creation
operators

. 1 S
a = m(wq + ip) (5.70)
I (wq — ip) (5.71)

(5.72)
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which obey the commutation relation
[a,a'] = 1. (5.73)
Then, the Hamiltonian takes the form of the quantum harmonic oscillator:
i = m(a*a + %) (5.74)

The corresponding quantized EM-field operators are

E (zt) = Eo(a+al)sin(kz), (5.75)
- 1

By(z,t) = BOT(d —a") cos(kz), (5.76)

hw
FEy = — 5.77
0 €0V, ( )
Mo gohw3
By = ? v (5.78)

Several comments are in order:

1. The physical meaning of the creation and annihilation operator is that they, re-
spectively, increase and decrease the number of energy quanta (the ”photons”) in
the mode.

2. Since the mode profile (or "wave function” sin(kz)) does not change in time, the
time-dependence of the EM-field operators comes from the creation and annihi-
lation operators. In other words: We naturally work in the Heisenberg picture
where the creation and annihilation operators are time dependent: a = a(t) (and
a' accordingly), as the following section shows.

Time Evolution of the Annihilation Operator a(t)

In the Heisenberg picture, we employ the time evolution equation for the operators:

d_ i

gt = gl (5.79)
O T

= ﬁhw[(aTa—l—E),a} (5.80)

- iw<eﬁ [a,a]+[a*,a]a) (5.81)
> T

— —iwa. (5.82)

Note that for actual computations such as the one shown above, it is useful to remember
that operators commute with ordinary numbers and that the commutator exhibits a sort
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of bilinear property (see the transition from (5.80) to (5.81) above).
The above simple ordinary differential equation has the solution

a(t) = a(0)e ™" (5.83)
A similar analysis for the creation operator leads to

a'(t) = a'(0)et!, (5.84)

5.2.1 Quantum Fluctuation of a Single-Mode Field

Recall that the eigenstates of the Hamiltonian H are denoted by |n). The expectation
values for the physically measurable EM-fields in these states can now be evaluated using
only the algebraic relations of the harmonic oscillator:

<n|E’$(z, t)|n) = Epsin(kz) (<n|d‘n> + <n|dT‘n>) (5.85)
= (5.86)
<n|E§(z, t)|n) = Eisin®(kz) (<n‘df2 +a® +a'a+ fo/ }n>> (5.87)
= 2FZsin®(k2)(n + %). (5.88)

Thus the uncertainty of the electric field is given as

AEB,(z,t) = V2Eysin(k2)y/n + % (5.89)

Recall, that the number operator 7 = a'a (which is a measure for the stored energy)
does not commute with the electric field operator:

(7, B, = Eosin(kz)(a" —a) # 0. (5.90)

This results in an “Energy-Amplitude” uncertainty relation. In a particular state, this
is given by

ARAE, > %E0| sin(kz) (@l — a) | (5.91)

This expression is analogous to the time-energy uncertainty.

Classical electromagnetic fields are determined by amplitude and phase. However, at
this point, we want to note that the definition of a phase operator in quantum optics is
not trivial.

Consequences of the above can best be illustrated when considering the output of a
single-mode laser well above threshold. This emission is well described by a coherent
state |) (i.e., the eigenstates of the annihilation operator), where

|a|* ~ averaged intensity (5.92)
n o= (alp|a) = ol (5.93)
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Furthermore, we have

(a|p?|a) =7 + n. (5.94)
The uncertainty associated with the number operator in this state is then given by
An =+vn (5.95)

and we have

An 1 (5.96)

noVa

The probability P, of detecting exactly n photons in such a coherent state is given by a
Poisson distribution:

|a‘2n

Py = [{na)f? = e el

(5.97)

In other words: A photon-counting experiment that determines how many photons are
received within a certain time-interval will give a result with a probability according to
Poisson-statistics. Many such experiments will lead to a statistics which - as the number
of experiments is increased - approximate the Poisson statistics. A remarkable feature
of the Poisson statistics is that for very large numbers (i.e., very large photon numbers
which is the same as high intensity) the fluctuations of the photon numbers around the
mean values are very small. This is equivalent to saying that a laser well above threshold
has very little inherent “noise” (i.e., can in principle be made highly intensity-stable)
and can very well be described by a classical field. In this sense, a coherent state with
large values of |a| is “as classical as it gets”. Other light sources cannot be described
by a coherent state and, therefore, usually exhibit much more inherent “noise” (i.e.,
intensity fluctuations) and in some sense are less classical.

5.2.2 Extension to Multi-Mode Fields

The extension of the quantization procedure to multi-mode fields and higher dimension
is now rather straightforward: We consider a cube of side-length L all whose faces are all
perfect mirrors (i.e., a cubic resonator). Then, we obtain the allowed modes inside the
cube as products of the modes discussed above for different directions, i.e., we obtain
a wave vector instead of a single wave number. Since the modes are orthogonal, the
integration of the energy density over the cube’s volume will lead to a simple sum over
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harmonic oscillators for each wave vector and polarization. Thus, we obtain

1

H = ;mks(aLsaks+§), (5.98)
B(r,t) = > B (as(t) +a,(t)) sin(k - 1), (5.99)
B(r,t) — Z%Bl@(dks(t) 4l (1)) cos(k - 1), (5.100)

hws .
By, = \/:";eks, (5.101)
. gohwg
B — ‘%(kxeks)\/%. (5.102)

We introduce a short-hand notation for the bosonic Fock-states (multi-mode states) that
are eigenstates of the above Hamiltonian:

|n> = |nk1817nk1527 Tkys1s Tkasa) Tlkssys - - > (5103)

The creation/annihilation operators for a particular single-mode state i = (k;, s;) act on
these states as

di|n1,...,ni,...> - \/n_i|n1,...,ni—1,...>, (5104)
allng,...oniy.. ) = Vit 1L|ng, ... ,ni+1,...), (5.105)
hy o= ala. (5.106)

Here, n; is the number operator for mode i. For the same mode i, the creation and
annihilation operators obey the commutation relation as in the single mode case. For
different modes i, j the creation and annihilation operators commute.

5.2.3 Density Operator, Pure and Mixed States

Very often, we know how much energy is (on average) contained in a light field but we
do not know how this energy is distributed over the modes discussed above. In other
words, many of the above modes can contribute and the best we can do is to assign a
probability that that a particular mode contributes. In the end, we have to average over
these probabilities.

This means that we have to introduce an ensemble (cf. ensemble vs. time-average) and
other quantities that must be averaged over the probability p; that the particular state
|1;) occurs in the ensemble. These probabilities obey

pi € R, (5.107)
o= 1, (5.108)
0 < p<1 (5.109)
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Then the ensemble average of an operator’s A expectation values is given by

[A] = Zpi<¢i’1‘i’¢i> (5.110)
= Y (] AN 1) (6al |) (5.111)
i n

- Z <¢n‘ Zpi |1hi) (Wil A|¢n> (5.112)

= Tr(pA). : (5.113)

Here, Tr(+) represents the trace over the associated operator, i.e., a sum over its diagonal
elements within any given basis.

Thus, we have introduced an operator p that describes the composition of the ensemble
and this operator is called the density operator.

For a pure state, i.e., when the ensemble consists of only one single state denoted by j,
we have

pi = 0ij (5.114)

so that for this case it follows
pPo= p, (5.115)
Trp? = Trp=1. (5.116)

In contrast, for a mixed state (an ensemble comprising more than one particular state)
we have

i 4 8. (5.117)
Then follows

po= sz’pj i) (Wil s) (51, (5.118)
ij

Trp® = > ppi|(ie)) (5.119)
j

< [Zpir =1 (5.120)

Equality holds only if |<1/Ji‘¢j> |2 = 1 for each pair of states v;, ¢;. This condition is only
fulfilled, if

[0i) = e [1;) (5.121)

i.e., when all states are the same. The above is very practical criterion to figure out if
the system described by a given density operator is a pure or mixed state:

Trp? =1 pure state, (5.122)

Trp? <1 mixed state. (5.123)
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5.2.4 Quantum Coherence Functions

The question is now how to connect or extend the classical theory of coherence to the
quantum case. First, we recall the basics of classical coherence theory:

O a) = D E@) (5.124)

VAIE@)P) VA E(22)?)

where
xr, = (I‘l,tl), To = (I‘Q,tg). (5125)

For stationary processes only time differences t; — t, matter.
The degree of coherence was classified as follows:

WY =1 complete coherence, (5.126)
0< ]y <1 partial coherence, (5.127)
v =0 complete incoherence. (5.128)

Here, it is important to note that whenever the average over a product of two field
values factorizes, we have complete coherence, i.e.,

(E*(21)E(5)) = (B"(11)) (E(22)) = AW =1 (5.129)

The introduction of the notion of coherence in quantum optics is a non-trivial enterprise,
since phase operators cannot easily be defined in quantum optics and the EM-field
operators do not commute in general (which leads to quantum fluctuations which may or
may not "interfere” with the statistical fluctuations that we have considered in classical
coherence theory).

As a matter of fact, Roy J. Glauber was awarded the Nobel Prize in Physics 2005 ”for
his contribution to the quantum theory of optical coherence” in the 1960s. He suggested
the (absolutely essential) decomposition of the EM-field operators according to

Blr,t) = > B (as(t)e™ +af, ()e™) (5.130)
ks
= E®(r,t)+ EO(r,1), (5.131)
(5.132)
where R R
EC) = [EO]" (5.133)

Then, one may define
GW(wy,ap) = Tr { ;sEH(xl)E(ﬂ(xQ)}, (5.134)

where r1 = (I‘l,tl) and To = (I‘Q,tg).
This has a direct connection to experiment: The intensity on a photodetector at position
r is given by

I(r,t) = GY(z,z). (5.135)
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This is analogous to classical coherence theory, and we define the first order quantum

coherence functions
G(l)(iﬂh 352)
\/G(l) (331, .Zl)G(l)(J?Q, ZEQ) ’

g(l)(m,m) =

where again

19V (21, 25)| = 1 complete coherence,
0 < |gW (2, 20)| < 1 partial coherence,
|g(l)({l/’1’ 25)| =0 complete incoherence.

The function GM has the following properties:

G(l)(l’l, $2) = [G(l)(@, Il)] *7
aW(z,z) > 0,
G(l)((El,ZEl)G(l)(Z’Q,IQ) Z |G(1)((E1,JJ2)|2.

Example: As an exercise, we consider a single-mode field:
g (1, w2)| = 1
is obtained if the expectation value factorizes
G (xy,29) = <E(_)(x1)E(+)(x2)>
- <E(—)($1)> <E(+)(x2)> .

(5.136)

(5.137)
(5.138)
(5.139)

(5.144)

(5.145)

(5.146)

This is the case for number states and coherent states. In other words for a single mode
field, both number and coherent states exhibit perfect coherence. Other states generally

do not.

However, the above quantity is still problematic, since at optical frequencies it is very
hard to measure expectation (amplitude and phase!) values of the EM-field. It is much

easier to measure intensities.

Recalling the Hanbury Brown and Twiss interferometer, we, therefore, consider the

classical intensity correlation functions

(2) T1. 0 = —>
V@) = e N )
)

([E(22) )

)E(wz)E(wl)X

(5.147)

(5.148)
(5.149)
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We have

1
73 (7)

7®(0) < o0, (5.150)
~72(0). (5.151)

IAIA

5.2.5 Hanbury Brown and Twiss Expectation Values (Detection of
Photons)

If light incident on one of the detectors is independent of light incident on the other,
there should be a uniform coincidence rate, independent of ¢. Which value does this
rate have? For light sources with large numbers of identically radiating atoms it can be
shown:

V(1) = 1+ YO (5.152)
= 1<) <2, (5.153)

since for incoherent light v().— 0 as 7 — oo, the naive expectation has been that
7 =1 throughout. However, Hanbury Brown and Twiss found experimentally for a
thermal source

Y2(0) = 2 # 4P (c0) = 1. (5.154)

This means that a thermal source likely emits photons in pairs. This is known as the
photon bunching effect and can not be explained in classical physics.

5.2.6 Generalization to Quantum Case
It is now straightforward to extend this to the quantum case. We introduce

G2y, w929, 1) = Tr [ﬁEA(’)(xl)EA(’)(xQ)EA(H(xQ)EA(*)(ml)}, (5.155)

GO (1, 295 19, 11)
G(l)(ZL'l, .CEl)G(l)(CEQ, ZL'Q) .

9 (@1, w25 w2, 1) (5.156)

If we consider fixed positions and investigate temporal coherence, we obtain

@ — @ <E<—>(t)E(‘)(t+T)E(+)(t+T)E(+)<t>> 5.157
g® = g®(r) = (BB () (BOE+m) B0t +7)) o

This is nothing but the conditional probability that if a photon is detected at t, another
one is also detected at ¢t 4 7.
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For a single mode field, we may evaluate this

oy - (@) 5.158
o) = (5.158)
- —<”(7<”‘A>_21)> (5.159)
(- <ﬁ>2<>§2<ﬁ>2 — (i) (5.160)
= 1+ (M)f - (#) (5.161)

(1)

In a coherent state, we have An = /i, thus

¢ (1) =1 independent of 7. (5.162)

This result also holds for multimode fields and means, that photon arrival obeys Poisson
statistics. However, thermal fields do not obey Poisson-statistics. Rather, one can show
from statistical physics that for a single mode field:

e—ﬁ/kBT
Pth = m (5.163)
1 <~/ 0 \»
= 5.164
2 () ol (5.164)
_ 1

An = Vi+n2 (5.166)
and ¢®(0) = 2 which verifies Hanbury Brown and Twiss.

For multi-mode fields one can actually obtain that ¢*(0) can be less than ¢ (7). This
behavior cannot be understood classically and is known as photon anti-bunching.
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