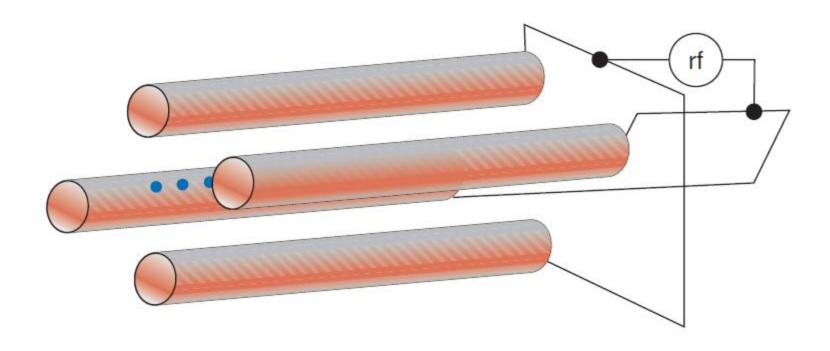


Quantencomputing mit Ionenfallen

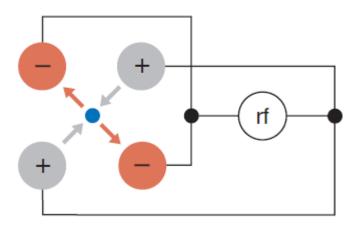
Hauptseminar: Physik des Quantencomputers

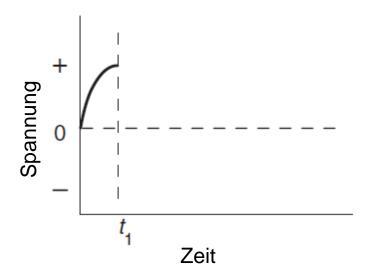
Inhalt


- Ionenfallen → Bsp.: die lineare Paul-Falle
- DiVincenzo-Kriterien
- Umsetzung bei Ionenfallen
- Experimentelle Erfolge
- Zusammenfassung

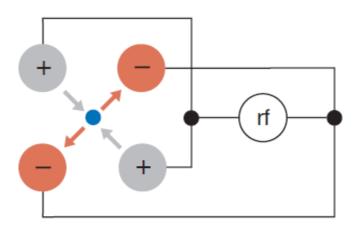
Allgemeines über Ionenfallen

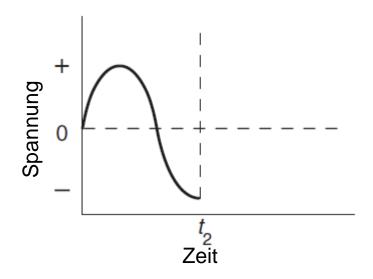
- Ziel: Ionen frei schwebend an einem Ort "gefangen" zu halten
- Verwende: elektrische und magnetische Felder
- Anwendung: Massenspektrometer, Quantencomputing
- z.B.: Penning-Falle, Paul-Falle

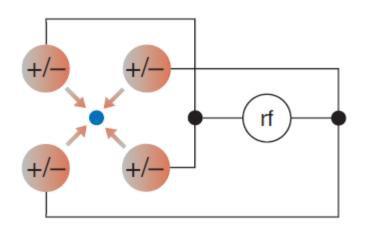


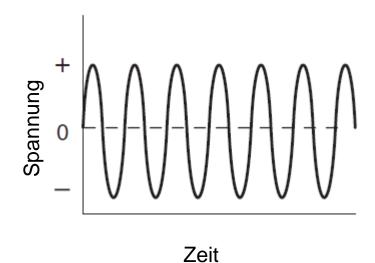

Holzscheiter: Ion-Trap Quantum Computation. In: Los Alamos Science Nr. 27, 2002

lonenfallen ≫ i. Qubits ≫ ii. Initialisierung ≫ iii. Kohärenzzeit ≫ iv. Quantengatter ≫ v. Auslesen ≫ Zusammenfassung


$$t = t_1$$




$$t = t_2$$



zeitlich gemittelt

Ionenfallen

i. Qubits

ii. Initialisierung

iii. Kohärenzzeit

iv. Quantengatter

v. Auslesen

Zusammenfassung

• Potentiale:
$$\Phi_{DC} = \kappa U_0 (z^2 - \frac{1}{2}(x^2 + y^2))$$

$$\Phi_{RF} = \frac{1}{2} \left(V_0 \cos(\Omega_T t) + U_r \right) \left(1 + \frac{1}{R^2} (x^2 - y^2) \right)$$

Hamiltonoperator:

$$H = \sum_{i=1}^{N} \frac{M}{2} \left(\omega_x^2 x_i^2 + \omega_y^2 y_i^2 + \omega_z^2 z_i^2 + \frac{|\vec{p}_i|^2}{M^2} \right) + \sum_{i=1}^{N} \sum_{j>i} \frac{e^2}{4\pi\epsilon_0 |\vec{r}_i - \vec{r}_i|}$$

Weinland et. al.: Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions. In: Journal of Research of the National Institute of Standards and Technology, Volume 103, Number 3, May–June 1998

Ionenfallen

i. Qubits

ii. Initialisierung

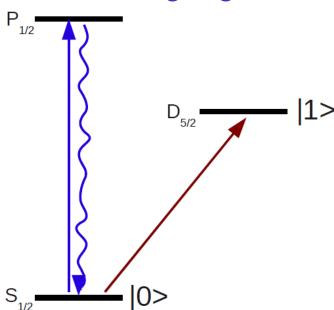
iii. Kohärenzzeit

iv. Quantengatter

v. Auslesen

Zusammenfassung

Die DiVincenzo-Kriterien

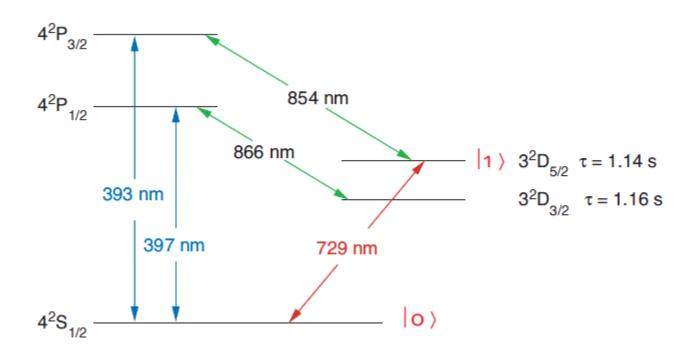

- i. Wohldefinierte Qubits, Skalierbarkeit
- ii. Möglichkeit einen Zustand zu initialisieren: z.B. |000...)
- iii. Ausreichend lange Kohärenzzeit
- iv. Universelles Set an Quantengattern
- v. Zuverlässiger Auslesemechanismus

DiVincenzo: The Physical Implementation of Quantum Computation, 2008

Qubits: Ionen in der Paul-Falle

Optische Übergänge

Hyperfeinstruktur



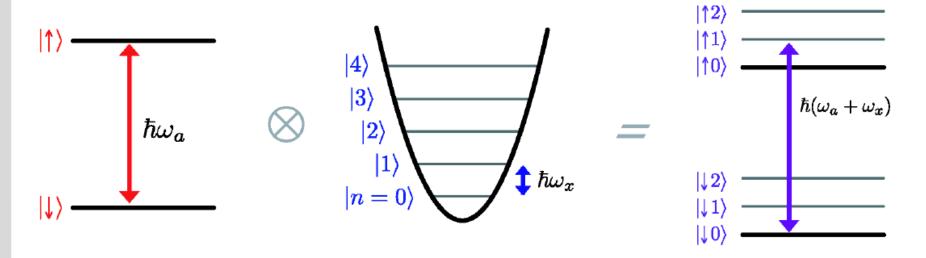
Holzscheiter: Ion-Trap Quantum Computation. In: Los Alamos Science Nr. 27, 2002

Ionenfallen \gg i. Qubits \gg ii. Initialisierung \gg iii. Kohärenzzeit \gg iv. Quantengatter \gg v. Auslesen \gg Zusammenfassung

Energie-Niveaus von Calcium

Holzscheiter: Ion-Trap Quantum Computation. In: Los Alamos Science Nr. 27, 2002

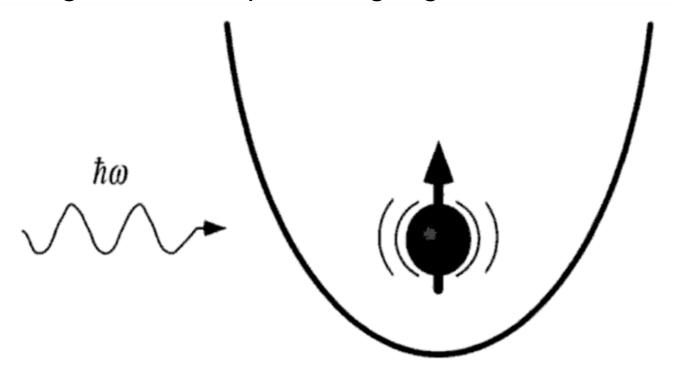
Ionenfallen \gg i. Qubits \gg ii. Initialisierung \gg iii. Kohärenzzeit \gg iv. Quantengatter \gg v. Auslesen \gg Zusammenfassung


- Qubits: Ionen in der Paul-Falle
- Kopplung in axialer Richtung

 $|n\rangle$

Anzahl n Phononen in der Schwerpunktsmode

Qubits: Ionen in der Paul-Falle


Zustand von k Qubits: $|q_1, q_2 ... q_k\rangle |n\rangle$

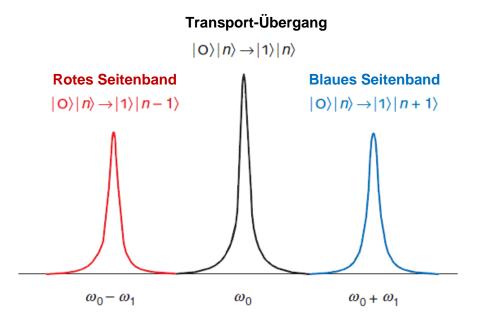
Wang: Ion Trap Quantum Computation. In: iQuISE lecture: implementations of quantum computing, 2010

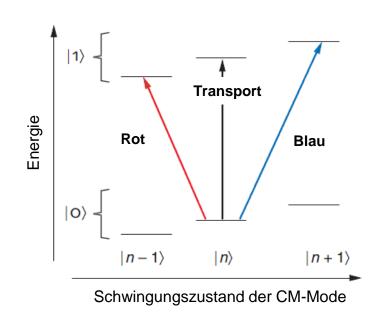
Ionenfallen \gg i. Qubits \gg ii. Initialisierung \gg iii. Kohärenzzeit \gg iv. Quantengatter \gg v. Auslesen \gg Zusammenfassung

Modell: 2-Niveau-Atom in harmonischem Potential mit elektromagnetischer Dipol-Anregung

Nielsen/Chuang: Quantum Computation and Quantum Information. Cambridge University Press, 2000

Ionenfallen ≥ i. Qubits ≥ ii. Initialisierung ≥ iii. Kohärenzzeit ≥ iv. Quantengatter ≥ v. Auslesen ≥ Zusammenfassung


Modell: 2-Niveau-Atom in harmonischem Potential mit elektromagnetischer Dipol-Anregung


- $\Delta = 0$: Transport-Übergang: $H = \frac{\hbar\Omega}{2} (\sigma_+ e^{i\phi} + \sigma_- e^{-i\phi})$
- lacktriangle $\Delta = \omega_1$: blaues Seitenband: $H = \frac{i\hbar\Omega\eta}{2} \left(\sigma_+ a^\dagger e^{i\phi} \sigma_- a e^{-i\phi}\right)$
- $\Delta = -\omega_1$: rotes Seitenband: $H = \frac{i\hbar\Omega\eta}{2} \left(\sigma_+ a e^{i\phi} + \sigma_- a^{\dagger} e^{-i\phi}\right)$

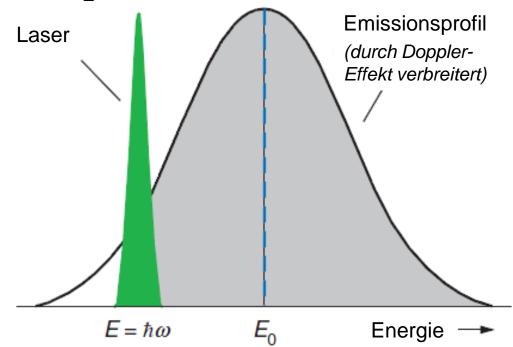
29.05.2012

Seitenband-Struktur

Holzscheiter: Ion-Trap Quantum Computation. In: Los Alamos Science Nr. 27, 2002

Ionenfallen \gg i. Qubits \gg ii. Initialisierung \gg iii. Kohärenzzeit \gg iv. Quantengatter \gg v. Auslesen \gg Zusammenfassung

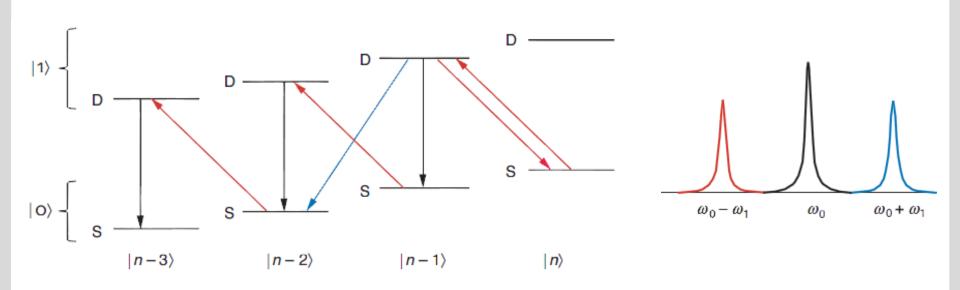
ii. Initialisierung von Zuständen



- Ziel: Präparation des Grundzustands |0> der Schwingung
- **benötigt:** $k_BT \ll \hbar\omega_z$ durch "Kühlung" der Ionen

ii. Initialisierung von Zuständen

Doppler-Kühlung



Zustände $|n = 30\rangle$ bis $|n = 10\rangle$ möglich

ii. Initialisierung von Zuständen

Seitenband-Kühlung

Holzscheiter: Ion-Trap Quantum Computation. In: Los Alamos Science Nr. 27, 2002

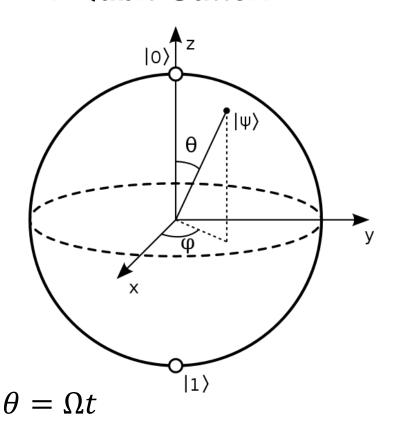
iii. Kohärenzzeit

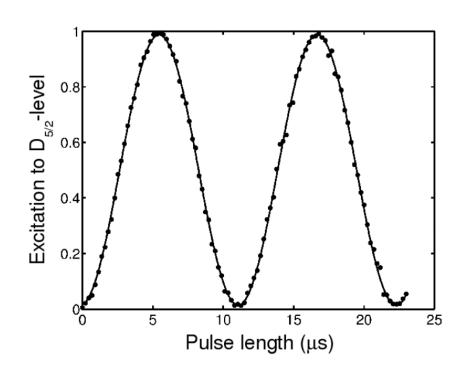
- typ. Zeit für eine Quantengatter-Operation: $\sim 10 \mu s 1 ms$
- Hyperfeinstrukturlevel: >1 Jahr; bei Qubits: >10min
- lacktriangle optische Übergänge z.B. beim Calcium: $\sim 1s$

→ Kohärenzzeit: ~1s

- CNOT + alle 1-Qubit-Gattern = alle N-Qubit-Gatter
 - → vollständiger Satz an Quantengattern

- 1-Qubit-Gatter:
- alle 1-Qubit-Gatter erreichbar durch


$$U = e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta)$$

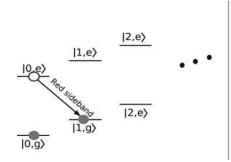

Umsetzung mit Rabi-Oszillationen

$$H = \frac{\hbar\Omega}{2} \left(\sigma_{+} e^{i\phi} + \sigma_{-} e^{-i\phi} \right)$$

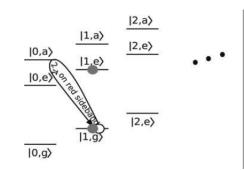
1-Qubit-Gatter:

Häffner: Quantum computing with trapped ions

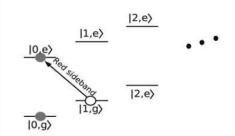
Ionenfallen \geqslant i. Qubits \geqslant ii. Initialisierung \geqslant iii. Kohärenzzeit \geqslant iv. Quantengatter \geqslant v. Auslesen \geqslant Zusammenfassung


2-Qubit-Gatter: CNOT

$$|00\rangle \rightarrow |00\rangle$$


$$|01\rangle \rightarrow |01\rangle$$

$$|10\rangle \rightarrow |11\rangle$$

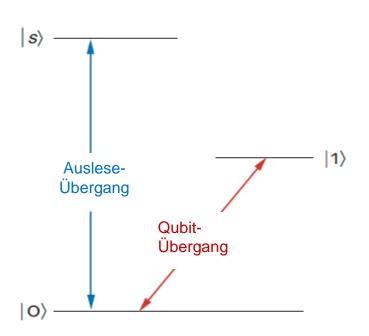

$$|11\rangle \rightarrow |10\rangle$$

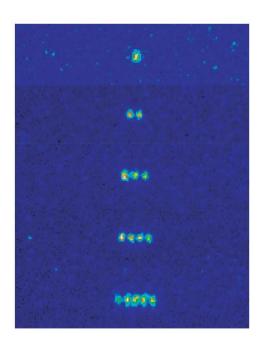
Kontrollbit: Übertragung auf den Schwingungszustand

Zielbit: 1-Qubit-CNOT-Gatter (durch Phasenanpassung)

Kontrollbit: Übertragung aus dem Schwingungszustand auf das Ion



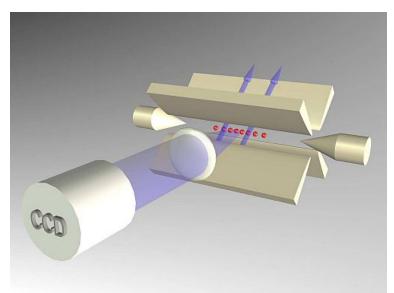


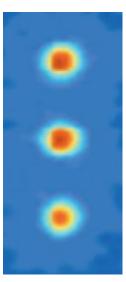


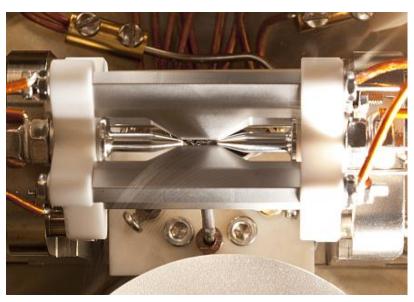
v. Auslesemechanismus

• Anregung eines $|s\rangle$ nur bei besetztem $|0\rangle \rightarrow$ Fluoreszenz

Holzscheiter: Ion-Trap Quantum Computation. In: Los Alamos Science Nr. 27, 2002

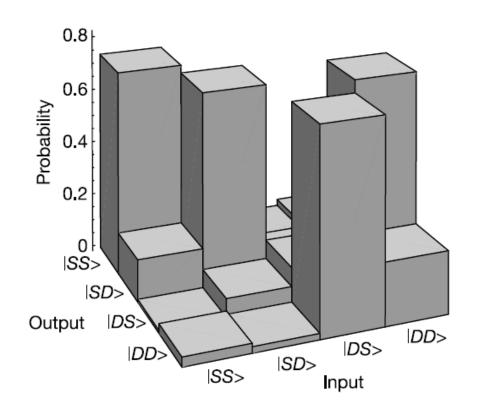

Ionenfallen \geq i. Qubits \geq ii. Initialisierung \geq iii. Kohärenzzeit \geq iv. Quantengatter \geq v. Auslesen \geq Zusammenfassung




- Präparation eines Zustandes: 99,9%
- Kohärenzzeit: 1-2 Größenordnungen > Quantengatterzeit
- 1-Qubit-Gatter: 99,9%
- 2-Qubit-Gatter: über 90% erreicht
- Auslesevorgang: 99,99% erreicht

Universität Innsbruck

→ 14 Ionen erreicht


Quantum Optics and Spectroscopy Group, Institut für Experimentalphysik, Universität Innsbruck

Ionenfallen \geqslant i. Qubits \geqslant ii. Initialisierung \geqslant iii. Kohärenzzeit \geqslant iv. Quantengatter \geqslant v. Auslesen \geqslant **Zusammenfassung**

CNOT-Gatter erstmals realisiert

$$\begin{vmatrix}
|00\rangle & |01\rangle & |10\rangle & |11\rangle \\
|00\rangle & 1 & 0 & 0 & 0 \\
|01\rangle & 0 & 1 & 0 & 0 \\
|10\rangle & 0 & 0 & 1 & 0 \\
|11\rangle & 0 & 0 & 1 & 0
\end{vmatrix}$$

- Präparation eines Zustandes: 99,9%
- Kohärenzzeit: 1-2 Größenordnungen > Quantengatterzeit
- 1-Qubit-Gatter: 99,9%
- 2-Qubit-Gatter: über 90% erreicht
- Auslesevorgang: 99,99% erreicht
- Herausforderungen: Skalierbarkeit, Vereinigung aller einzelnen Erfolge in einem System

29.05.2012

Zusammenfassung

- Ionen in Paul-Falle als Qubits
- Zustand gekennzeichnet durch interne und externe Freiheitsgrade: $|q_1, q_2 ... q_k\rangle |n\rangle$
- 1- und 2-Qubit-Gatter realisierbar mit Laserpulsen
- Auslesen mit Fluoreszenz
- Fazit: aussichtsreiche Möglichkeit für die Realisierung eines Quantencomputers