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Deutsche Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit topologischen Phasen in Systemen mit koexistierenden Dichte-
wellen und Supraleitung. Die Existenz von verschiedenen Phasen von Materie und die entsprechenden
Phasenübergänge spielen eine fundamentale Rolle in der Physik. Die Phasen fest, flüssig und gasförmig
sind allgemein bekannt. Bei genauerer Betrachtung fällt jedoch auf, dass in der Natur eine reichhaltige
Vielfalt an Phasen in unterschiedlichsten Systemen auftritt. In der Theorie der kondensierten Materie
wären zum Beispiel die (Anti-)Ferromagnetische Phase, Dichtewellen und Supraleitung zu nennen. Die
Beschreibung von Phasenübergängen geht immer mit der spontanen Symmetriebrechung von konti-
nuierlichen Symmetrien einher. Beim Ferromagnetismus ist es die Rotationssymmetrie des Systems,
die gebrochen wird, bei der Supraleitung die U(1) Eichsymmetrie. Abhängig von den phänomeno-
logischen Eigenschaften des zu beschreibenden Systems definiert man Ordnungsparameter, die den
Phasen des Systems entsprechen. Ausgehend von einem mikroskopischen Modell, wie dem erweiterten
Hubbard-Modell
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mit den Teilchenzahloperatoren niσ und den Erzeugungs- und Vernichtungsoperatoren c†
iσ und ciσ. t i j

entspricht einem verallgemeinerten kinetischen Term und U , Vi j und Ji j sind Kopplungsstärken. Aus
den Wechselwirkungstermen kann man unterschiedliche Ordnungsparameter durch Entkoppeln der
Wechselwirkungen mittels Mean-Field-Theorie gewinnen. Die passenden Ordnungsparameter müssen je
nach Phänomenologie des Systems gewählt werden. Allerdings ist es möglich, theoretische Aussagen
über die Ordnungsparameter zu treffen. Ein wichtiges Hilfsmittel sind diskrete Transformationen, wie
die Rauminversion (oder Parität in 3D) I, die Zeitumkehr T , Ladungsumkehr C oder Punktgruppensym-
metrien. Mittels dieser diskreten Transformationen können Ordnungsparameter klassifiziert werden.
Ordnungsparameter bzw. die entsprechenden Terme im Hamiltonoperator können invariant unter den
gegebenen Transformationen sein. In diesem Fall bezeichnet man die entsprechenden Transformationen
als Symmetrien des Systems. In dieser Arbeit wenden wir die Klassifikationsmethoden auf Ordnungspa-
rameter für Systeme mit Dichtewellen und Supraleitung an. Zuerst konzentrieren wir uns auf spezielle
stark anisotrope Systeme mit einem kinetischen Term der folgenden Form im Hamiltonoperator

Hkin =
∑

k,σ,σ′
tz cos kzc†

kσckσ′ +
∑

k,σ,σ′
t(cos kx + cos ky)c

†
kσckσ′ . (2)

Der kinetische Term im Hamiltonoperator führt bei halber Füllung zu einer rechteckigen Fermifläche. In
diesem Fall kann ein kommensurabler Wellenvektor Q gefunden werden, der die beiden Seiten der Fermi-
fläche verbindet (siehe Abbildung 1). Das System kann dann eine Tendenz zur Bildung von Dichtewellen
aufweisen, wobei eine physikalisch messbare Größe im Raum moduliert wird. Beispielsweise gibt es
Ladungs- oder Spindichtewellen. Für die unterschiedlichen Dichtewellen kann man Ordnungsparameter
aufstellen, die wir in dieser Arbeit klassifizieren. Die starke Anisotropie in z-Richung setzen wir voraus
tz � t. Wir betrachten die Punktgruppe D4h, die zur Beschreibung der Rotationssymmetrie von recht-
winkligen quasi-2D-Systemen geeignet ist. Abbildung 2 zeigt die Spiegelebenen und Rotationsachsen der
Punktgruppe. Für die Punktgruppe untersuchen wir im Detail einen Symmetriebrechungsmechanismus,
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Q = (π,π)
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Abbildung 1: Brillouin-Zone für den kinetischen Term cos kx + cos ky = 0 in Blau. Bei halber
Füllung liegt perfektes Nesting vor. Der kommensurable Vektor Q = (π,π) verbindet die Seiten
der Fermifläche.
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Abbildung 2: Spiegelebenen und Rotationsachsen der dihedralen Punktgruppe D4h.

der darauf beruht, dass unterschiedliche Darstellungen der Punktgruppe im Hamiltonoperator auftreten.

Ein anderer Aspekt, der in dieser Diplomarbeit beleuchtet wird, ist die Existenz von topologischen
Phasen. Diese haben die Besonderheit, dass sie nicht durch Symmetriebrechung und einen Ordnungspa-
rameter, sondern durch eine topologische Invariante beschrieben werden. Eine bekannte topologische
Invariante, die in dieser Arbeit diskutiert wird, ist die TKNN oder erste Chern-Zahl
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∂ kx
×
∂ ĝ
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die für einen Hamiltonoperator der folgenden Form definiert ist

bH(k) = ε(k) + g (k) ·σ . (4)

Die „topologische Konfiguration” des Systems ist durch das Vektorfeld g (k) bestimmt. σ = (σx ,σy ,σz)
ist ein Vektor von Pauli-Matrizen. Der Wert des Integrals – die erste Chern-Zahl – nimmt nur ganzzahlige
Werte an. Topologische Phasenänderungen des Systems werden durch Änderung der Zahl beschrieben.
Das berühmteste physikalische System, das mittels der Chern-Zahl beschrieben werden kann, ist der
Interger-Quanten-Hall-Effekt, bei dem die Leitfähigkeit in der Ebene quantisiert ist. Wir betrachten im
Detail allerdings den Quanten-Spin-Hall-Effekt, bei dem Hamiltonoperators der obigen Form auftreten.



vii

Abbildung 3: Skyrmion des anomalen Quanten-Hall-Effekts

(a) Geschlossene Bandlücke, topologischer Pha-
senübergang

(b) Topologisch nichttrivaler Zustand des anoma-
len Quanten-Hall-Effekts mit nicht verschwinde-
ner topologischer Invariante C1 = 1

Abbildung 4: Bänder des anomalen Quanten-Hall-Effekts

Die Spinleitfähigkeit ist dann mittels der Chern-Zahl festgelegt. Da in die Berechnung der Chernzahl
nur der Vektor g (k) eingeht, bietet es sich an, dieses Vektorfeld auf der Brillouin-Zone zu darzustellen
(Siehe Abbildung 3). Im Fall des Quanten-Spin-Hall-Systems oder genauer des anomalen Quanten-
Hall-Systems, der als Teilsystem eines Quanten-Spin-Hall-Systems auftritt, erhält man eine Struktur
namens „Skyrmion”, benannt nach T. Skyrme, der diese zuerst als stabile Feldkonfigurationen in einem
nichtlinearen Sigma-Modell beschrieb. Skyrmionen sind topologische Solitonen, bei denen sich die
Vektorrichtung dreht. Berechnet man die Chern-Zahl des gegebenen Skyrmions, so erhält man C1 = 1.
Ein System mit Quanten-Spin-Hall-Effekt ist invariant unter Zeitumkehr. Die Leitfähigkeit des Systems
entsteht durch sogenannte Helikale Randmoden, die jeweils aus zwei chiralen Randmoden bestehen.
Die Moden zeigen Spin-Impuls-Locking, das heißt die Impulsrichtung ist an die Spinrichtung gebunden.
Chirale Randmoden treten beim Integer-Quanten-Hall-Effekt alleine auf, da die Spinrichtung durch das
äußere Magnetfeld fixiert ist. Das führt dazu, dass der Integer-Quanten-Hall-Effekt nicht invariant unter
Zeitumkehr ist. Topologische Phasenübergänge eines Systems sind verbunden mit sich schließenden
Bandlücken. Diese lassen sich durch die Bedingung g (k) = 0 finden. Abhängig von den Parametern
des Modells schließen bzw. öffnen sich Bandlücken. Somit lässt sich ein topologisches Phasendiagramm
erstellen. Ein weiterer Teil dieser Arbeit beschäftigt sich mit der Klassifikation von Hamiltonoperatoren
nach den verallgemeinerten Symmetrietransformationen Zeitumkehr Θ, Ladungsumkehr Ξ und chirale
Symmetrie Π. Je nachdem ob ein Hamiltonoperator diese Symmetrien aufweist oder nicht, fällt der
Operator in eine unterschiedliche Symmetrieklasse. Die Symmetrieklasse ist direkt damit verbunden,
ob das System topologische Invarianten aufweisen kann. Diese Methodik geht auf die Symmetrieklassi-
fikation von Zufallsmatrizen zurück [1]. Das Resultat dieser Klassifikation ist die periodische Tabelle
von topologischen Isolatoren und Supraleitern. Die periodische Tabelle unterscheidet insgesamt zehn
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Abbildung 5: Schneeflockenstruktur der Fer-
mifläche für unterschiedliche Werte des che-
mischen Potentials µ. Für µ = 0.725E∗ bildet
sich ein nahezu perfektes Sechseck. Wir zei-
gen drei inkommensurable Wellenvektoren.
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Abbildung 6: Fermifläche in perfekter
Nesting-Situation mit den drei inkommen-
surablen Wellenvektoren Q1,2,3.

Symmetrieklassen und acht Raumdimensionen. Für höhere Raumdimensionen greift die sogenannte
Bott-Periodizität, die dazu führt, dass sich die Tabelle in der Dimension mit der Periode acht wiederholt.
Wir wenden diese Klassifikationsmethoden auf 2×2 und 4×4 Hamiltonoperatoren an. Als Resultat finden
wir alle mögliche Konfigurationen abhängig von den Kommutationsrelationen der im Hamiltonoperator
beteiligten Ordnungsparamter. Dieses Resultat kann dazu verwendet werden Hamiltonoperatoren mit
gewünschten algebraischen und topologischen Eigenschaften aufzustellen.

In dieser Arbeit wenden wir die Methoden der topologischen Phasenübergänge und der Symmetrie-
klassifikation von Ordnungsparametern auf ein Modellsystem mit topologischen Dichtewellen an, das
gegeben ist durch

bH(k) =−t(cos kx + cos ky)τzρz
︸ ︷︷ ︸

Hopping

+ MC
0 τzρx

︸ ︷︷ ︸
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+ MS
0τzρxσz

︸ ︷︷ ︸

Spindichtewelle

+MC
x2−y2(cos kx − cos ky)ρy

︸ ︷︷ ︸

Singlet idx2−y2 -Dichtewelle

+MC
x y sin kx sin kyτzρx

︸ ︷︷ ︸

Singlet dx y -Dichtewelle

+MS
x2−y2(cos kx − cos ky)ρyσz

︸ ︷︷ ︸

Triplet idx2−y2 -Dichtewelle

+MS
x y sin kx sin kyτzρxσz

︸ ︷︷ ︸

Triplet dx y -Dichtewelle

. (5)

Dieses System kombiniert mehrere bekannte Ordnungsparameter, die in Materialien wie den Cupraten
vorkommen, und weist ein reichhaltiges Phasendiagramm auf, wenn man die Koexistenz der Phasen
voraussetzt. Schließlich wenden wir unsere Methodik auf die Oberflächenmoden des 3D topologischen
Isolators Bi2Te3 an, der zu den 3D topologischen Isolatoren zweiter Generation zählt. Ein 3D topolo-
gischer Isolator weist eine große Bandlücke im Bulk auf, die topologische Struktur führt zu leitenden
Oberflächenmoden, ähnlich zu den Randmoden der Hall-Effekte. Die Fermifläche der Oberflächenmoden
dieser topologischen Isolatoren ist üblicherweise rund und zeigt einen Dirac-Kegel. Allerdings tritt
bei Bi2Te3 eine Verziehung der Fermifläche auf, so dass bei einem gewissen chemischen Potential ei-
ne schneeflockenartige Struktur entsteht. Wir zeigen die Fermifläche für unterschiedliche chemische
Potentiale in Abbildung 5. Für einen bestimmten Wert des chemischen Potentials bildet die Fermiflä-
che ein Sechseck. In diesem Fall besteht die Möglichkeit zur Ausbildung von Spindichtewellen. Die
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s-Wellen-Supraleiter

Topologischer Isolator Bi2Te3

Abbildung 7: s-Wellen-Supraleiter auf Bi2Te3

Seiten der Fermifläche werden durch drei inkommensurable Wellenvektoren Q1,2,3 verbunden (Siehe
Abbildung 6). Wir entwickeln einen Spinorformalisms zur Klassifikation von Ordnungsparametern
und führen eine Klassifikation möglicher Spindichtewellenordnungsparameter durch. Dabei setzen wir
gewisse Symmetrieeigenschaften wie zum Beispiel Erhaltung der Punktgruppe C3v voraus. Wir finden
Ordnungsparameter mit einer Rashba-, Helizitäts- und Ising-artigen algebraischen Struktur. Für jeden der
gefundenen Ordnungsparameter bestimmen wir die Magnetisierung und berechnen die Suszeptibilitäten.
Schließlich kombinieren wir den 3D topologischen Isolator Bi2Te3 mit einem s-Wellen-Supraleiter. Durch
den Proximity-Effekt tunneln Cooper-Paare in den Isolator. Effektiv entsteht ein topologischer Supraleiter.
Wir untersuchen das Auftreten von Majorana-Zuständen. Diese Majorana-Zustände können zur Entwick-
lung topologischer Quantencomputer genutzt werden. In unserem System finden wir drei Subsysteme
(entsprechend den drei Wellenvektoren Q1,2,3) die abhängig von der Stärke des Ordnungsparameters
für Spindichtewellen und abhängig vom Supraleitungsparameter ∆ in den topologisch nicht-trivialen
Zustand übergehen.

In der weiteren Arbeit wollen wir die Berechnungen der Ordnungsparameter für Spindichtewellen
verfeinern und mikroskopische selbstkonsistente Rechnungen durchführen. Damit soll das thermody-
namische Phasendiagramm genauer untersucht werden. Außerdem wollen wir den Proximity-Effekt
detaillierter untersuchen.





Preface

Recently there has been a lot of interest in topological phases in condensed matter systems. The reviews
[2, 3] cover the latest developments. In this thesis we focus on systems exhibiting density waves and
superconductivity. We perform a detailed symmetry classification of order parameters for density wave
systems with a single commensurate vector Q = (π,π,π). This thesis is structured as follows:

In Chapter 1 we introduce topological phases determined by non-zero topological invariants or
equivalently by gap closings in the energy spectrum. We discuss the connection between topological
invariants and topological defects called Skyrmions.

In Chapter 2 we focus on topological classification of many-body Hamiltonians using generalized
symmetries following the Altland and Zirnbauer (AZ) classification of random matrices. Using algebraic
methods we find the classification of all 2× 2 and 4× 4 Hamiltonians.

In Chapter 3 we introduce a basic Bogoliubov-de Gennes (BdG) formalism for order parameter
classification using symmetries. We derive explicit formulas for inversion transformation I, time reversal
transformation T , charge conjugation transformation C and point group transformations. The formalism
is employed in the following chapters.

In Chapter 4 we classify highly anisotropic lattice systems that exhibit density waves and supercon-
ductivity. We focus on the point group D4h and symmetry breaking of the point group and its subgroups.
Furthermore we concentrate on systems exhibiting one commensurate wave-vector Q = (π,π,π). For
such a system we define all the accessible order parameters and perform a symmetry classification. Fi-
nally we study a concrete a model system with different types of coexisting density waves and determine
the topological phases using topological invariants.

In Chapter 5 we apply the symmetry and topological analysis to the surface states of the bulk
topological insulator Bi2Te3 and investigate the possibilities for spin density wave phases. It has been
proposed that bulk topological insulators in proximity to s-wave superconductors can be used to engineer
topological superconductors which show Majorana states. We discuss the coexistence of a spin density
wave phase and superconductivity and retrieve the values for the superconducting gap parameter ∆ and
the strength of the spin density wave order parameter that lead to Majorana modes.

The final Chapter 6 concludes this thesis, summarizes the results and gives an outlook on further
work.

xi
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Notations

We follow some general rules for matrices and vectors. We use hats for matrices m̂ while we denote the
matrix elements mi j without a hat. Due to historical conventions some special matrices are denoted
without hat, e.g. the Pauli matrices. Vectors v are denoted in bold font while vector components vi are
denoted in normal font. For unit vectors v̂ we use a bold font with hat. Row vectors are written without
comma, e.g. kᵀ =

�

kx ky kz

�

, but for convenience we sometimes write k = (kx , ky , kz) which could
either mean a row or column vector depending on context.

Pauli/Gell-Mann matrices
σ = (σx ,σy ,σz) Pauli matrix vector
{1σ, σx , σy , σz} Pauli matrices for spin space
{1τσ, σx , τzσy , σz} Reducible Pauli matrices for spin in combined particle-hole and spin space
{1τ, τx , τy , τz} Pauli matrices for Nambu particle-hole space
{1ρ, ρx , ρy , ρz} Pauli matrices used for additional degree of freedom in the spinor
{1λ, λ1, . . . , λ8} Gell-Mann matrices
Nambu spinors

ψ̂†
k =
�

c†
k↑ c†

k↓

�

Nambu spinor in band space, e.g. spins

bΨ†
k =
�

ψ̂†
k ψ̂†

k+Q

�

Nambu spinor in additional band space, e.g. for different momenta

χ̂†
k =

�

bΨ†
k
bΨᵀ−k

�

Nambu spinor in particle hole and band space
Generalized symmetry operators used for random matrix classification
Θ=KUΘ Generalized antiunitary time reversal operator
Ξ =KUΞ Generalized antiunitary charge conjugation operator
Π = UΠ Generalized unitary chiral symmetry operator
Hamilton operators
H Hamilton operator
bH Hamilton operator in matrix form
bH(k) BdG Hamiltonian in matrix form
Symmetry operators used in the order parameter classification
T Time reversal operator
I Space inversion operator
C Unitary charge conjugation operator
C Antiunitary charge conjugation operator
Gi Group element of group G
O General operator
U Unitary operator
U = UK =KU∗ Antiunitary operator
K Complex conjugation operator
bD(O) Matrix representation of operator O in combined spaces
bDσ(O) Matrix representation of operator O in σ space
d̂(O) Notation for matrix representation of operator O in band space
Groups and algebras
SU(N) Special unitary Lie group of degree N

xv



SO(N) Special orthogonal Lie group of degree N
su(N) Lie algebra of SU(N)
so(N) Lie algebra of SO(N)
Miscellaneous
k = (kx , ky , kz) 3-momentum
G0(k, ikn) Non-interacting Green’s function
ikn Fermionic Matsubara frequency
iqn Bosonic Matsubara frequency
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Chapter 1

Introduction to topological phases

The existence of diverse phases of matter and the corresponding phase transitions play a fundamental
role in physics. The gas, liquid and solid phases are well known, but nature shows a much richer
variety of phases. In condensed matter physics we encounter phases such as (anti-)ferromagnetism,
superconductivity, density waves and many more. Phase transitions can be described by spontaneous
symmetry breaking as introduced by Landau. For example in a ferromagnet the orientation of the
spins breaks the rotational symmetry of the system. The symmetry breaking is connected to non-zero
expectation values of quantum mechanical operators. The non-zero expectation value lead to the
definition of order parameters. Order parameters decouple interactions and are used for an effective
description. In Sections 1.1 and 1.2 we discuss density wave phases and the corresponding order
parameters.

In addition to the mentioned phases there exist topological phases and phase transitions which are
not connected to spontaneous symmetry breaking. In Section 1.3 we describe the integer quantum Hall
effect (IQHE) as an example of topological phases and after that we describe the quantum anomalous Hall
effect (QAHE) and the quantum spin Hall effect (QSHE). The integer quantum Hall effect was discovered
in 1980. It shows a quantization of the Hall conductivity. The quantum spin Hall effect was proposed in
2005 for graphene and later discovered for HgTe quantum wells [4, 5]. The interesting property of the
quantum spin Hall effect is the presence of time reversal invariance. The latest development was the
discovery of 3D topological insulators. These are insulators in the bulk with a large insulating band gap
but time reversal protected gapless surface states. There is a similarity between the integer quantum
Hall effect and topological insulators. The conductivity of both systems is due to modes at the boundary,
in the integer quantum Hall effect at the edges and for the 3D topological insulator at the surface. This
property is called bulk-boundary correspondence. 3D topological insulators were first discovered in
Bi1−xSbx . The next generation of 3D topological insulators were Bi2Se3 and Bi2Te3 which we will also
discuss later in this thesis. The 3D topological insulators of the second generation have a larger bandgap
in the bulk and exhibit only a single surface Dirac cone.

1.1 Density waves

Density waves are modulations of a physical quantity such as charge and spin which occur in materials
with highly anisotropic band structure. A charge density wave (CDW) in 1D (similar to Fig. 1.1a which
is in 2D) can be described by a Hamiltonian like

HCDW =
∑

j

(−1) jc†
j c j . (1.1)

A transformation from Wannier to Bloch operators

c†
k =

1
p

N

∑

j

eik·R j c†
j ⇔ c†

j =
1
p

N

∑

k

e−ik·R j c†
k (1.2)

1
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(a) Charge density wave (CDW) on a
2D lattice

↑ ↓ ↑ ↓ ↑

↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑

↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑

(b) Spin density wave (SDW) on a 2D
lattice

Figure 1.1: Charge and spin density waves

for the lattice sites at R j = a · j yields in momentum space

HCDW =
∑

kk′

∑

j

(−1) j

N
eia j(k′−k)c†

kck′ (1.3)

=
1

N

∑

kk′

∑

j

eia2 j(k′−k)(1− eia(k′−k))c†
kck′ (1.4)

=
N

N

∑

k

c†
kck+Q(1− eiπ) (1.5)

= 2
∑

k

c†
kck+Q . (1.6)

with the momentum transfer Q = π/a. Charge density waves might arise from electron-phonon interac-
tions [6]. In the latter case, the electron-phonon coupling can lead to a lattice distortion which opens a
gap ∆ at the Fermi level at the same time breaking translational symmetry. The modified dispersion
leads to a modulation of the electron density thus a charge density wave. In the next section we discuss
order parameters in a more general manner.

1.2 Order parameters

Systems with phase transitions are described by order parameters. At first one usually starts with a
microscopic model, e.g. an extended Hubbard model

H =−
∑

i 6= j,σ

t i jc
†
iσc jσ

︸ ︷︷ ︸

Hopping

+ U
∑

i

ni↑ni↓

︸ ︷︷ ︸

On site repulsion

+
∑

i 6= j

Vi jnin j

︸ ︷︷ ︸

Coloumb interaction

+
∑

i 6= j

Ji jSi · S j

︸ ︷︷ ︸

Magnetic interaction

(1.7)

where nσ = c†
iσciσ and ni =

∑

σ niσ are the number operators, c†
iσ and ciσ are the creation and

annihilation operators per lattice site i and spin σ respectively. The parameter t i j describes a generalized
kinetic term. U , Vi j and Ji j correspond to interaction strengths. We see that the nin j is a product of four
creation and annihilation operators. For an effective description it is useful to perform an approximation,
a so called mean field decoupling. At first, products of two operators are written as fluctuations around
an expectation value. One can write for example

c†
iσc†

jσ′ = 〈c
†
iσc†

jσ′〉+
�

c†
iσc†

jσ′ − 〈c
†
iσc†

jσ′〉
�

(1.8)

c†
iσc jσ′ = 〈c

†
iσc jσ′〉+

�

c†
iσc jσ′ − 〈c

†
iσc jσ′〉

�

︸ ︷︷ ︸

Fluctuation

. (1.9)
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Figure 1.2: Quantized quantum Hall conductivity σx y (blue) depending on strength of perpen-
dicular magnetic field B. The ratio of the resistivities ρx x/ρx y peaks at the phase transitions.

One introduces then variables for the mean values which are called order parameters

Mi jσσ′ ∝ 〈c
†
iσc jσ′〉, ∆i jσσ′ ∝ 〈c

†
iσc†

jσ′〉 . (1.10)

These can be used to decouple an interaction so that only products of two operators survive. Products of
fluctuations are ignored and one obtains for example

∑

i 6= j

c†
iσciσc†

jσ′ c jσ′ ≈
∑

i 6= j

Mi jσσ′ c
†
jσ′ ciσ +

∑

i 6= j

Mi jσσ′M jiσ′σ . (1.11)

However it is not obvious in which way an interaction has to be decoupled. Generally the relevant order
parameters depend on the phenomenology and the phases of the physical system under consideration.
The order parameters can lead to a symmetry breaking for example in the case of ferromagnetism
which breaks the rotational symmetry of the system or superconductivity which breaks the U(1) gauge
symmetry.

1.3 Integer quantum Hall effect

Since the discovery of the integer quantum Hall (IQHE) effect by von Klitzing [7] in the 80s and
the consequent connection of the phenomena to a topological invariant a lot of efforts focused on
understanding and exploring topological systems. In the IQHE the quantum Hall conductivity in the
x y-plane, σx y , takes the quantized values

σx y =
e2

h
ν (1.12)

where ν is an integer. Quantum Hall conductivity can be understood using Landau level quantization
where the ν corresponds to the number of filled levels. Another possibility to understand the phenomenon
is via topology and topological invariants. The integer number ν is in fact a topological invariant which
is often called the TKNN number after the authors Thouless, Kohmoto, Nightingale and de Nijs [8,
9]. Among mathematicians the invariant is named first Chern number. The topological invariant is
connected to the Berry phase [10] of the eigenvalues of the IQHE. In an IQHE system time reversal
symmetry is broken due to the presence of a magnetic field.

1.4 Quantum anomalous Hall effect

The quantum anomalous Hall effect (QAHE) is similar to the integer quantum Hall effect with the
difference that no magnetic field is present. Like the IQHE the topological phases are described by a
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topological invariant called the first Chern number. The case in which the topological invariant vanishes
defines the topologically trivial phase, compared to the non-trivial phases with a non-zero topological
invariant. Systems exhibiting QAHE have not been discovered in nature yet but occur for example as
subsystems in the quantum spin Hall effect which we discuss in the next section.

For the QAHE a configuration with a non-zero topological invariant is called a Skyrmion which was
discovered by T. Skyrme as stable field configuration in the Skyrme model (topological solitons). This is
the reason why it deserves the name ending “on” which is reserved for stable particles or excitations.
The QAHE can be described by Hamiltonian of the form

bH(k) = ε(k) + g (k) ·σ (1.13)

where g is an arbitrary vector field defined on some compact topological space and σ = (σx ,σy ,σz) are
the Pauli matrices. The system configuration is defined by the vector field g . For a certain configuration
we can calculate the first Chern number k → bH(k) (which is in fact the mapping k → g (k)) which is
given by

C1 =
1

4π

∫

dkx dky
g

|g |3
·
�

∂ g

∂ kx
×
∂ g

∂ ky

�

(1.14)

=
1

4π

∫

dkx dky ĝ ·
�

∂ ĝ

∂ kx
×
∂ ĝ

∂ ky

�

. (1.15)

It can be shown that this number is a topological invariant. This means that it doesn’t change under
smooth deformations of the mapping. In physical terms the Chern number doesn’t change under
deformations which don’t yield gap closings in the energy spectrum of the Hamiltonian. This is a useful
tool if we want to identify topological phases. We can look either for gap closings or directly for changes
in topological invariants. We observe that the topological invariant is independent of the length of the
vector g (k) which corresponds to the energy scale. This means that the Chern number describes the
topology of the mapping k → ĝ (k) with k = (kx , ky) defined in a compact topological space. The target
space of unit vectors ĝ (k) is isomorphic to the sphere S2 since every unit vector corresponds to a point
on the sphere S2 and vice versa.

Before we continue the discussion of momentum space topological defects we have first to consider
the topology of the space where the k vectors are defined. As already mentioned it is crucial that this
space is compact. This means non-compact spaces have to be compactified. Let’s start with a simple
example of a space which is already compact - the sphere S2. In this case the Chern number is computed
as follows

C1 =
1

4π

∫ π

0

dθ

∫ 2π

0

dφ ĝ ·
�

∂θ ĝ × ∂φ ĝ
�

. (1.16)

A non-trivial configuration is given for example by

ĝ (θ ,φ) = (cos Aφ sinθ , sin Aφ sinθ , cosθ) (1.17)

which is for A= 1 just the parametrization of the sphere and gives us in fact C1 = A. For A> 1 we find
multiple Skyrmions distributed over the sphere which give a higher value for the topological invariant
C1 = A> 1. A can be seen as some kind of “winding number” which counts the number of times the k
sphere is wrapped around the ĝ (k) target sphere. Now we see what happens if k live in a non-compact
space. We define

g±(r,φ) = (r cos Aφ, r sin Aφ, ±1) (1.18)

which is just the linearized version of the g around θ = 0, π. g± is now defined in cylindrical coordinates.
Integration of g± with r ∈ [0,∞] yields C1 =±A/2. The Chern number is not integer anymore! What
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IQHE

k

E

k

E

(a) Integer quantum Hall effect with chiral edge
modes. Spin direction is fixed by magnetic field.

QSHE

k

E

k

E

(b) Quantum spin Hall effect with helical edge
modes which are made up from two chiral edge
modes each.

Figure 1.3: Integer quantum Hall and quantum spin
Hall effect in comparison (adapted from [11])

(a) Bulk bands of HgTe and CdTe near
Γ

(b) The CdTe-HgTe-CdTe quantum
well in the normal regime with E1>
H1, d < dc and in the inverted (topo-
logically non-trivial) regime with
E1< H1, d > dc

Figure 1.4: HgTe quantum wells,
adapted from [4]

happened? We computed the Chern number for two non-compact half-spheres where g+ corresponds
to the field on the northern hemisphere and g− corresponds to the field on the southern hemisphere.
The half topological invariant is not that of a Skyrmion but that of a half Skyrmion, a so called Meron.
Compactification means that we glue the two hemispheres together at the equator creating a compact
spherical space out of the two infinite planes.

1.5 Quantum spin Hall effect

Now let’s discuss the quantum spin Hall effect (QSHE) which exhibits non-trivial momentum space
topology. In the QSHE spin flows dissipationless and is carried by helical edge states in two-dimensional
systems. Helical edge states show spin momentum locking, which means that the flow direction fixes or
locks the spin. The QSHE preserves time reversal symmetry. A single edge mode with, let’s say spin up
and momentum k, by itself breaks time reversal symmetry and is termed chiral. Combined with another
chiral edge mode with spin down and momentum −k time reversal symmetry is preserved leading to
helical edge modes. An even number of helical edge modes can hybridize by impurity scattering or
interactions making the system topologically trivial by opening a gap at the edge. An odd number of
edge modes corresponds to a topologically non-trivial system. As a matter of fact the topology can
then be described by a Z2 invariant. The QSHE was first proposed for graphene [12, 13]. However it
could not been discovered due to the too weak spin orbit interaction. Later the QSHE was proposed for
HgTe quantum wells [5, 4] and experimentally discovered [14]. A HgTe quantum well of thickness d is
“sandwiched” by two CdTe layers. In order to observe the QSHE, the thickness d has to be larger than a
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certain critical thickness dc . The essential properties of the system can be described by a 6 band model

�

|Γ6,+1/2〉 , |Γ6,−1/2〉 , |Γ8,+3/2〉 , |Γ8,+1/2〉 , |Γ8,−1/2〉 , |Γ8,−3/2〉
	

. (1.19)

These bands can be combined linearly to form three spin up and three spin down bands respectively

{|H1,+3/2〉 , |E1,+1/2〉 , |L1,+1/2〉 , |H1,−3/2〉 , |E1,−1/2〉 , |L1,−1/2〉} . (1.20)

The |H1,±3/2〉 is formed by the |Γ8,±3/2〉 states, the |E1,±1/2〉 is formed by linear combination of the
|Γ6,±1/2〉 and the |Γ8,±1/2〉 bands. The L1 bands are separated from the other bands so that they can
be omitted in the effective description leaving a four band model

{|H1,+3/2〉 , |E1,+1/2〉 , |H1,−3/2〉 , |E1,−1/2〉 , } . (1.21)

At d = dc a band inversion occurs and the system transits to the topologically non-trivial QSHE. The
states with angular momentum ±1/2 have even parity, the states with angular momentum ±3/2 have
odd parity. This implies that the mixing matrix element between two such states must be odd under
inversion. The simplest possible Hamiltonian to describe the required properties has the form

bH(k) =
�

ĥ(k) 0
0 ĥ∗(−k)

�

,

ĥ(k) = ε(k) + g (k) ·ρ

with the Pauli matrix vector ρ = (ρx ,ρy ,ρz). The block diagonal form of the Hamiltonian ensures time
reversal symmetry, the mixing functions g1,2(k) have to be odd and the functions ε(k) and g3(k) have
to be even because of the parity of the different angular momenta. Since each of the block corresponds
to a spin direction, we can rewrite the Hamiltonian as follows

bH(k) =
�

ĥ↑(k) 0
0 ĥ↓(k)

�

,

ĥσ(k) = ε(k) + gσ(k) ·ρ .

In a tight binding model which is defined on the compact Brillouin zone the lowest-order crystal
harmonics which fulfill the properties are given by

ε(k) = C + D(cos kx + cos ky) , (1.22)

gσ(k) =







σAsin kx
Asin ky

B(cos kx + cos ky −M)






(1.23)

where A, B, C , D and M are parameters of the material or experimental setup. The parameter M
corresponds to the well thickness d. The wave vectors live in the Brillouin zone k ∈ [−π,π]2, which is
glued together at both edges giving rise to the topology of a torus T2. The Brillouin zone is therefore a
compact space and the Hamiltonian reflects this by a 2π periodicity (Only sin and cos functions appear
in gσ(k)). We set A= B = M = 1 and plot the given vector field

g (k) =
�

sin kx , sin ky , cos kx + cos ky − 1
�

(1.24)

to obtain the vector field configuration of the Skyrmion in Fig. 1.7 and the associated Merons in Fig. 1.8
when linearized around k = 0. We see that the Hamiltonian ĥσ(k) has an inherent U(1) symmetry
(rotation of the g (k) vector around z-axis in the configuration space of the g vectors). This rotation
corresponds to a change between the different point group representations, e.g. for no rotation one
obtains sin kxσx+sin kyσy which is a helicity term. For a rotation by 90◦ one obtains sin kxσy−sin kyσx
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(−π,−π) (0,−π) (π,−π)

(−π,π) (0,π) (π,π)

(−π, 0) (π, 0)

Figure 1.5: The relevant low energy points in the Brillouin zone. The low energy points lie at the
intersections of the lines where sin kx , sin ky and cos kx + cos ky are zero.

which is a Rashba-term. The U(1) symmetry is reflected by a degeneracy in the Skyrmion configurations.
For each of the subblocks we can compute the Chern number as described before by

Cσ1 =
1

4π

∫

dkx dky ĝσ ·
�

∂ ĝσ
∂ kx

×
∂ ĝσ
∂ ky

�

. (1.25)

The Chern number is directly proportional to the in plane charge conductivity σσx y =−Cσ1 in appropriate

units. Due the block diagonal form of the total Hamiltonian bH(k) and σ↑x y =−σ
↓
x y there is no charge

conductivity σC
x y = σ

↑
x y +σ

↓
x y = 0. However there can be spin conductivity σS

x y = σ
↑
x y −σ

↓
x y = 2σ↑x y .

One can say that the system consists of two copies of the quantum anomalous Hall effect. Each copy
itself breaks time reversal symmetry. The whole system is time reversal invariant. The Chern number
can be used to define a Z2 invariant N2 ∈ Z2 which describes the topological phases of the system
appropriately

N2 ≡ σ↑x y ≡ σ
↓
x y mod 2 . (1.26)

Consequently the QSHE falls into the symmetry class AII while the quantum anomalous Hall effect
subsystems break all symmetries and fall into symmetry class A. The symmetry classes are described in
Chapter 2. In the next step we want to determine the topological phases of the QSHE. For this reason
we find the gap closings of the Hamiltonian. Gap closings occur for M = 0, ±2 when g (k) = 0. For the
different values of M we find the following points

M =−2 Γ = (0, 0) ,

M = 0 (π, 0)≡ (−π, 0), (0,π)≡ (0,−π) ,
M =+2 (π,π)≡ (−π,π)≡ (π,−π)≡ (−π,−π) .

which can also be called low energy points since they determine the low energy behavior of the system
(see also Fig. 1.5). Since the low energy behavior is determined around the low energy points we can
linearize the Hamiltonian around these points. The linearized vector fields are given by

(0, 0) : gσ(k) = (σA · kx , A · ky , B(2−M)) , (1.27)

(π, 0) : gσ(k) = (−σA · kx , A · ky ,−BM) , (1.28)

(0,π) : gσ(k) = (σA · kx ,−A · ky ,−BM) , (1.29)

(π,π) : gσ(k) = (−σA · kx ,−A · ky ,−B(2+M)) . (1.30)

Now we compute the topological invariants around the low energy points using the linearized model
giving us four Merons, four times ±1/2. The sum of the Merons gives the whole topological invariant
of the Skyrmion. As a result we find the phases for the spin up quantum anomalous Hall subblock in
Table 1.1. The band structure of the two energy bands of the quantum anomalous Hall system for each
of the relevant phases is given in Fig. 1.6.
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(a) Trivial phase for M =−2.5. (b) Gap closing for M =−2.

(c) Topological phase for M = −1 with the
spin conductivity σS

x y =+2.
(d) Gap closing for M = 0.

(e) Topological phase for M = 1 with the
spin conductivity σS

x y =−2.
(f) Gap closing for M = 2.

(g) Trivial phase for M = 2.5.

Figure 1.6: Band structure of the two bands of the quantum anomalous Hall system which occurs
twice in the quantum spin Hall system.
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(a) No rotation

(b) Rotation by 45◦

(c) Rotation by 90◦

(d) Rotation by 180◦

Figure 1.7: Skyrmion configuration g (k) = (sin kx , sin ky , cos kx+cos ky−1) defined on [−π,π]2

with topological invariant C1 = 1. We show different rotations of the normalized field vectors
ĝ (k) around the z-axis. The rotation doesn’t affect the topological invariant C1. The vector field is
actually defined on a torus T2. This means the opposite boundaries have to be glued together
(identified).



10 Chapter 1. Introduction to topological phases

Table 1.1: Topological phases of the quantum anomalous Hall effect. The essential properties
of the Hamiltonian are captured by linear expansion of the Hamiltonian around the low-energy
points of the Brillouin zone (0, 0), (π, 0), (0,π) and (π,π). Gap closings can occur only at these
points. Computing the sum over the Merons at each of the points gives the value 1 for the
topological invariant of the Skyrmion.

Phase σ↑x y (0, 0) (π, 0) (0,π) (π,π)
Trivial M <−2 0 = −1/2 +1/2 +1/2 −1/2

Gap closing M =−2
Topological −2< M < 0 +1 = −1/2 +1/2 +1/2 +1/2

Gap closing M = 0
Topological 0< M < 2 −1 = −1/2 −1/2 −1/2 +1/2

Gap closing M = 2
Trivial 2< M 0 = +1/2 −1/2 −1/2 +1/2

(a) Meron corresponding to g+

(b) Anti-Meron corresponding to g−

Figure 1.8: Meron and anti-Meron configurations for the linear model g±(k) = (kx , ky , ±1) with
topological charge C1 =±1/2. The plots shows the normalized vectors ĝ±(k).
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(a) Chain in a topologically trivial configuration where all Majorana operators are coupled.
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(b) Chain in a topologically non-trivial configuration with two Majorana operators. The Majorana edge
states γB

1 and γA
9 are uncoupled and don’t appear in the Hamiltonian.

Figure 1.9: p-wave superconducting chain with the Majorana operators γA,B
i which arise after

canonical transformations of the p-wave Hamiltonian.

Time

(a) Three Majorana anyons on a plane

(b) Braid (Element of braiding group
B3) which corresponds to movement
of Majorana anyons

Figure 1.10: Braiding performed with three Majorana modes living on a plane

1.6 Majorana modes and topological quantum computation

Ettore Majorana found purely real solutions of the Dirac equation. They describe particles which are
their own anti-particles. It has been debated if neutrinos are Majorana or Dirac particles. In condensed
matter systems Majorana modes can occur as excitations. Within a simple model, Kitaev [15] showed
how Majorana bound states can appear at the boundaries of an 1D p-wave superconducting chain.
The Majorana operators are either all coupled and appear in the Hamiltonian or leave two uncoupled
Majorana edge states as in Fig. 1.9.

It has been proposed that Majorana bounds states can be used for implementing qubits which could
be used to perform topological quantum computation. The key assumption is that Majorana qubits are
topologically protected against local fluctuations compared to classical qubits like the superconducting
flux or charge qubits and the spin qubits. This is due to the delocalized nature of the topological qubit
implemented by Majorana bound states which live at the edges of e.g. a nanowire.

Operations on the Majorana qubits are carried using braiding operations [16] which are essentially
adiabatic movement operations on the Majorana bound states using their non-abelian statistics as
shown in Fig. 1.10. Interestingly the Majorana qubits are topologically protected while performing the
operations. However, braiding operations cannot be used to build a complete set of quantum gates. The
implementation of a complete set of gates makes the combination with either classical qubit operations
or the use of non-adiabatic and topologically non-protected operations necessary.





Chapter 2

Topological classification

In this chapter we focus on topology and the topological properties of Hamiltonians. The topological
classification is based on symmetry considerations. Altland and Zirnbauer (AZ) classified [1] random
matrices using generalized time reversal symmetry Θ, charge conjugation symmetry Ξ and chiral
symmetry Π. The AZ classification is built upon the well-known Wigner-Dyson classification [17, 18]
which uses only time reversal symmetry. An important assumption for this kind of classification scheme
is that all other symmetries are broken. In random matrix theory, which can be used to described
disordered systems this condition is trivially fulfilled. For symmetric non-random systems we have to
carefully check for additional space group symmetries [19]. Depending on the generalized symmetries
we can distinguish ten different symmetry classes. These different symmetry classes show periodic
topological properties which can be summarized in the periodic table [20]. The periodic table assigns a
Z or Z2 invariant to each symmetry class and space dimension. A Z invariant is a number which can
take integer values. If we compute a Z invariant for a physical system we can distinguish different
topological phases. The fundamental property of the invariants is that they don’t change under small
perturbations of the Hamiltonian in such a way that no gap openings or closings in the energy spectrum
occur. Z2 invariants can only take two values.

In some cases topological invariants are directly connected to measurable physical quantities. For
example in the integer quantum Hall effect (IQHE) [7] the measured integer quantized Hall conductivity
σx y is proportional to a Z invariant know as the first Chern number [8, 9]. Another example is the more
recently discovered quantum spin Hall effect (QSHE) [4, 14] which exhibits a Z2 invariant. We have
already described the IQHE and the QSHE in Chapter 1.

2.1 Periodic table of topological phases

The Altland and Zirnbauer (AZ) classification [1] of random matrices is built upon three fundamental
symmetries: the generalized time reversal symmetry Θ, charge conjugation symmetry Ξ and chiral
symmetry Π. The periodic table [20] which is shown in Table 2.1 assigns a Z or Z2 invariant to each
symmetry class and space dimension. The names of the symmetric spaces are due to Élie Cartan who
carried out an exhaustive classification. The entire classification contains symmetry spaces which depend
on the matrix size N and spaces which have a fixed matrix size (due to the exceptional Lie groups). The
periodic table only covers the spaces which depend on matrix size N since these allow the description of
arbitrarily large physical systems. However for small systems the other cases might be useful.

We observe that the table is shown only up to dimension 8 because this covers all cases. Bott-
periodicity states that the same patterns repeats itself for higher dimension. The symmetry classes A
and AIII show a two Bott-periodicity in dimension. These cases are called complex cases since no reality
condition is imposed on the Hamiltonian in these cases. We will describe this in the next section when
we focus on the generalized symmetries. The other symmetry classes are real classes and they show a
periodicity by eight in the dimension. Bott-periodicity is a very powerful phenomenon which appears
in multiple branches of mathematics, in particular algebraic topology. The stable homotopy groups of

13
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Table 2.1: Periodic table. The symmetries Θ, Ξ and Π lead to the distinction of ten cases. Cases
with Π = 1 are termed chiral. The table is only shown up to dimension 8 due to Bott-periodicity.

Symmetry Dimension
Θ Ξ Π 1 2 3 4 5 6 7 8

A unitary 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII chiral unitary 0 0 1 Z 0 Z 0 Z 0 Z 0
AI orthogonal 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI chiral orthogonal 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D BdG 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII chiral BdG −1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII symplectic −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII chiral symplectic −1 −1 1 Z 0 Z2 Z2 Z 0 0 0
C BdG 0 −1 0 0 Z 0 Z2 Z2 Z 0 0
CI chiral BdG 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

the spheres show a Bott-periodicity. The Z and Z2 invariants in the periodic table are in fact the stable
homotopy groups of the symmetry spaces. The homotopy groups of the symmetric spaces for large
matrix sizes N become stable aka don’t change anymore for large N . This what a stable homotopy group
means [21].

2.2 Generalized unitary and antiunitary symmetries

At first we assume that the Hamiltonian operator bH is hermitian and that there exist no other unitary
operator which commutes with the Hamiltonian except the trivial scalar operators. This means that all
symmetries of the system are broken. In the case of a many body Hamiltonian bH(k) we have to consider
also additional symmetries [19]. In Section 2.3 we discuss an example for an additional symmetry.

In the latter case there is a commuting matrix that can be simultaneously diagonalized with the
Hamiltonian thus bringing the Hamiltonian in a block diagonal form. Then we can separately classify
the blocks of the Hamiltonian. According to Wigner’s theorem every symmetry acts as a unitary or
antiunitary transformation. Since we already excluded all unitary commuting symmetries only three
symmetries remain. We use a very general definition given in [22, 23] for the three symmetries that we
call time reversal symmetry Θ, charge conjugation symmetry Ξ and chiral (or sublattice) symmetry Π.
The definition of the symmetries is not necessarily connected to the definition of the physical symmetries
which depends on the representation of the system for example in the BdG formalism. Time reversal
symmetry and charge conjugation symmetry are defined as antiunitary operators which can be written
as product of a unitary operator U and the complex conjugation operator K, e.g. Θ = U∗ΘK. We
can equivalently define Θ = KUΘ (Be aware that K doesn’t act on UΘ just yet). We define the chiral
symmetry by Π ≡ Θ ·Ξ which gives a unitary operator. We define that a Hamiltonian operator bH(k)
has time reversal symmetry Θ, charge conjugation symmetry Ξ or chiral symmetry Π if the following
relations are fulfilled respectively

Θ : Θ†
bH(k)Θ = U†

Θ
bH∗(−k)UΘ =+ bH(k) , (2.1)

Ξ : Ξ†
bH(k)Ξ = U†

Ξ
bH∗(−k)UΞ =− bH(k) , (2.2)

Π : Π†
bH(k)Π = U†

Π
bH(k)UΠ =− bH(k) (2.3)

where UΘ, UΞ and UΠ are unitary matrices. We see that the existence of time reversal symmetry Θ and
charge conjugation symmetry Ξ implies the existence of a chiral symmetry Π. The existence of time
reversal symmetry Θ and chiral symmetry implies the existence of charge conjugation symmetry Ξ and
vice versa. We write Θ= 0 (Ξ = 0) for the absence of time reversal symmetry Θ (charge conjugation
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symmetry Ξ). For the presence of time reversal symmetry Θ (charge conjugation symmetry Ξ) we write
Θ = ±1 (Ξ = ±1) depending on the square of the symmetry Θ2 = ±1 (Ξ2 = ±1). In the physical
interpretation, a symmetry can square to −1 if the system behaves as a half-integer spin system. The
chiral symmetry Π=Θ ·Ξ is necessary to distinguish the two cases Π= 0 and Π= 1 when Θ= Ξ = 0.
The symmetries Θ and Ξ can only square to ±1 since

(KU)† bH(k)KU = U†
bH∗(−k)U =± bH(k) (2.4)

=⇒
�

(KU)†
�2
bH(k)(KU)2 = (U∗U)† bH(k)U∗U = bH(k) (2.5)

=⇒
�

bH(k),U∗U
�

= 0 (2.6)

where U = UΘ,UΞ. Then U∗U would be a unitary matrix which commutes with the Hamiltonian. Since
we required that no other (non trivial) commuting matrices exist which leads to U∗U =±1. No other
symmetries of a Hamiltonian bH are possible. This can be easily seen since

• if two different chiral symmetries Π1 = U1 and Π2 = U2 exist the product forms a unitary matrix
Π1 ·Π2 = U1U2 which commutes with the Hamiltonian bH(k) and we excluded this from the start.

• If two different time reversal symmetries Θ1 =KU1 and Θ2 =KU2 exist we would get a unitary
matrix Θ1 ·Θ2 = U∗1U2 which would commute with the Hamiltonian bH(k) and we excluded this
from the start.

• If two different charge conjugation symmetries Ξ1 = KU1 and Ξ2 = KU2 exist we would get a
unitary matrix Ξ1 ·Ξ2 = U∗1U2 which would commute with the Hamiltonian bH(k) and we excluded
this from the start.

Time reversal Θ and charge conjugation Ξ involve complex conjugation K. If Θ and Ξ are absent one
can say that no reality condition is imposed on the Hamiltonian bH(k). The cases with Θ = Ξ = 0
are therefore called complex cases. The corresponding complex classes in the periodic table show a
Bott-periodicity by two.

2.3 Symmetry classification of 2× 2 Hamiltonians

The simplest Hamiltonian we can classify using the AZ classification scheme is a 2× 2 Hamiltonian. We
can write a general 2× 2 Hamiltonian in the form

bH(k) = ε(k) + f1(k)σ1+ f2(k)σ2+ f3(k)σ3 (2.7)

where ε(k) and fi (i = 1, 2, 3) are arbitrary functions in k and σi are the Pauli matrices. We can permute
the σi Pauli matrices in our definition because they anticommute. The functions f1,2,3 can be either even
(e.g. f (kx) = 1, k2

x), odd (e.g. f (kx) = kx) or asymmetric (neither even nor odd, e.g. f (kx) = kx + k2
x).

For asymmetric functions no time reversal Θ and no charge conjugation Ξ can exist.
We require that there is no commuting matrix. Otherwise the Hamiltonian could be block diagonal-

ized. Therefore at least two fi have to be nonzero. For each of the functions fi we denote odd (even)
behavior under inversion by + (−) in the following tables. For 2× 2 Hamiltonians the chiral symplectic
case CII cannot be reached since there are no two Pauli matrices with σ∗iσi =−1 =⇒ σ

ᵀ
i =−σi. We

distinguish the following cases depending on ε(k).

• ε is present and asymmetric in k (ε(k) 6= ±ε(−k)): In this case all symmetries are broken and
the resulting Hamiltonian belongs to class A.

• ε is present and even in k (ε(−k) = +ε(k)): In this case charge conjugation and chiral symmetry
are broken, since no matrix anticommutes with the identity matrix. Only time reversal symmetry
Θ can exist, therefore we recover the standard Wigner-Dyson classes A, AI and AII. See Table 2.2.



16 Chapter 2. Topological classification

• ε is present and odd in k (ε(−k) = −ε(k)): In this case time reversal symmetry and chiral
symmetry are broken, since no matrix anticommutes with the identity matrix. Only charge
conjugation symmetry Ξ can exist. See Table 2.3.

• ε is absent (ε= 0): This case is not as simple as the others since it allows for chiral symmetries.
Constant energy shifts are prohibited in this case. Assume now that one fi is asymmetric in k
(∃i : fi(k) 6= ± fi(−k)). In this case the only two classes are A (if all fi are present) and AIII (if
one fi is absent). Assume now all fi are either odd or even in k (∀i : fi(k) = ± fi(−k)). In this
case we can access the cases in Table 2.4. We see that the absence of one Pauli matrix leads to a
chiral symmetry. The chiral symmetry is then given by the absent matrix itself.

Table 2.2: ε(−k) = +ε(k). Wigner-Dyson classes. + (−) denotes even (odd) functions respec-
tively and 0 means fi = 0.

f1 f2 f3 Θ Ξ Π
+ + + 0 0 0 A unitary
− − +
− + 0,+ +1 0 0 AI orthogonal
+ + 0,−
− − 0,− −1 0 0 AII symplectic

Table 2.3: ε(−k) =−ε(k). BdG classes. The red marked case with only odd functions leads to a
gapless Hamiltonian. + (−) denotes even (odd) functions respectively and 0 means fi = 0.

f1 f2 f3 Θ Ξ Π
− + + 0 0 0 A unitary
− − −
− − 0,+ 0 +1 0 D BdG
− + 0,−
+ + 0,+ 0 −1 0 C BdG

Table 2.4: ε(k) = 0. The cases with only odd functions lead to a gapless Hamiltonians. + (−)
denotes even (odd) functions respectively and 0 means fi = 0.

f1 f2 f3 Θ Ξ Π
− + + +1 0 0 AI orthogonal
− − + 0 +1 0 D BdG
− − − −1 0 0 AII symplectic
+ + + 0 −1 0 C BdG
− + 0 +1 +1 1 BDI chiral orthogonal
+ + 0 +1 −1 1 CI chiral BdG
− − 0 −1 +1 1 DIII chiral BdG

By taking the example of 2 × 2 Hamiltonians we can shortly discuss the problem of additional
symmetries which must also be checked if a symmetry classification of a Hamiltonian is performed. Let’s
consider the Hamiltonian

bH(kx , ky) = ε+ sin kxσx + sin kyσy +σz kx , ky ∈ [−π,π] (2.8)
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which seems to have no additional symmetries. However the unitary transformation σz
bH(kx +π, ky +

π)σz = bH(kx , ky) consisting of σz and a translation by (π,π) leaves the Hamiltonian invariant. This
means that we have to somehow “block diagonalize” the system. This happens by going to a reduced
Brillouin zone (RBZ) [−π/2,π/2]2. The unitary symmetry σz

bH(kx +π, ky +π)σz = bH(kx , ky) still holds
but now the translation is just a translation by the size of the RBZ and therefore not relevant since it
connects points in the RBZ which were already identified. Remember that the RBZ has the topology of a
torus T2 which corresponds to gluing the edges of [−π/2,π/2]2. The Hamiltonian defined on the RBZ
belongs to class A since no other symmetries can be found.

2.4 Symmetry classification of 4× 4 Hamiltonians

We perform a classification of 4× 4 Hamiltonians. The 4× 4 Hamiltonians are spanned by the su(4) Lie
algebra and the identity matrix 14. The su(4) Lie algebra is spanned by 15 basis vectors. Thus a general
Hamiltonian has the form

bH(k) = ε(k) +
15
∑

i=1

fi(k)Γi . (2.9)

We note that su(4) is isomorphic to so(6). The Lie algebra su(4) spans the Lie group SU(4) whereas so(6)
spans the SO(6). The Lie groups SU(4) and SO(6) are locally isomorphic since they share exactly the
same Lie algebra over the real numbers R. However the Lie algebras can be spanned by different basis
vectors, for example the su(4) by the complex Pauli matrices compared to the real SO(6) generators
which span the so(6). For the following argumentation about the Lie algebras we follow [24]. The 15
basis vectors Li j (with i > j) of so(6) or equivalently the generators of the SO(6) fulfill the commutation
relation

[L i j , Lkm] = i(δik L jm+δ jm L ik −δim L jk −δ jk L im) . (2.10)

Thus we can organize the generators in a specific schema as shown in Table 2.5a. From the commutation
relation we see that two generators commute if they share no common index. We also see that we can
build so(6− n) subalgebras by removing n columns and their corresponding rows from the table.

For the following analysis we don’t have to fix a specific basis. The only requirement is that we
restrict ourselves to purely real or imaginary generators as given by the Kronecker product of two Pauli
matrices τi ⊗σ j . As an example we find specific generators of the SU(4) which fulfill the commutation
relation as shown in Table 2.5b. For the symmetry classification we need at least four matrices, otherwise

Table 2.5: Generators of the SO(6). The generators fulfill the commutation relation Eq. (2.10)
and can therefore organized in a table. The whole matrix is antisymmetric. Therefore the diagonal
elements are zero. The diagonal elements and the elements above the diagonal are not shown
here.

(a) General

L21
L31 L22
L41 L42 L43
L51 L52 L53 L54
L61 L62 L63 L64 L65

(b) Specific basis given by Kronecker products of Pauli ma-
trices

−τzσy
+τy −τxσy
−τzσz −σx +τxσz
−τzσx +σz +τxσx −σy
+τx +τyσy +τz +τyσz +τyσx

we would always find a commuting matrix, so we restrict ourselves us to the basic Hamiltonian

bH(k) = ε(k) + f1(k)Γ1+ f2(k)Γ2+ f3(k)Γ3+ f4(k)Γ4 . (2.11)
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This basic Hamiltonian is chiral since we can always find a matrix which anticommutes with all of the
given ones. If we add more Γ matrices to the basic Hamiltonian we have to check if the added matrix
breaks the chiral symmetry or not. From this we find to which classes the extended Hamiltonians belong.
For now we concentrate on the basic Hamiltonian with only four Γ matrices. The four matrices cannot be
arbitrary but have to be chosen in such a way that no commuting matrix is found, e.g. {σx , τx , τy , τz}
are not acceptable since σx commutes with all of them. We distinguish the following cases depending
on ε. If ε is present we cannot find a chiral symmetry.

• ε is present and asymmetric in k (ε(k) 6= ±ε(−k)): In this case all symmetries are broken and
the resulting Hamiltonian belongs to class A.

• ε is present and even in k (ε(−k) = +ε(k)). In this case we find no chiral symmetry, since
no matrix anticommutes with the identity matrix. Additionally charge conjugation symmetry is
broken. We can use the case ε = 0 as starting point and find the class AI instead of BDI/CI and
class AII instead of CII/DIII. We recovered the Wigner-Dyson classes which are non-chiral.

• ε is present and odd in k (ε(−k) = −ε(k)): In this case we find no chiral symmetry, since no
matrix anticommutes with the identity matrix. Additionally time reversal symmetry is broken.
We can use the case ε= 0 as starting point and find class D instead of BDI/DIII and C instead of
CI/CII. In this case we found the non-chiral BdG classes.

• ε is absent (ε = 0): This case is not as simple as the others since it allows for chiral symmetries. It
can be used to describe systems with a robust particle-hole symmetry such as superconductors.
We distinguish two subcases: Assume now that one function fi is asymmetric in k (∃i : fi(k) 6=
± fi(−k)). In this case the Hamiltonian falls into chiral class AIII. Assume now that all fi are
either odd or even in k (∀i : fi(k) =± fi(−k)). Then we get four distinct cases which we found
by iterating all possible combinations of Γ matrices. We visualize the resulting cases using graphs.
A node of a graph corresponds to a generator and an edge means that the connected generators
anticommute. The + or − inside the node correspond to even or odd functions. In some cases
we show nodes which are splitted in half and show + and −. These graphs stand for two graphs
similar to an equation with ± and ∓. The visualization using graphs reduces the number of
separate cases we have to write down for the symmetry classes since graphs can be bended and
deformed as shown in Fig. 2.1. In order to identify the case to which a Hamiltonian belongs one
has to determine the anticommutation graph.

– Case 1 (Four anticommuting generators, see Fig. 2.2). All generators anticommute pairwise.
We can arrange the generators in the known schema which is shown in Fig. 2.2a. A simpler
representation is possible using an anticommutation graph as in Fig. 2.2b which provides
the anticommutation relation between the generators in a more accessible way. The graph
Fig. 2.2c shows if the functions corresponding to the generators have to be odd or even.
Depending on the functions the Hamiltonian falls into one of the chiral symmetry classes.
We write an example Hamiltonian

bH(k) = f (k) ·τxσ+ g(k)τy . (2.12)

– Case 2 (L41+ L52+ L53+ L54, see Fig. 2.3). The generators L52 and L53 can be exchanged
without changing the class. We show again the schema Fig. 2.2d, the anticommutation
graph Fig. 2.2e and the different cases which lead to the corresponding symmetry classes
Fig. 2.2f. We introduce the modified (reducible) Pauli matrices σ̃ = (σx , τzσy , σz) and
write an example Hamiltonian

bH(k) = f (k) ·τx σ̃+ g(k)τxσy (2.13)

where τx and τxσx are the matrices anticommuting with only one other matrix. In contrast
τxσy and τyσy commute with two.
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Figure 2.1: Equivalent graphs. Graphs can be deformed to reach all equivalent cases.

– Case 3 (L31 + L42 + L53 + L54, see Fig. 2.4). The generator order can be reversed. We
show again the schema Fig. 2.3a, the anticommutation graph Fig. 2.3b and the different
cases which lead to the corresponding symmetry classes Fig. 2.3c. We write an example
Hamiltonian

bH(k) = f1(k)τx + f2(k)τxσx + g1(k)τxσy + g2(k)τyσy . (2.14)

– Case 4 (Two su(2) algebras, see Fig. 2.5). The generators split into the direct sum of two
distinct su(2) algebras. One of the algebras is spanned by Li j and the other one by Ji j. We
show again the schema Fig. 2.4a, the anticommutation graph Fig. 2.4b and the different cases
which lead to the corresponding symmetry classes Fig. 2.4c. For our example we assume
the two subalgebras are spanned by the Pauli matrices σ and τ respectively. We write an
example Hamiltonian

bH(k) = f1(k)σx + f2(k)σy + g1(k)τx + g2(k)τy . (2.15)
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Figure 2.2: Case 1 (Four anticommuting generators)
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Figure 2.3: Case 2 (L41+ L52+ L53+ L54)
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Figure 2.4: Case 3 (L31+ L42+ L53+ L54)
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Figure 2.5: Case 4 (Two su(2) algebras)



Chapter 3

Symmetry classification

One goal of this thesis is the classification of topological systems using symmetries and topological
invariants. Symmetries are very fundamental properties of physical systems. In physics we find many
examples of symmetries which we distinguish in continuous and discrete symmetries. We can also
distinguish between internal (e.g. gauge symmetries) and space time symmetries. Due to Noether’s
theorem the existence of continuous symmetries is directly connected to a conservation law. The
translation invariance of space and time leads to conservation of momentum and energy respectively.
In condensed matter or solid state physics we can also study discrete symmetries like space inversion
symmetry I, time reversal symmetry T and charge conjugation symmetry C. In our case we focus on the
study of electrons and their band structure in crystals. Crystals show a periodicity in space which breaks
the continuous translation symmetry. This leads to the formation of Bravais lattices. The periodicity in
space gives rise to Brillouin zones in k-space due to the Bloch theorem. Further the continuous rotation
symmetry of space is broken to a discrete point group symmetry which describes rotations by certain
discrete angles. The combined rotation and translation symmetry can be described by a space group.
There exists a exhaustive classification of all space groups and the crystal systems in 2D and 3D. For
example in 3D there exist 230 space groups which are combinations of the 32 crystallographic point
groups with the 14 Bravais lattices. If you want to cover a volume or a surface always with the same
elementary cell, you are restricted to elementary cells which are 2-, 3-, 4- or 6-fold symmetric. This
leads to the restriction to 32 crystallographic point groups. However there are quasi crystals which
were discovered by D. Shechtman (Nobel prize 2011 in chemistry [25]) which don’t belong in this
classification. These quasi crystals correspond to two-dimensional Penrose tilings [26, 27].

To describe the band structure of electrons the fundamental physical “object” is the Hamilton operator
H. The spectrum of the Hamilton operator corresponds to the set of allowed energies, the eigenvectors
of the operator correspond to the states of the electrons. To describe a quantized field we use a many
body Hamiltonian in the Bogoliubov-de Gennes (BdG) formalism. At first we study the classification of
BdG Hamiltonians using inversion symmetry I, time reversal symmetry T , charge conjugation symmetry
C and point group symmetries.

3.1 BdG formalism

At first we derive basic relations for symmetry transformations in a general BdG Hamiltonian formalism.
These relations will be used later throughout this thesis. We assume that a physical system is described
by a Hamiltonian H which operates on a Hilbert space. The Hilbert space is spanned by vectors or
state kets |n〉 where n is a general index including quantum numbers such as wave-vector, spin, orbital
etc. An active transformation O acts on the the state kets as |n〉′ = O |n〉. More precisely an active
transformation transforms the state ket |n〉 while keeping the basis vectors fixed. On the contrary an
equivalent passive transformation transforms the basis vectors instead while the state ket |n〉 stays fixed.
Thus passive transformations correspond to a transformation of the operators describing the system.
For the given active transformation by O we can find a passive transformation which acts on the linear

21
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operator A as follows

〈n|A′|m〉= 〈n|′A |m〉′ = 〈n|O†AO|m〉 =⇒ A′ =O†AO . (3.1)

According to Wigner’s theorem [28] every symmetry operation acts as a unitary or antiunitary1 transfor-
mation O in the Hilbert space, therefore we can write O−1 = O†. A unitary transformation U leaves
the scalar product invariant 〈n|′ · |m〉′ = 〈n|U†U |m〉 = 〈n|m〉 whereas an antiunitary transformation
U = UK leads to a complex conjugation of the scalar product 〈n|′ · |m〉′ = 〈n|K†U†UK|m〉 = 〈n|m〉∗.
This means that every antiunitary operator can be split into a unitary operator U and the antiunitary
complex conjugation operator K

U = UK =KU∗ (3.2)

Now we consider a specific form of the Hamiltonian in second quantization. A general Bogoliubov-de
Gennes (BdG) Hamiltonian describing a fermionic system is given in the explicit form by

H = ψ̂†m̂ψ̂+
1

2
ψ̂†∆̂

�

ψ̂†
�ᵀ
+

1

2
ψ̂ᵀ∆̂†ψ̂ (3.3)

where ψ̂† (ψ̂) are Nambu spinors containing single fermion creation (annihilation) operators for multiple
bands (e.g. spin or orbital) respectively. The fermion creation operator ψ†

n creates the state |n〉=ψ†
n |0〉

by acting on the vacuum. The Fock space (which is the Hilbert space of the system) is spanned by these
basis vectors with proper antisymmetrization e.g. for two fermions |nm〉 = |n〉 |m〉 = |n〉⊗|m〉−|m〉⊗|n〉.
m̂ and ∆̂ are bilinears corresponding to particle-hole and particle-particle terms respectively. Given a
unitary transformation U and its matrix representation d̂(U) with the matrix elements dnm(U) = 〈n|U |m〉
we find the transformation relations of the basis kets |n〉 and the dual state vectors 〈n| 2

|n〉′ = U |n〉=
∑

m
|m〉 〈m|U |n〉=

∑

m
|m〉 dmn(U) , (3.4)

〈n|′ = 〈n|U† =
∑

m
〈n|U†|m〉 〈m|=

∑

m
dnm(U†) 〈m| . (3.5)

Using the fundamental relation of the sesquilinear form

〈n|U†|m〉= 〈m|U |n〉∗ =⇒ dnm(U
†) = d∗mn(U) = d†

nm(U) (3.6)

we find the transformations of the bilinears by acting on state vectors

¬

n
�

� ψ̂†m̂′ψ̂
�

�m
¶

= 〈n|′ ψ̂†m̂ψ̂ |m〉′ =
∑

i j

dni(U†)mi jd jm(U)

=⇒ m̂′ = d̂†(U)m̂d̂(U) , (3.7)
D

nm
�

�

� ψ̂†∆̂′
�

ψ̂†
�ᵀ
�

�

�0
E

= 〈nm|′ ψ̂†∆̂
�

ψ̂†
�ᵀ
|0〉=

∑

i j

dni(U†)dmj(U†)∆i j

=⇒ ∆̂′ = d̂†(U)∆̂d̂∗(U) . (3.8)

For further analysis we want to treat particle-particle and particle-hole terms on the same footing. This
is done by introducing the enlarged Nambu spinor χ̂† =

�

ψ̂† ψ̂ᵀ
�

where we use the Pauli matrices
{1τ, τx , τy , τz} as a basis for the particle-hole space. The spinor components are not independent since
the relation χ̂† = χ̂ᵀτx holds, where the transposition acts on both τ and band spaces. The enlarged
spinor is not fermionic any more, but Majorana since {χn,χm} is non-zero for some n and m. If we

1antilinear unitary
2The 〈n| belongs to the dual space. The dual space of a Hilbert space is isomorphic to the Hilbert space due to Riesz.



3.1. BdG formalism 23

would treat the components of the spinor as independent fields the spinor would still be fermionic.
Using the fermionic anticommutation rules we can rewrite the BdG Hamiltonian as follows

H =
1

2
χ̂†

�

m̂ ∆̂
∆̂† −m̂ᵀ

�

χ̂ +
1

2
Tr m̂≡

1

2
χ̂†
bHχ̂ +

1

2
Tr m̂ (3.9)

with the BdG Hamiltonian matrix bH. The last term is a constant shift of energy which can be omitted for
the further analysis. We observe that the spinor relation constraints the form of the BdG Hamiltonian.
The form of the BdG Hamiltonian is restricted by the relations ∆̂ = −∆̂ᵀ and bH = −τx

bHᵀτx . The
Hamiltonian bH transforms under U as follows

bH′ = U†
bDU = bD†(U) bHbD(U) , (3.10)

bD(U) =
�

d̂(U) 0
0 d̂∗(U)

�

= 1τ
d̂(U) + d̂∗(U)

2
+τz

d̂ (U)− d̂∗(U)
2

(3.11)

where bD(U) is the matrix representation of U in combined particle-hole and band space. Respectively
for an antiunitary operator U = UK we find

bH′ = U†
bDU =K†

bD†(U) bHbD(U)K = Dᵀ(U) bH∗D∗(U) . (3.12)

Now we consider that the single fermion creation operators have the index k for momentum. This leads
to the many-body Hamiltonian

H =
1

2

∑

k

χ̂†
k

�

m̂(k) ∆̂(k)
∆̂†(k) −m̂ᵀ(−k)

�

χ̂k +
1

2

∑

k

Tr m̂(k)≡
1

2

∑

k

χ̂†
k
bH(k)χ̂k +

1

2

∑

k

Tr m̂(k) (3.13)

with the spinor χ̂†
k =

�

ψ̂†
k ψ̂

ᵀ
−k

�

. The spinor satisfies the relation χ̂†
−k = χ̂

ᵀ
kτx . As before the spinor

redundancy constraints the BdG Hamiltonian with the equations ∆̂(k) =−∆̂ᵀ(−k) and

− bH(k) = τx
bHᵀ(−k)τx . (3.14)

Relation Eq. (3.14) is actually very important since it corresponds to the existence of the generalized
charge conjugation symmetry Ξ = τxK. This means that our BdG Hamiltonian falls into a BdG or BDI
symmetry class with Ξ2 = 1. See Section 2.2 for more details on the symmetry classes.

To see how the many-body Hamiltonian transforms under a symmetry operation U we consider at
first the wave function φ(k) = δ(k− k0) of a particle with momentum k0. A transformation of the state
gives φ′(k) = Uφ(k) = φ(U†k) from which we derive

∫

dk φ′∗(k)H(k)φ′(k) =
∫

dk φ∗(U†k)H(k)φ(U†k) =

∫

dk φ∗(k)H(Uk)φ(k) (3.15)

=⇒ H′(k) = U†H(k)U =H(Uk) . (3.16)

Similarly in quantized field theory we transform |k0〉
′ = U |k0〉= |Uk0〉 and derive
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
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 c†
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=
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
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 c†
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=
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0
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� ck0
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H(Uk0)ck0

c†
k0

�

�

�0
E

(3.17)

=⇒ H′(k) = U†H(k)U =H(Uk) . (3.18)

We see that the wave function picture and the quantum field picture are consistent. We write down the
transformation of the BdG Hamiltonian

bH(k)′ = U†
bH(k)U = bD†(U) bH(Uk)bD(U) (3.19)
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with the matrix representation bD(U) in combined particle-hole and band space. Respectively for an
antiunitary operator U = UK we find

bH(k)′ = U†
bH(k)U = bDᵀ(U) bH∗(−Uk)bD∗(U) . (3.20)

After we have written the action of general symmetry transformations O = U , U we consider specific
discrete transformations.

3.2 Inversion, time reversal and charge conjugation transformation

In this section we find explicit expressions for the action of inversion I, time reversal transformation
T and charge conjugation C on a BdG Hamiltonian. Application of these discrete transformations can
either leave physical systems invariant or not. When the system is left invariant we call the system to be
symmetric or invariant under the transformation and we call the transformation a symmetry instead, for
example inversion symmetry I. After we found the explicit forms of the transformations we can use
them to perform symmetry classification of order parameters.

3.2.1 Inversion transformation I

Inversion transformation is a unitary operation defined by the following actions on the position operator
r̂ , the momentum operator p̂ and the spin operator bS

I† r̂ I =−r̂ , I† p̂ I =−p̂ , I† r̂ × p̂ I =+r̂ × p̂ , I†
bSI =+bS . (3.21)

Assume we have a single particle state |k,σ,ν〉, with wave vector k, spin σ (eigenvalue of the operator
bSz) and an orbital quantum number ν , we get

I |k,σ,ν〉= ην |−k,σ,ν〉 (3.22)

where ην = 〈k,σ,ν |I|k,σ,ν〉 is the intrinsic parity of the orbital. Since inversion squares to one the
parity of an orbital can be either odd (−1) or even (+1). In combined spin and orbital spaces the
matrix representation is given by the diagonal matrix d̂(I) = η̂. We obtain further the representation in
combined particle-hole and band space

bD(I) = 1τ
d̂(I) + d̂∗(I)

2
+τz

d̂(I)− d̂∗(I)
2

= η̂ . (3.23)

As a result the BdG Hamiltonian transforms in the following way

bH(k)′ = I†
bH(k)I = η̂ bH(−k)η̂ . (3.24)

At this point we recall that the BdG Hamiltonian satisfies Eq. (3.14) providing us one more expression
for the transformation of the BdG Hamiltonian under inversion

bH(k)′ = I†
bH(k)I =−τx η̂ bHᵀ(k)τx η̂ . (3.25)

Restriction to a single orbital reduces η̂ = η to a scalar matrix and the transformation of the Hamiltonian
to

bH(k)′ = I†
bH(k)I = bH(−k) =−τx

bHᵀ(k)τx . (3.26)
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3.2.2 Time reversal transformation T

Time reversal transformation is an antiunitary transformation which is defined by the following actions

T † r̂ T =+r̂ , T † p̂ T =−p̂ , T † r̂ × p̂ T =−r̂ × p̂ , T †
bST =−bS . (3.27)

Since T is antiunitary we may write it as the product of a unitary time reversal operator TU and the
antiunitary complex conjugation operator K that acts on complex numbers and reverses momentum.
For the usual representation of the spin operators with bSy imaginary we find the following actions of the
complex conjugation operator

K† r̂ K =+r̂ , K† p̂ K =−p̂ , K†
bSx ,z K =+bSx ,z , K†

bSy K =−bSy . (3.28)

Since T = TUK the actions of the operator TU are fixed as

T †
U r̂ TU =+r̂ , T †

U p̂ TU =+p̂ , T †
U
bSx ,z TU =−bSx ,z , T †

U
bSy TU =+bSy . (3.29)

For TU = e−iπbSy/ħh the above relations are satisfied and we obtain T = e−iπbSy/ħhK. For a spin-1/2 we have
bSy = ħhσy/2 providing T = −iσyK. For a single particle state |k,σ,ν〉 with orbital ν we also have to
consider the action of time reversal on the orbital ν and obtain

T = TUK = e−iπbSy/ħhe−iπbL y/ħhK = e−iπbJy/ħhK , (3.30)

with the angular momentum operator bL y and the total angular momentum operator bJy = bL y + bSy . Since
the representation d̂(T ) is real we obtain

bD(T ) = 1τ
d̂(T ) + d̂∗(T )

2
+τz

d̂(T )− d̂∗(T )
2

= e−iπbJy/ħh . (3.31)

Finally we retrieve the BdG Hamiltonian transformation

bH(k)′ = T †
bH(k)T =K†e+iπbJy/ħh bH(k)e−iπbJy/ħhK = e+iπbJy/ħh bH∗(−k)e−iπbJy/ħh . (3.32)

Due to the property Eq. (3.14) of the BdG Hamiltonian we get

bH(k)′ = T †
bH(k)T =−τx e+iπbJy/ħh bH(k)τx e−iπbJy/ħh . (3.33)

3.2.3 Charge conjugation C

The BdG Hamiltonian permits to introduce a charge conjugation transformation. We can define it to
be either unitary or antiunitary in the way it acts on the BdG Hamiltonian. In relativistic field theories
charge conjugation is fixed to be antiunitary since CPT= 1. This is due to the CPT theorem and the fact
that time reversal is antiunitary. Notice that inversion transformation is the same as parity transformation
in 3D (However parity is not the same as inversion in 2D).

Let us at first consider a unitary charge conjugation C which we define by the action on the spinor as

C ψ̂†
k C

† = ψ̂ᵀ−k =⇒ C χ̂†
k C

† = C
�

ψ̂†
k ψ̂

ᵀ
−k

�

C† =
�

ψ̂
ᵀ
−k ψ̂†

k

�

= χ̂†
kτx . (3.34)

We obtain the matrix representation bD(C) = τx and the transformation of the BdG Hamiltonian

bH(k)′ = C†
bH(k)C = τx

bH(k)τx . (3.35)

Due to the property Eq. (3.14) of the BdG Hamiltonian we get

bH(k)′ = C†
bH(k)C =−K†

bH(k)K . (3.36)

For antiunitary charge conjugation C = CK we see immediately that

bH(k)′ = C†
bH(k)C =− bH(k) (3.37)

which fixes the behavior of the Hamiltonian under charge conjugation to give a −1. This corresponds
to the existence of a generalized charge conjugation symmetry Ξ = C = τxK (see Eq. (3.14) and
Section 2.2).
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3.3 Point group symmetry

A point group G is a finite group which operates on the real or momentum space with reflections and
rotations. Space groups are more general and also include translations in space. Thus a point group
forms a subgroup of a space group. We need space groups if we want to describe tight binding models
which exhibit a periodicity in space effectively breaking the continuous translation symmetry to a discrete
translation symmetry. However for continuum models the translation symmetry is unbroken and the
study of the point group suffices. Due to the crystallographic restriction theorem the crystal point groups
are restricted to 2-, 3-, 4- or 6-fold rotations. Thus there are only 32 crystallographic point groups. See
Table 3.1 for an overview. For now we only want to discuss some general ideas about point groups. Later
when we discuss systems with a 4-fold rotation symmetry we study the operation of a point group in
detail.

Let’s sum up some basic facts about groups. Assuming that we have a finite group G with the
elements Gi (i = 0, . . . , n− 1, G0 ≡ identity element). Then we can multiply two elements Gi and G j so
that Gi ·G j ∈ G. Additionally there must be a inverse element to each group element giving G0 = Gi ·G

−1
i .

Now point group operations act on the BdG Hamiltonian as follows

bH(k)′ = G†
i
bH(k)Gi = bD

†(Gi) bH(Gik)bD(Gi) (3.38)

where the action on the vector k is especially important. The matrix representations bD(Gi) are non-trivial
for example if the system exhibits strong spin orbit coupling thus rotations affecting spin. This might not
be case if we have a strong magnetic field which fixes the spin direction.

Table 3.1: Crystallographic point groups in Schoenflies notation. Cn are the cyclic groups. Cnh
contains Cn and adds a reflection plane perpendicular to the rotation axis. Cnv contains Cn and
adds reflection planes parallel to the rotation axis. Dn are the dihedral groups. S2n (German
“Spiegel”) contain only a 2n-fold rotation-reflection axis. The gray cells indicate duplicates, the red
cells forbidden groups because they contain higher rotations (8- and 12-fold) which are forbidden
by the crystallographic restriction theorem. Missing in the table are the tetrahedral and octohedral
groups T, Td, Th, O and Oh. Counting all the groups yields 32 crystallographic point groups in
total.

n 1 2 3 4 6
Cn C1 C2 C3 C4 C6
Cnv C1v = C1h C2v C3v C4v C6v
Cnh C1h C2h C3h C4h C6h
Dn D1 = C2 D2 D3 D4 D6
Dnh D1h = C2v D2h D3h D4h D6h
Dnd D1d = C2h D2d D3d D4d D6d
S2n S2 S4 S6 S8 S12
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Table 3.2: Character table of the dihedral point group D4h which consists of rotations and
reflections. See Fig. 4.2a for a visualization.

I.R. E 2C4 C2 2C ′2 2C ′′2 I 2S4 σh 2σv 2σd Linear, Rotations Higher functions
A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 x2+ y2, z2

A2g +1 +1 +1 −1 −1 +1 +1 +1 −1 −1 Rz x y(x2− y2)
B1g +1 −1 +1 +1 −1 +1 −1 +1 +1 −1 x2− y2

B2g +1 −1 +1 −1 +1 +1 −1 +1 −1 +1 x y
Eg +2 0 −2 0 0 +2 0 −2 0 0 (Rx , R y) (xz, yz)
A1u +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 x yz(x2− y2)
A2u +1 +1 +1 −1 −1 −1 −1 −1 +1 +1 z
B1u +1 −1 +1 +1 −1 −1 +1 −1 −1 +1 x yz
B2u +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 z(x2− y2)
Eu +2 0 −2 0 0 −2 0 +2 0 0 (x , y)

3.3.1 Representations and character tables

The most important tool for the analysis of point groups is the character table which summarizes the
essential properties of the irreducible representations (I.R.) bDi of the point group. A representation bDi is
a mapping from the group elements to invertible matrices of some dimensionality. The representation of a
group element Gn is a matrix bDi(Gn). In the simplest case these “matrices” are just numbers giving a one-
dimensional representation. The defining property of a representation is that it is a group homomorphism,
which essentially means that we can pull out the group multiplication bDi(Gn ·Gm) = bDi(Gn) · bDi(Gm). The
interesting thing about representations is that all of them can be built up from irreducible representations.
Two irreducible representations can be combined using a direct sum to form a new higher dimensional
reducible representation as follows bD = bDi ⊕ bD j . Now for the irreducible representations of the elements
one can define characters which are just traces of the matrices χi(Gn) = Tr bDi(Gn). These characters are
summarized in a so called character table of a point group. It can be shown that group elements fall
into conjugacy classes which give the same character. See Section 3.3.2 for an explanation of conjugacy
classes and for the construction of a character table.

At this point we mention the irreducible representations of the D4h and explain its character table
Table 3.2 since we will use this later. The first column contains the name of the irreducible representation
(I.R.). In the usual nomenclature A and B are used for one-dimensional and E for two-dimensional
representations. The subscript g or u means “gerade” (even in German) or “ungerade” (odd in German)
which describes the behavior of the representation under inversion I. The symbols A1g etc. which are
used as names for the irreducible representations are called Mullikan symbols. The last two columns
list example basis functions which transform under the given transformation. For example the row A1g
contains the trivial representation with DA1g

(Gi) = χA1g
(Gi) = 1. Therefore transformation under the

trivial representation is just a multiplication by 1. The function x2 + y2 doesn’t change under 4-fold
rotation around the z-axis. Therefore the function x2+ y2 belongs to the A1g representation of the group
D4h. The column with the linear basis functions also contains rotations Rx , R y , Rz around the x-, y- and
z-axis respectively. For a rotation you have to consider the direction of the axis and the rotation direction
which is per definition counter clockwise. Let’s take a look at the operation σh which is a reflection
at the x y plane and the rotations Rx and Rz. The reflection inverts the direction of Rz and makes the
rotation clockwise. Compared to that the direction of Rx is unchanged but the rotation direction is also
changed to clockwise. So to summarize, Rz doesn’t change under σh while Rx acquires a −1.

3.3.2 The great orthogonality theorem

We want to cite a very important mathematical theorem called the great orthogonality theorem which
is used to construct character tables. This section is based on [29]. For a group element h ∈ G we
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define the conjugacy class by G · h=
¦

ghg−1 | g ∈ G
©

. The conjugacy class contains elements which are
conjugate to each other. Two elements a, b ∈ G are conjugate if we find a g ∈ G so that gag−1 = b. Let
|G| be the group order and di the dimension of the i-th irreducible representation bDi (the dimension of
the matrices bDi(g) for an g ∈ G). The great orthogonality theorem for group elements g ∈ G can then
be stated as follows

∑

g

bDi(g)mnbD j(g)
∗
m′n′′ =

|G|
p

did j

δi jδmm′δnn′ . (3.39)

We see that the matrix elements bDi(g)mn behave like a vector of square length |G|/di

∑

g

bDi(g)mnbDi(g)
∗
mn =

|G|
di

. (3.40)

Vectors from different matrix elements or representations are orthogonal. This gives us five important
rules about irreducible representations bDi and their characters χi(g) = Tr bDi(g) which are the traces of
the respective representation matrices of the group elements.

1.
∑

i d2
i = |G|

2.
∑

g χi(g)2 = |G|

3.
∑

g χi(g)χ j(g) = 0 for i 6= j =⇒
∑

g χi(g)χ j(g) = δi jh

4. Characters of representation matrices of group elements which belong to the same class are equal
(since the group elements are conjugate).

5. The number of irreducible representations equals the number of conjugacy classes.

To construct a character table we find at first the number of conjugacy classes which equals the number
of irreducible representations. We know that every group has a trivial one-dimensional irreducible
representation with D(g) = χ(g) = 1. The vectors of characters of other representations have to be
orthogonal to the trivial character vector with only ones. Using the above properties we can find all
other representations.

3.4 Extending the spinor with a finite group

We assume that we have a finite group R which affects the wave vectors k, e.g. a point group. In this
case we can extend the spinor by adding transformed fermion creation operators to the spinor. For
example we consider the action of the elements Ri (i = 0, . . . , n− 1, R0 ≡ identity element) on the
wave vectors k. We can then construct the enlarged spinor

bΨ†
k =

�

ψ̂†
k ψ̂†

R1k ψ̂†
R2k . . . ψ̂†

Rn−1k

�

. (3.41)

We use a set of ρ matrices as a basis of the new subspace. We find a representation d̂ρ(Ri) for the group
operation Ri which acts in ρ space. We already know the action Eq. (3.38) of a group element Ri on
the BdG Hamiltonian. Now we include the d̂ρ(Ri) in the representation bD(Ri) (compared to bD(Ri))
and get

D(Ri) =

�

d̂(Ri)d̂ρ(Ri) 0
0 d̂∗(Ri)d̂∗ρ(Ri)

�

, (3.42)

bH(k)′ =R†
i
bH(k)Ri = bD

†(Ri) bH(Rik)bD(Ri)

= bD†(Ri) bH(k) bD(Ri) . (3.43)

We will use this spinor extension technique for density waves in Chapter 4 to include an additional
translation symmetry to the spinor and in Chapter 5 to add three different incommensurate wave-vectors
to the spinor.



Chapter 4

Density waves in highly anisotropic
materials

In this chapter we perform a symmetry classification of systems showing a strong anisotropy in z-
direction. The high anisotropy is realized by different kinetic terms in the x y-plane and the z-direction
as for example in

Hkin =
∑

k,σ,σ′
tz cos kzc†

kσckσ′ +
∑

k,σ,σ′
t(cos kx + cos ky)c

†
kσckσ′ (4.1)

with tz � t. Such highly anisotropic systems can be described as quasi 2D systems. The kinetic term
corresponds to nearest neighbor hopping which can be seen by Fourier transformation as in Fig. 4.1a.
We focus on the point group D4h which is appropriate to describe such quasi 2D systems. We discuss
the point group D4h in detail and a specific symmetry breaking scheme in the next section. After
that we focus on the formation of density waves with the commensurate wave vector Q = (π,π,π)
due to strong Fermi surface nesting which occurs at half filling. The nesting situation can be seen by
inspecting the Fermi surface as in Fig. 4.1b. We perform an exhaustive classification of the density
wave and superconductivity order parameters for such a system. During this thesis we also worked on
an exhaustive classification for Q = (π,π, 0) which is shown in Appendix B. In the last section of this
chapter we apply the classification methods to a topological system with density waves and determine
the topological phases by finding the gap closings in the energy spectrum.

t

(a) Fourier transformation yields that cos kx +
cos ky corresponds to nearest neighbor hopping
in lattice real space.

Q = (π,π)

(−π,−π) (0,−π) (π,−π)

(−π,π) (0,π) (π,π)

(−π, 0) (π, 0)

(b) Brillouin zone with cos kx+cos ky = 0 in blue.
At half filling the Fermi surface is in the perfect
nesting scenario. The commensurate wave vec-
tor Q = (π,π) connects the sides of the Fermi
surface.

Figure 4.1: Kinetic term t(cos kx + cos ky)c
†
k ck

29
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4.1 Point group D4h

The point group D4h contains proper and improper rotations (rotary reflections). We show the rotation
axes and reflection planes of D4h and various subgroups in Fig. 4.2. The subgroups are important when
we discuss the symmetry breaking in the next section. From the Fig. 4.2 one sees directly the group –
subgroup relations. For example the point C4v emerges from D4h by removing the σh reflection plane.
For the analysis of the D4h it is useful to mention that the group is equivalent to D4× {E,I} where E is
the identity operation and I is space inversion. Since we already analyzed the inversion operation I in
Chapter 3 we focus here on the point group D4 which contains only rotation operations. We have to
find how spin and angular momentum transform under the elements of D4. D4 has 8 elements. The
identity E, the fourfold rotations C4 , C−1

4 = C4 around the z-axis, the twofold C2 = C2
4 rotation around

the z-axis, two twofold rotations C ′2 with the vertical axes x , y and two twofold rotations C ′′2 with the
diagonal axes given by x = y and x =−y . At first we write down the transformation of the wave vector
under the action of D4 elements

C4

�

kx , ky , kz

�

=
�

−ky , kx , kz

�

, C4

�

kx , ky , kz

�

=
�

ky ,−kx , kz

�

, (4.2)

C2

�

kx , ky , kz

�

=
�

−kx ,−ky , kz

�

, (4.3)

C ′2a

�

kx , ky , kz

�

=
�

kx ,−ky ,−kz

�

, C ′2b

�

kx , ky , kz

�

=
�

−kx , ky ,−kz

�

, (4.4)

C ′′2a

�

kx , ky , kz

�

=
�

ky , kx ,−kz

�

, C ′′2b

�

kx , ky , kz

�

=
�

−ky ,−kx ,−kz

�

. (4.5)

The spin and angular momentum transformations are generated by the appropriate rotation generators.
We find the following representations

d̂J (C4) = e−i π
2
bJz/ħh , d̂J (C4) = e+i π

2
bJz/ħh , (4.6)

d̂J (C2) = e−iπbJz/ħh , (4.7)

d̂J (C
′
2a) = e−iπbJx/ħh , d̂J (C

′
2b) = e−iπbJy/ħh , (4.8)

d̂J (C
′′
2a) = e−iπ(bJx+bJy)/(

p
2ħh) , d̂J (C

′′
2b) = e−iπ(bJx−bJy)/(

p
2ħh) (4.9)

where we used the total angular momentum operator bJ . For a spin-1/2 we have bJ = bS = ħhσ/2 and the
above representations become

d̂σ(C4) =
1σ − iσzp

2
, d̂σ(C4) =

1σ + iσzp
2

, (4.10)

d̂σ(C2) =−iσz , (4.11)

d̂σ(C
′
2a) =−iσx , d̂σ(C

′
2b) =−iσy , (4.12)

d̂σ(C
′′
2a) =−i

σx +σy
p

2
, d̂σ(C

′′
2b) =−i

σx −σy
p

2
. (4.13)

Since our spinor lives also in τ space we have to compute the complete representation bD(G) of the group
operations

bD(G)≡
�

d̂(G) 0
0 d̂∗(G)

�

= 1τ
d̂(G) + d̂∗(G)

2
+τz

d̂(G)− d̂∗(G)
2

. (4.14)

For the sake of completeness we write down the explicit form of the complete representations bD(G)

bD(C4) =
1− iτzσzp

2
, bD(C4) =

1+ iτzσzp
2

, (4.15)

bD(C2) =−iτzσz , (4.16)

bD(C ′2a) =−iτzσx , bD(C ′2b) =−iσy , (4.17)

bD(C ′′2a) =−i
τzσx +σy
p

2
, bD(C ′′2b) =−i

τzσx −σy
p

2
. (4.18)
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Now let’s remember that the BdG Hamiltonian transforms as follows

bH(k)′ = G†
bH(k)G = bD†(G) bH(Gk)bD(G) . (4.19)

This transformation rule of the BdG Hamiltonian will be used in the classification of the order parameters
in Section 4.3. We will identify the representations the order parameters belong to.

4.2 Point group symmetry breaking

Now we discuss a symmetry breaking scheme of the point groups. A Hamiltonian consists of a sum of
terms with each term transforming under a one-dimensional representations of a point group. In our
case we discuss the point group D4h. If we inspect the character table Table 3.2 we see that different
representations lead to different transformation behavior under certain symmetry operations. Assume
that we transform the system with inversion operation I and assume that the Hamiltonian contains a
first term transforming under the A1g and a second term transforming under the A1u representation. We
see that the first term stays the same when we apply I. In contrast the second term acquires a minus
sign. Thus the whole Hamiltonian is not invariant under I anymore. This means that the symmetry
group of the Hamiltonian is not D4h anymore but something smaller, more precisely the subgroup D4.
So we summarize: adding terms belonging to different representations leads to symmetry breaking. We
show the possible breaking paths in Fig. 4.3. For a more detailed analysis of the breaking schemes see
Appendix A.

4.3 System with a commensurate nesting vector Q = (π,π,π)

We assume that the system favors density waves with a commensurate wave vector Q = (π,π,π) which
connects the two sides of the Fermi surface. The specific commensurate wave vector fulfills the relation
k + 2Q = k. For the classification we introduce the following spinor

bΨ†
k =

�

ψ̂†
k ψ̂†

k+Q

�

. (4.20)

To avoid double-counting we restrict the wave vectors k in the Hamiltonian to the reduced Brillouin
zone (RBZ) as follows

χ̂†
k =

�

bΨ†
k KbΨᵀk

�

, (4.21)

H =
1

2

RBZ
∑

k

χ̂†
k
bH(k)χ̂k . (4.22)

In order to keep only this two component spinor the specific nesting wave vector must necessarily be
invariant under the point group. For the D4h this works fine for Q = (π,π,π) and Q = (π,π, 0) but not
for Qx = (π, 0, 0). Rotation of Qx would create the commensurate wave vector Q y = (0,π, 0) and this
would enlarge the spinor. In a group theoretical language this means that one has to include the star
of Qx to the spinor, where star means the set of all vectors obtained by carrying out the point group
operations on Qx . We also performed a classification for a system with the commensurate wave vectors
Qx ,y which we omitted from this thesis for reasons of compactness. The classification works in a similar
way though. Now let’s get back to the system with one commensurate wave vector Q. We shall use
the {1ρ, ρx , ρy , ρz} Pauli matrices as basis for the momentum transfer space. Now we shall consider
an additional symmetry transformation – translation by Q with operator tQ. From the definition we
have that tQk = k +Q and bD(tQ) = ρx since the translation doesn’t act in spin, orbital and particle-hole
space. As an action on the Hamiltonian we obtain

t†
Q
bH(k)tQ = bH(k +Q) = bD†(tQ) bH(k +Q)bD(tQ) = ρx

bH(k)ρx . (4.23)
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2σv

(a) Point group D4h

C2(x)

C2(z)
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(b) Point group D2h

2C4(z), C2(z)

σh

(c) Point group C4h
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(d) Point group C2h
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2σd
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(e) Point group C4v
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(f) Point group C2v
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C ′2(y)
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(g) Point group D2d

Figure 4.2: Rotation axes and reflection planes of various point groups
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D4h

D4 C4h C4v

C4
D2h D2d

S4

C2h C2vD2

C2

CsCi

Figure 4.3: All subgroups of the point group D4h. The arrows correspond to a breaking of the
symmetry to a subgroup. The subgroups Cs and Ci cannot be reached by the discussed symmetry
breaking scheme.
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We see that the translation by Q can be carried out in two different ways. Now let’s consider the case

of a single orbital and a spin-1/2 system using the spinor ψ̂†
k =

�

c†
k↑ c†

k↓

�

where the Pauli matrices
{1σ, σx , σy , σz} act in spin space. Using the results from Section 4.1 and Chapter 3 we can write down
the action of the symmetry operations I, T , C and the point group on the BdG Hamiltonian bH(k). In
principle we have to find the symmetry operations for the enlarged spinor including the ρ space. The
wave-vector Q is invariant under the transformations and consequently the action of the symmetry
operations doesn’t change. We write down the complete set of discrete symmetry operations of the
Hamiltonian

I†
bH(k)I = bH(−k) =−τx

bHᵀ(k)τx , (4.24)

T †
bH(k)T = σy

bH∗(−k)σy =−τxσy
bH(k)τxσy , (4.25)

C†
bH(k)C = τx

bH(k)τx =− bHᵀ(−k) . (4.26)

For the point group operations we obtain

C4
bH(k)C4 =

1+ iτzσzp
2

bH(C4k)
1− iτzσzp

2
, (4.27)

C4
bH(k)C4 =

1− iτzσzp
2

bH(C4k)
1+ iτzσzp

2
, (4.28)

C†
2
bH(k)C2 = τzσz

bH(C2k)τzσz , (4.29)

C ′†2a
bH(k)C ′2a = τzσx

bH(C ′2ak)τzσx , (4.30)

C ′†2b
bH(k)C ′2b = σy

bH(C ′2bk)σy , (4.31)

C ′′†2a
bH(k)C ′′2a =

τzσx −σy
p

2
bH(C ′′2ak)

τzσx +σy
p

2
, (4.32)

C ′′†2b
bH(k)C ′′2b =

τzσx +σy
p

2
bH(C ′′2bk)

τzσx −σy
p

2
. (4.33)

Furthermore the Hamiltonian exhibits the discussed translational symmetry by Q

t†
Q
bH(k)tQ = bH(k +Q) = ρx

bH(k)ρx . (4.34)

Now we can write all possible order parameters in the basis τ⊗ρ⊗σ and find their behavior under the
symmetries thus classifying them. We follow similar steps as [30]. We find that the order parameters
belong to different representations of the point group D4h. For each order parameter we can find exem-
plary basis functions. The combination of basis function times order parameter matrix representation
can be added to the Hamiltonian.

For shortness of notation we introduce the modified Pauli matrices in spin space σ̃ = (σx ,τzσy ,σz).
The spin operators acquire the form S̃ = ħhτzσ̃/2 = ħh(τzσx ,σy ,τzσz)/2. As an overview we classify the
generators under the I, T and tQ symmetry transformations distinguishing between particle-hole and
particle-particle generators and between singlets and triplets in Table 4.1.

For each generator we find the allowed point group irreducible representations (I.R.) in Tables 4.2
to 4.4. The singlet generators in Table 4.2 carry the trivial A1g and A1u representations. By multiplication
with the basis functions which carry the complete representation we obtain the complete order parameter.
The triplet generators in Table 4.3 along the z-direction carry already the A2g and A2u representations
since τzσz carries the A2g representation. Multiplication with an A1g basis function yields therefore a
A2g or A2u order parameter. The triplet generators along the x- and y-direction transform under Eg and
Eu representations. For example the τz(σ̃x , σ̃y) = (τzσx ,σy) in plane component of the vector τzσ̃
carries the Eg representation and therefore transforms like (xz, yz).
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Table 4.1: Classifying the generators of SU(8) by inversion symmetry I, time reversal symmetry
T , translation symmetry tQ and momentum transfer p

p-h generator I T tQ p p-p generator I T tQ p
τz , τzσ̃ + +,− + 0 τxσy , τyσy + −,+ + 0
τzρz , τzρzσ̃ + +,− − 0 τxρzσy , τyρzσy + −,+ − 0
τzρx , τzρx σ̃ + +,− + Q τxρxσy , τyρxσy + −,+ + Q
ρy , ρyσ̃ + −,+ − Q τxρy(iσy)σ̃, τyρy(iσy)σ̃ + +,− − Q
σ̃ − + + 0 τx(iσy)σ̃, τy(iσy)σ̃ − +,− + 0
ρz , ρzσ̃ − −,+ − 0 τxρz(iσy)σ̃, τyρz(iσy)σ̃ − +,− − 0
ρx , ρx σ̃ − −,+ + Q τxρx(iσy)σ̃, τyρx(iσy)σ̃ − +,− + Q
τzρy , τzρyσ̃ − +,− − Q τxρyσy , τyρyσy − −,+ − Q

Table 4.2: Classifying the singlet generators which carry the A1g representation

Generator q p T I tQ I.R. Representative basis functions
τz 0 0 + + + A1g 1, cos2kz , cos kx cos ky , cos2kx + cos 2ky ,
τzρx 0 Q + cos kz(cos kx + cos ky), cos kx cos ky cos2kz
τyσy 2e 0 + A2g sin kx sin ky cos kz(cos kx − cos ky),
τxσy 2e 0 − sin2kx sin2ky(cos kx − cos ky),
τyρxσy 2e Q + sin kx sin ky(cos2kx − cos 2ky)
τxρxσy 2e Q − B1g cos2kx − cos2ky , cos kz(cos kx − cos ky)

B2g sin kx sin ky

τzρz 0 0 + + − A1g cos kz , cos kx + cos ky , cos kz(cos 2kx + cos 2ky),
ρy 0 Q − cos2kz(cos kx + cos ky), cos kx cos ky cos kz
τyρzσy 2e 0 + A2g sin kx sin ky(cos kx − cos ky)
τxρzσy 2e 0 − B1g cos kx − cos ky , cos kz(cos 2kx − cos 2ky),

cos2kz(cos kx − cos ky)
B2g sin kx sin ky cos kz

ρx 0 Q − − + A1u sin kx sin ky sin kz(cos kx − cos ky)
A2u sin2kz , sin kz(cos kx + cos ky),

cos kx cos ky sin2kz
B1u sin kx sin ky sin 2kz
B2u sin kz(cos kx − cos ky)

ρz 0 0 − − − A1u sin kx sin ky sin kz(cos2kx − cos 2ky)
τzρy 0 Q + A2u sin kz , cos kx cos ky sin kz ,
τyρyσy 2e Q + sin2kz(cos kx + cos ky), sin kz(cos2kx + cos2ky)
τxρyσy 2e Q − B1u sin kx sin ky sin kz

B2u sin2kz(cos kx − cos ky), sin kz(cos2kx − cos2ky)
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Table 4.3: Classifying the triplet generators in the z-direction which carry the A2g representation

Generator q p T I tQ Rep. Representative basis functions
τzσ̃z 0 0 − + + A1g sin kx sin ky cos kz(cos kx − cos ky),
τzρx σ̃z 0 Q − sin kx sin ky(cos2kx − cos2ky),

sin 2kx sin 2ky(cos kx − cos ky)
A2g cos 2kz , cos kx cos ky , cos 2kx + cos 2ky ,

cos kz(cos kx + cos ky), cos kx cos ky cos2kz
B1g sin kx sin ky
B2g cos2kx − cos2ky , cos kz(cos kx − cos ky)

τzρzσ̃z 0 0 − + − A1g sin kx sin ky(cos kx − cos ky)
ρyσ̃z 0 Q + A2g cos kz , cos kx + cos ky , cos kz(cos2kx + cos2ky),
τxρy iσyσ̃z 2e Q + cos 2kz(cos kx + cos ky), cos kx cos ky cos kz
τyρy iσyσ̃z 2e Q − B1g sin kx sin ky cos kz

B2g cos kx − cos ky , cos kz(cos 2kx − cos 2ky),
cos 2kz(cos kx − cos ky)

σ̃z 0 0 + − + A1u sin2kz , sin kz(cos kx + cos ky), cos kx cos ky sin 2kz
ρx σ̃z 0 Q + A2u sin kx sin ky sin kz(cos kx − cos ky)
τy iσyσ̃z 2e 0 − B1u sin kz(cos kx − cos ky)
τx iσyσ̃z 2e 0 + B2u sin kx sin ky sin2kz
τxρx iσyσ̃z 2e Q +
τyρx iσyσ̃z 2e Q −
ρzσ̃z 0 0 + − − A1u sin kz , cos kx cos ky sin kz ,
τzρyσ̃z 0 Q − sin 2kz(cos kx + cos ky), sin kz(cos2kx + cos2ky)
τxρz iσyσ̃z 2e 0 + A2u sin kx sin ky sin2kz(cos kx − cos ky),
τyρz iσyσ̃z 2e 0 − sin kx sin ky sin kz(cos2kx − cos2ky)

B1u sin2kz(cos kx − cos ky), sin kz(cos2kx − cos2ky)
B2u sin kx sin ky sin kz

Table 4.4: Classifying the triplet generators in the x- and y-direction which carry the Eg repre-
sentation

Generator q p T I tQ I.R. Representative basis functions
τzσ̃x y 0 0 − + + A1g sin kz(− sin ky , sin kx)
τzρx σ̃x y Q − A2g sin kz(sin kx , sin ky)

B1g sin kz(sin ky , sin kx)
B2g sin kz(sin kx , − sin ky)

τzρzσ̃x y 0 0 − + − A1g sin kz(− sin2ky , sin2kx), sin2kz(− sin ky , sin kx)
ρyσ̃x y 0 Q + A2g sin kz(sin2kx , sin2ky), sin2kz(sin kx , sin ky)
τxρy iσyσ̃x y 2e Q + B1g sin kz(sin2ky , sin2kx), sin2kz(sin ky , sin kx)
τyρy iσyσ̃x y 2e Q − B2g sin kz(sin2kx , − sin2ky), sin 2kz(sin kx , − sin ky)

σ̃x y 0 0 + − + A1u (sin2kx , sin2ky), cos kz(sin kx , sin ky),
ρx σ̃x y 0 Q + (cos kx + cos ky)(sin kx , sin ky)
τx iσyσ̃x y 2e 0 + A2u cos kz(− sin ky , sin kx), (− sin2ky , sin 2kx)
τy iσyσ̃x y 2e 0 − B1u cos kz(sin kx , − sin ky), (sin2kx , − sin2ky)
τxρx iσyσ̃x y 2e Q + B2u cos kz(sin ky , sin kx), (sin2ky , sin 2kx)
τyρx iσyσ̃x y 2e Q −
ρzσ̃x y 0 0 + − − A1u (sin kx , sin ky)
τzρyσ̃x y 0 Q − A2u (− sin ky , sin kx)
τxρz iσyσ̃x y 2e 0 + B1u (sin kx , − sin ky)
τyρz iσyσ̃x y 2e 0 − B2u (sin ky , sin kx)
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4.4 Topological density waves

Using our classification we study a simple example with coexisting conventional and unconventional
density waves in order to gain further insight concerning topological phase transitions. However this
model is not of mere academic interest since the terms appearing in this Hamiltonian haven been
proposed to appear separately or combined to describe the phenomenology of several materials as the
cuprates and heavy fermion systems. We propose the BdG Hamiltonian

bH(k) =−t(cos kx + cos ky)τzρz
︸ ︷︷ ︸

Hopping

+ MC
0 τzρx

︸ ︷︷ ︸

Charge density wave

+ MS
0τzρxσz

︸ ︷︷ ︸

Spin density wave

+MC
x2−y2(cos kx − cos ky)ρy

︸ ︷︷ ︸

Singlet idx2−y2 -density wave

+MC
x y sin kx sin kyτzρx

︸ ︷︷ ︸

Singlet dx y -density wave

+MS
x2−y2(cos kx − cos ky)ρyσz

︸ ︷︷ ︸

Triplet idx2−y2 -density wave

+MS
x y sin kx sin kyτzρxσz

︸ ︷︷ ︸

Triplet dx y -density wave

(4.35)

with the kinetic parameter t and the charge and spin density wave strengths MC,S. See Fig. 4.5 for the
structure of the terms in real lattice space and k space. The charge density wave occurs for example in
NbSe3 [6], the spin density waves in organic linear chain materials [31]. Different combinations of the
singlet and triplet order parameters lead to time reversal breaking or invariance. The following time
reversal symmetry breaking combinations have been proposed for the cuprates [32, 33, 34, 35]

MC
x2−y2(cos kx − cos ky)ρy

︸ ︷︷ ︸

Singlet idx2−y2 -density wave

+MC
x y sin kx sin kyτzρx

︸ ︷︷ ︸

Singlet dx y -density wave

, (4.36)

MS
x2−y2(cos kx − cos ky)ρyσz

︸ ︷︷ ︸

Triplet idx2−y2 -density wave

+MS
x y sin kx sin kyτzρxσz

︸ ︷︷ ︸

Triplet dx y -density wave

. (4.37)

Time reversal invariant combinations are also possible and were proposed in [36]

MC
x2−y2(cos kx − cos ky)ρy

︸ ︷︷ ︸

Singlet idx2−y2 -density wave

+MS
x y sin kx sin kyτzρxσz

︸ ︷︷ ︸

Triplet dx y -density wave

, (4.38)

MC
x y sin kx sin kyτzρx

︸ ︷︷ ︸

Singlet dx y -density wave

+MS
x2−y2(cos kx − cos ky)ρyσz

︸ ︷︷ ︸

Triplet idx2−y2 -density wave

. (4.39)

For the analysis we rewrite the system

bH(k) =













�

ĥ↑(k) 0
0 ĥ↓(k)

�

0

0

�

−ĥᵀ↑(−k) 0
0 −ĥᵀ↓(−k)

�













, (4.40)

ĥσ(k) = gσ(k) ·ρ , (4.41)

gσ(k) =









MC
0 +MS

0σ+ (M
C
x y +MS

x yσ) sin kx sin ky

(MC
x2−y2 +MS

x2−y2σ)(cos kx − cos ky)
−t(cos kx + cos ky)









(4.42)

where the subblocks has a similar structure like the quantum spin Hall effect described in Section 1.5. The
second block is due to the redundancy in the spinor (particle and hole terms). There are no off-diagonal
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terms in particle-hole space in the Hamiltonian since our model doesn’t include any superconducting
terms. This means that we can concentrate on the upper left block only for further analysis. For
convenience we introduce the following variables

Mσ
0 = MC

0 +MS
0 ·σ , Mσ

x y = MC
x y +MS

x y ·σ , Mσ
x2−y2 = MC

x2−y2 +MS
x2−y2 ·σ . (4.43)

Using the new variables we obtain the vector field

gσ(k) =









Mσ
0 +Mσ

x y sin kx sin ky

Mσ
x2−y2(cos kx − cos ky)
−t(cos kx + cos ky)









. (4.44)

Assuming that all phases coexist which is equivalent to the condition that all individual terms are
non-zero we can find gap closings gσ(k) = 0 in the energy spectrum only for Mσ

0 =±Mσ
x y . In this case

we find the following four low energy points

Mσ
0 =+Mσ

x y (−π/2,−π/2)≡ (π/2,π/2) ,

Mσ
0 =−Mσ

x y (−π/2,π/2)≡ (π/2,−π/2)

which are pairwise equivalent in the reduced Brillouin zone as shown in Fig. 4.6. To determine the
topological phases we compute the first Chern number or anomalous Hall conductivity

σσx y =−Cσ1 =−
1

4π

∫

RBZ

dkx dky ĝσ ·
�

∂ ĝσ
∂ kx

×
∂ ĝσ
∂ ky

�

. (4.45)

Furthermore we define the in plane charge quantum Hall conductivity σC
x y =

∑

σσ
σ
x y and the in plane

spin quantum Hall conductivity σS
x y =

∑

σσ · σ
σ
x y . Now we can compute the phases as shown in

Table 4.5. We depict the different phases in Fig. 4.7.

Table 4.5: Topological phases of the topological density wave system

Critical points
Phase σσx y (−π/2,π/2) (−π/2,−π/2)
Trivial |Mσ

x y |< |M
σ
0 | 0 = +sσ/2 −sσ/2

Gap closing |Mσ
x y |= |M

σ
0 |

Topological |Mσ
x y |> |M

σ
0 | rσ = +rσ/2 +rσ/2

t > 0, rσ = sgn Mσ
x y · sgn Mσ

x2−y2 , sσ = rσ · sgn Mσ
0
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(a) idx2−y2 hoppings in the real space lattice

(−π,−π) (0,−π) (π,−π)

(−π,π) (0,π) (π,π)

(−π, 0) (π, 0)

(b) cos kx − cos ky = 0 on the Brillouin zone

Figure 4.4: idx2−y2-wave term

(c) dx y hoppings in the real space lattice

(−π,−π) (0,−π) (π,−π)

(−π,π) (0,π) (π,π)

(−π, 0) (π, 0)

(d) sin kx sin ky = 0 on the Brillouin zone

Figure 4.5: dx y -wave term

(−π,−π) (0,−π) (π,−π)

(−π,π) (0,π) (π,π)

(−π, 0) (π, 0)

Figure 4.6: Brillouin zone for the topological density wave system. We show the four points
relevant in the low energy limit. These are the points were gap closings can occur. Gap closings
can only happen at points were cos kx − cos ky = 0 and cos kx + cos ky = 0. There are multiple
equivalent ways to define a reduced Brillouin zone (shown in yellow and green).
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Mσ
0

Mσ
x y

σσx y = rσ

σσx y = rσ

σσx y = 0σσx y = 0

(a) Phase diagram depending on Mσ
0 and Mσ

x y with rσ = sgn Mσ
x y · sgn Mσ

x2−y2 . We fix a certain Mσ
x y

and cut along the green dashed line. Then we analyze further for the relation of MC
0 and MS

0 ·σ since
Mσ

0 = MC
0 +MS

0 ·σ. We distinguish the two cases rσ =±1 and rσ =±σ which are shown in the following
figures.

MC
0

MS
0

σS
x y =±2

σC
x y =±1

σC
x y =∓1

σC
x y =∓1

σC
x y =±1

σS,C
x y = 0

|M↓x y |

|M↑x y |

(b) rσ =±σ

MC
0

MS
0

σC
x y =±2

σC
x y =±1

σC
x y =±1

σC
x y =±1

σC
x y =±1

σS,C
x y = 0

|M↓x y |

|M↑x y |

(c) rσ =±1

Figure 4.7: Phase diagrams for the topological density wave model



4.4. Topological density waves 41

Figure 4.8: Vector field g ↑(k) = (sin kx sin ky , cos kx − cos ky , cos kx + cos ky) with Skyrmion
structure and topological invariant 2 defined on the whole Brillouin zone [−π,π]2.

Figure 4.9: Bands of ĥ↑(k) in the topologically non-trivial phase for |Mσ
x y |> |M

σ
0 |
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Figure 4.10: Bands of ĥ↑(k) which show a gap closing for |Mσ
x y |= |M

σ
0 |

Figure 4.11: Bands of ĥ↑(k) in the topologically trivial phase for |Mσ
x y |< |M

σ
0 |



Chapter 5

Spin density waves and Majorana modes
in Bi2Te3

ky

kxΓ M

K

Figure 5.1: Dirac cone

Bi2Te3 is a time reversal invariant 3D topological insulator in the class of Bi-compounds which manifests
its topologically non-trivial structure through helical surface states [38]. A distinctive feature of this 3D
topological insulator is the large insulating band gap in the bulk compared to the insulators discovered
earlier. In this chapter we want to apply the described classification methods onto the Dirac electrons on
the [111]1 surface of the bulk topological insulator. The surface states of bulk topological insulators show
helical dispersion around k = 0. This usually leads to the formation of a single Dirac cone dispersion on
the surface as shown in Fig. 5.1. Lowest order of k · p perturbation theory yields a Rashba spin-orbit
coupling term kxσy − kyσx in the first order Hamiltonian describing an isotropic 2D Dirac fermion
around the Γ point

bH0(k) = v0(kxσy − kyσx) (5.1)

where v0 is the Dirac velocity or strength of the Rashba term. We see that the lowest order Rashba term
leaves the system rotationally invariant thus giving rise to an emerging U(1) rotation symmetry of the
system around the z-axis. We refer to [39] for the derivation of Hamiltonians using k · p theory and
symmetries. However ARPES2 measurements of the Bi2Te3 dispersion show a hexagonal warping of the
Fermi surface, compared to the circular Fermi surface that was expected (See Fig. 5.2). Fu proposed
an additional warping term which is added to the standard Rashba-Dirac Hamiltonian to describe the
warping effects [40]. The warping term is fixed by the threefold rotation symmetry of the Bi2Te3 surface
and corresponds to a third order term in k · p perturbation theory effectively breaking the rotational

1Miller indices in the direct lattice
2Angle-resolved photon emission spectroscopy

43
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(a) Fermi surface symmetrized according to crystal symmetry. The pocket formed by the surface state band
(SSB) is observed for all dopings. The pocket from the bulk conductance band (BCB) shrinks upon doping
and vanishes in columns C and D. In column D pockets formed by the bulk valence band (BVB) emerge
outside the SSB pockets.

(b) Band dispersions along K-G-K direction as indicated by white dashed lines in (a). The EF positions of
the four doping samples are at 0.34, 0.325, 0.25, and 0.12 eV above the Dirac point, respectively. EA is
the Fermi energy for undoped Bi2Te3, EB is the bottom of the BCB, EC is the top of the BVB and ED is the
position of the Dirac point.

(c) Momentum distribution curve (MDC) plots of the raw data. The lorentzian peaks in the energy curves
EF correspond to the Fermi momentum kF .

Figure 5.2: ARPES measurement of the Bi2Te3 surface [37] which show the doping dependence
of Fermi surface and Fermi energy EF . Columns A to D show measured Fermi surfaces and band
dispersions for 0, 0.27, 0.67 and 0.9% doping. We are interested in the bulk insulating phase
(doping 0.67%) where the Fermi surface forms a snowflake.
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invariance of the lowest order Hamiltonian. The third order Hamiltonian is given by

bHFu(k) = E0(k) + vk(kxσy − kyσx)
︸ ︷︷ ︸

Rashba term

+
Λ
2

�

k3
++ k3

−

�

σz
︸ ︷︷ ︸

Warping term

(5.2)

E0(k) =
k2

2m∗
−µ (5.3)

where E0(k) generates particle-hole asymmetry, m∗ is an effective mass and µ is the chemical potential.
The Dirac velocity vk = v−k = v0(1+ αk2) contains a second order momentum correction α. Λ is a
parameter describing the warping strength and k± = kx ± iky is introduced for ease of notation. There
are studies discussing higher order k · p terms in the model resulting in better quantitative description
[41]. For our more qualitative study these higher orders don’t affect the existing picture. We can even
assume momentum independence of the Dirac velocity vk by setting α= 0.

Hexagonal warping of the system gives the possibility for spin density waves if a certain filling
is fixed by choosing a chemical potential via gating the system. The spin density waves can be
understood as modulated magnetization of the material. In this chapter we want to investigate the
possibilities for spin density waves to emerge and the topological properties of Bi2Te3 in proximity
to an s-wave superconductor. It has been proposed that bulk topological insulators in proximity to
s-wave superconductors lead to non-trivial topology and thus to the existence of zero energy Majorana
modes [42]. In our setup we analyze the topological phases of the system in the regime of coexisting
magnetization and superconductivity. The magnetization arises from the spin density waves, the
superconductivity is induced by the superconductor via proximity effect. The precise mechanisms of
the proximity effect need further investigation. In our work we just assume that correlations lead to an
additional s-wave order parameter ∆τyσy in the Hamiltonian, that can be explained as tunneling of
Cooper pairs from the superconductor into the bulk topological insulator.

5.1 Crystal structure and C3v symmetry

At this point we take a closer look at the rotation and reflection (point group) symmetries of the [111]
surface of Bi2Te3 to understand the warping term in Eq. (5.3). To do that we need to consider the crystal
structure of the material which is shown in Fig. 5.3. The top view Fig. 5.3b clearly shows a hexagonal
structure (sixfold rotation) which is broken to threefold rotations because of the triangles corresponding
to the Bi and Te1 atoms. The index in Te1 and Te2 describes the layers of the Te atoms if seen from the
side as in Fig. 5.3a. The figure shows also the basis vectors t 1,2,3 which are used to describe the [111]
plane. More precisely, the [111] plane lies perpendicular to the vector 1 · t 1 + 1 · t 2 + 1 · t 3. For further
discussion it is necessary to fix the orientation of the x axis which we choose to lie along the Γ to the
high symmetry K point. These points are shown in Figs. 5.1 and 5.2.

The symmetry of the Bi2Te3 surface can be described by the point group C3v (see the character table
Table 5.1a) which consists of rotations by 120◦ around the z-axis (denoted C3 and C2

3 ), a reflection σv

at the yz-plane and further reflections σ′v = C3σvC−1
3 and σ′′v = C3σ

′
vC−1

3 which are just combinations
of the reflection σv and rotations C3. The reflection planes are depicted in Fig. 5.3c. Under threefold
rotations of the system around the z-axis and the given reflections the Hamiltonian is left unchanged
thus is called invariant under C3v. Additionally the Hamiltonian is time reversal invariant. This explains
why a threefold symmetric Hamiltonian features a sixfold symmetric Fermi surface. Based upon [40] we
now take a closer look at the C3v operations acting on the spin ladder operators σ± = σx ± iσy and the
similarly denoted momenta k± = kx ± iky in the complex plane. For the rotations we get

C3k± = e±2πi/3k± , C−1
3 σ±C3 = e±2πi/3σ± , C−1

3 σzC3 = σz (5.4)

For the reflection σv at the yz-plane we get

σvk± =−k∓ , σ−1
v σ±σv = σ∓ , σ−1

v σzσv =−σz . (5.5)
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Quintuple
layer

t1
t2 t3

Te2

Bi

Te1T

y
x

z

(a) Side view. The quintuple layer re-
peats itself along the z-axis. The [111]
plane is perpendicular to 1 · t 1+1 · t 2+
1 · t 3 where t 1,2,3 are the basis vectors
shown in this figure.

x

y

Te2

Bi

Te1T

(b) Top view at the [111] surface. The structure shows a
threefold rotation symmetry.

x
y

z

2C3(z)
σv

σ′v

σ′′v

(c) Rotation axes and reflection planes of the point group
C3v.

Figure 5.3: Bi2Te3 crystal structure adapted from [43] and point group C3v. x-axis goes from Γ
to K point.
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Table 5.1: Character tables of the threefold rotation groups in a plane: The Bi2Te3 surface is
described by the point group C3v. If we add two terms to a Hamiltonian which belong to A1 and
A2 respectively the resulting term will not be C3v invariant anymore since the terms transform
differently under the three σv ’s (Highlighted with red in the table). The point group symmetry is
broken to a C3 symmetry.

(a) Character table of C3v

I.R. E 2C3 3σv Linear, Rotations Higher functions
A1 +1 +1 +1 z x2+ y2, z2, z3, y(3x2− y2)
A2 +1 +1 −1 Rz x(x2− 3y2)
E +2 −1 0 (x , y), (Rx , R y) (x2− y2, x y), (xz, yz)

(b) Character table of C3 (ε= e2πi/3)

I.R. E C3 C2
3 Linear, Rotations Higher functions

A +1 +1 +1 z, Rz x2+ y2, z2, z3, x(x2− 3y2), y(3x2− y2)
E +1 ε ε∗ x + i y, Rx + iRy (x2− y2, x y), (yz, xz)
E +1 ε∗ ε x − i y, Rx − iRy (x2− y2, x y), (yz, xz)

Note that the point group operators (which are matrices) act on the spin operators (which are matrices)
from both sides. Compared to that the point group operators acts only from the left on the momentum
vectors. We see that the transformation rules of the spin momentum ladder operators and the k±
momenta under rotations are the same. The reason for this behavior is that they belong both to
the two-dimensional representation of the group C3v. To be more explicit we write down the matrix
representations of C3 and σv in k-space

bDk(C3) =
1

2

�

−1 −
p

3p
3 −1

�

, bDk(σv) =

�

−1 0
0 1

�

. (5.6)

In σ-space the rotations are generated by σz leading to bDσ(C3) = e−iπσz/3. Space inversion is equivalent
to a 180◦ around the x-axis followed by a reflection at the yz-plane. Since spins are invariant under
space inversion we get bDσ(σv) = eiπσx/2 = iσx .

Now let’s get back shortly to the Hamiltonian. We see immediately why the form of the Hamiltonian
is completely fixed by the point group C3v. If we compare the following two Hamiltonians

bHHelicity(k) =
k2

2m
︸︷︷︸

A1

+v
�

kxσx + kyσy

�

︸ ︷︷ ︸

A2

, (5.7)

bHRashba(k) =
k2

2m
︸︷︷︸

A1

+v
�

kxσy − kyσx

�

︸ ︷︷ ︸

A1

(5.8)

we see that the Hamiltonian with the helicity spin orbit coupling term bHHelicity breaks the point group
C3v because of the addition of two different one-dimensional point group representations.

5.2 Spin density waves

We want to investigate the possibility of the formation of spin density wave phases for the surface
states of Bi2Te3. To stay close with the experiment we use the measured value [37] for the Fermi
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kx

ky

Figure 5.4: Snowflake structure of Fermi
surface for different chemical potentials µ.
For µ = 0.725E∗ a nearly perfect hexagon
forms. We show three incommensurate wave
vectors. The kx -axis goes from Γ to K point.

kx

ky

Q1

Q2

Q3

Γ
K

M

Figure 5.5: Fermi surface in perfect nesting
with the three incommensurate wave vectors
Q1,2,3 and high symmetry points Γ, M and K.
The kx -axis goes from Γ to K point.

velocity v0 = 2.55 eVÅ. Fitting yields a value of Λ = 250eV Å
3
[40]. Using Λ and v0 one can define a

characteristic length scale a =
p

Λ/v0 and a characteristic energy scale E∗ = v0/a =
p

v3
0/Λ in which

the warping occurs. A sweep of the chemical potential µ in Eq. (5.3) the Fermi surface is circular for
µ ® 0.55E∗, becomes more hexagonal for larger and finally bends inwards forming a snowflake like
structure for µ ¦ 0.9E∗. The Fermi surface for different values of µ is shown in Fig. 5.4. We study
the situation where the Fermi surface forms an almost perfect hexagon, which leads to nearly perfect
nesting. In our fit we found the hexagon at µ= 0.725E∗. This means that there are incommensurate
wave vectors connecting both sides of the Fermi surface. Perfect nesting can lead to the formation of
spin density wave phases. The particle hole terms and the order parameters in the Hamiltonian carry
then a certain momentum transfers. The momentum transfer in the perfect nesting case will be Q1,2,3
assuming that the system enters such a described spin density wave phase.

We find three nesting vectors Q1,2,3 which connect two sides of the Fermi surface as shown in Fig. 5.5.
The wave vectors are rotated onto each other using a C3 or C−1

3 operation. For our analysis we include
the three incommensurate wave vectors Q1,2,3 in the spinor χ̂k which becomes 24-dimensional

ψ̂†
k =

�

c†
k↑ c†

k↓

�

, (5.9)

bΨ†
k =

�

ψ̂†
k+Q1/2

ψ̂†
k−Q1/2

ψ̂†
k+Q2/2

ψ̂†
k−Q2/2

ψ̂†
k+Q3/2

ψ̂†
k−Q3/2

�

, (5.10)

χ̂†
k =

�

bΨ†
k KbΨᵀk

�

(5.11)

=

�

ψ̂†
k+Q1/2

ψ̂†
k−Q1/2

ψ̂†
k+Q2/2

ψ̂†
k−Q2/2

ψ̂†
k+Q3/2

ψ̂†
k−Q3/2

ψ̂
ᵀ
−(k+Q1/2)

ψ̂
ᵀ
−(k−Q1/2)

ψ̂
ᵀ
−(k+Q2/2)

ψ̂
ᵀ
−(k−Q2/2)

ψ̂
ᵀ
−(k+Q3/2)

ψ̂
ᵀ
−(k−Q3/2)

� (5.12)

where ψ̂k is the spinor in spin space σ and bΨk is the spinor in λ⊗ ρ ⊗σ space. The Pauli matrices
{1σ, σx , σy , σz} and {1τ, τx , τy , τz} act in spin and in particle-hole space respectively as usual. λi
with i = 1, . . . , 8 denote the SU(3) generators (Gell-Mann matrices) acting on the nesting vectors and
{1ρ, ρx , ρy , ρz} are the Pauli matrices coupling operators of different momentum. The total spinor χ̂k
in Eq. (5.11) combines again particle and hole terms in Nambu space as usual to add the possibility
for superconductivity. The complex conjugation K acts on the momenta k and Q1,2,3. Using the new
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spinor we rewrite the Hamiltonian Eq. (5.3) and obtain

H =
1

2

∑

k

χ̂†
k
bH(k)χ̂k (5.13)

bH(k) =
3
∑

j=1

1ρ +ρz

2

h

E0(k +Q j/2)τz

+ vk+Q j/2

�

(k +Q j/2)xτzσy − (k +Q j/2)yσx

�

+
Λ
2

�

(k +Q j/2)
3
++ (k +Q j/2)

3
−

�

σz

i

+
3
∑

j=1

1ρ −ρz

2

h

E0(k −Q j/2)τz

+ vk−Q j/2

�

(k −Q j/2)xτzσy − (k −Q j/2)yσx

�

+
Λ
2

�

(k −Q j/2)
3
++ (k −Q j/2)

3
−

�

σz

i

. (5.14)

For further analysis we write down the action of inversion I, time reversal T and charge conjugation
C on the system. We have to consider the action on both the wave vectors k and the incommensurate
wave vectors Q1,2,3 which are included for the momentum transfer. For convenience we denote Q for
the three wave vectors Q1,2,3 and get

I†
bH(k,Q)I = bH(−k,−Q) =−τx

bHᵀ(k,Q)τx , (5.15)

T †
bH(k,Q)T = σy

bH∗(−k,−Q)σy =−τxσy
bH(k,Q)τxσy , (5.16)

C†
bH(k,Q)C = τx

bH(k,Q)τx =− bHᵀ(−k,−Q) . (5.17)

Since we included the three incommensurate wave vectors Q1,2,3 in the spinor the group elements G of
the point group C3v acts in matrix space as follows

G†
bH(k,Q)G = bD†

τσ(G) bH(Gk,GQ)bDτσ(G) = bD†(G) bH(Gk,Q)bD(G) . (5.18)

Essentially there are two equivalent ways the group acts on the wave vectors Q1,2,3 given by

bH(k,GQ) = bD†
λρ
(G) bH(k,Q)bDλρ(G) . (5.19)

In the next step we determine the matrix representations of the group elements of C3v at first in λ⊗ρ
space. The rotation C3 rotates the wave vector Q1 to Q2 etc. Therefore we find the representation

bDλ(C3) =







0 0 1
1 0 0
0 1 0






=
λ1− iλ2

2
+
λ6− iλ7

2
+
λ4+ iλ5

2
, (5.20)

bDρ(C3) = 1ρ . (5.21)

The reflection at the yz-plane reflects Q1→−Q1 and Q2,3→−Q3,2. Thus we find for the representation

bDλ(σv) =







1 0 0
0 0 1
0 1 0






=

21λ+ 3λ3+
p

3λ8

6
+λ6 , (5.22)

bDρ(σv) = ρx . (5.23)
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Combined with the representations bDσ(C3) = e−πiσz/3 and bDσ(σv) = iσx in spin space we obtain the
complete representations

bD(C3) = 1τ
bD
λρσ
(C3) + bD∗λρσ(C3)

2
+τz

bD
λρσ
(C3)− bD∗λρσ(C3)

2

= e−πiτzσz/3

�

λ1+ iλ2

2
+
λ6+ iλ7

2
+
λ4− iλ5

2

�

, (5.24)

bD(σv) = 1τ
bD
λρσ
(σv) + bD∗λρσ(σv)

2
+τz

bD
λρσ
(σv)− bD∗λρσ(σv)

2

= iτz

�

21λ+ 3λ3+
p

3λ8

6
+λ6

�

ρxσx . (5.25)

Due to the strong Fermi surface nesting it is likely that density waves can occur. Since the states at k and
−k have opposite spin a charge density wave is disfavored. Thus we want to focus on SDWs and classify
all the possible SDW order parameters in our formalism. The spin density wave order parameters are
odd under time reversal

T †
bH(k,Q)T =− bH(k,Q) =⇒ τxσy

bH(k,Q)τxσy = bH(k,Q) (5.26)

We further assume that the order parameters are not modulated with k thus they can be written as
follows

M(k,Q) = f (k)M(Q) = M(Q) (5.27)

where f (k) = 1 is assumed to be constant. Formally this means that the SDW order parameter is
invariant under inversion of the k vector

I†
k
bH(k,Q)Ik =−τxρx

bH∗(k,Q)τxρx = bH(k,Q) . (5.28)

Using these constraints we search at first the SU(8) for possible order parameters which we list
in Table 5.2a. Furthermore we classify the SU(3) generators which span the λ space and find the
representations of C3v that they belong to respectively (See Table 5.2b). For the sake of completeness
and clarity we show the involved matrices

λ1+λ4+λ6 =







0 1 1
1 0 1
1 1 0






, λ2−λ5+λ7 =







0 −i i
i 0 −i
−i i 0






, (5.29)

λ3−
p

3λ8 =







0 0 0
0 −2 0
0 0 2






,

p
3λ3+λ8 =

1
p

3







4 0 0
0 −2 0
0 0 −2






, (5.30)

−
p

3λ1+
p

3λ4 =
p

3







0 −1 1
−1 0 0
1 0 0






, λ1+λ4− 2λ6 =







0 1 1
1 0 −2
1 −2 0






, (5.31)

λ2−λ5+ 2λ7 =







0 −i i
i 0 −2i
−i 2i 0






,
p

3λ2+
p

3λ5 =
p

3







0 −i −i
i 0 0
i 0 0






. (5.32)

The λ matrices and the SU(8) generators can be combined to form one-dimensional A1 or A2 repre-
sentations. Because of the constraints it is only possible to combine real E representations and real
A1 representations in λ space with the generators in τ⊗ ρ ⊗σ space. We obtain the generators in
Table 5.2c. Depending on the form of the parameter we distinguish Ising-, Rashba- and helicity-like
terms. Ising-like terms describe spin density waves were the spin is modulated only in z-direction. The
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Rashba- and helicity-like terms are products of two two-dimensional representations, one being (σx ,σy)
in spin space and one being (λx ,λy) in λ space which takes the place of momentum. The (λx ,λy)
representation transforms exactly like (kx , ky). A Rashba-like term has the form

λxρx ,yσy −τzλyρx ,yσx (5.33)

while a helicity-like term has the form

τzλxρx ,yσx +λyρx ,yσy (5.34)

where λx and λy are the components of the two-dimensional representations in λ space, e.g.

�

λx ,λy

�

=
�

λ3−
p

3λ8,
p

3λ3+λ8

�

. (5.35)

The Rashba- and helicity-like terms are defined in λ space. This implies that the magnetization in
coordinate r -space should not necessarily have a Rashba- or helicity-like form. Other combinations
of λx ,y and σx ,y are not possible without breaking the C3v point group symmetry. However we find
order parameters belonging to the representations A1 and A2 of the point group. Addition of A2 order
parameters to the Hamiltonian will necessarily lead to a reduction of the symmetry of the Hamiltonian
to C3 as discussed before in Section 4.2. This can also be seen when we consider the spin orientations.
The reflection σv along the yz-plane inverts the x- and z-components of the spins (See Eq. (5.5)). This
means that for the A1 representations the y- and z-component of the spin should be inverted. For the A2
representations the x-component of the spin should be inverted.

To see this we find the magnetization in coordinate r -space by Fourier transformation (from Bloch
to Wannier states) for each SDW order parameter. For the Ising-like SDW order parameter τzρxσz we
obtain for the spin in z-direction

3
∑

j=1

c†
k+Q j/2

ck−Q j/2
+H.c.∼

∫

dr

∫

dr ′
3
∑

j=1

e−i(k+Q j/2)·r ei(k−Q j/2)·r ′ c†
r cr ′ +H.c.

∼
∫

dr
3
∑

j=1

e−iQ j ·r c†
r cr +H.c.∼

∫

dr
3
∑

j=1

cos
�

Q j · r
�

c†
r cr (5.36)

which has to be counted 2 times because of diagonal τ space. This leads to a modulation of the
σz-component with

∑3
j=1 cos

�

Q j · r
�

in coordinate r -space. We perform a similar computation for
all SDW order parameters that we found and plot the magnetizations in Figs. 5.6 to 5.17. We see the
expected inversions in the x-, y- and z-component of the spin by mirroring along the yz-plane using the
σv operation depending on the 1D representation of the SDW order parameter.

The next step is to calculate non-interacting susceptibilities for these order parameters given the
Hamiltonian Eq. (5.14). This will be performed in the next section.
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Table 5.2: Classification of the spin density wave order parameters

(a) Spin density wave order parame-
ters in the SU(8) with their irreducible
representation (I.R.) under the point
group C3v

I.R. Generator
A1 τzρyσz
A2 τzρxσz
E (τzρxσx ,ρxσy)
E (τzρyσx ,ρyσy)

(b) SU(3) generators with their irre-
ducible representation (I.R.) under the
point group C3v

I.R. Generator
A1 1λ
A1 λ1+λ4+λ6
A2 λ2−λ5+λ7

E (λ3−
p

3λ8,
p

3λ3+λ8)
E (−

p
3λ1+

p
3λ4,λ1+λ4− 2λ6)

E (λ2−λ5− 2λ7,
p

3λ2+
p

3λ5)

(c) Combined spin density wave generators building Ising-, Rashba- and helicity-like terms.

Nr. I.R. Generator Type
1 A1 τzρyσz Ising-like
2 A1 τz(λ1+λ4+λ6)ρyσz Ising-like
3 A1 (λ3−

p
3λ8)ρxσy −τz(

p
3λ3+λ8)ρxσx Rashba-like

4 A1 (−
p

3λ1+
p

3λ4)ρxσy −τz(λ1+λ4− 2λ6)ρxσx Rashba-like
5 A1 τz(λ3−

p
3λ8)ρyσx + (

p
3λ3+λ8)ρyσy Helicity-like

6 A1 τz(−
p

3λ1+
p

3λ4)ρyσx + (λ1+λ4− 2λ6)ρyσy Helicity-like

7 A2 τzρxσz Ising-like
8 A2 τz(λ1+λ4+λ6)ρxσz Ising-like
9 A2 (λ3−

p
3λ8)ρyσy −τz(

p
3λ3+λ8)ρyσx Rashba-like

10 A2 (−
p

3λ1+
p

3λ4)ρyσy −τz(λ1+λ4− 2λ6)ρyσx Rashba-like
11 A2 τz(λ3−

p
3λ8)ρxσx + (

p
3λ3+λ8)ρxσy Helicity-like

12 A2 τz(−
p

3λ1+
p

3λ4)ρxσx + (λ1+λ4− 2λ6)ρxσy Helicity-like
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Figure 5.6: Magnetization in z-direction for
Ising-like A1 SDW order parameter 1 of the
form τzρyσz . σv inverts z-component.

Figure 5.7: Magnetization in z-direction for
Ising-like A1 SDW order parameter 2 of the
form τz(λ1 + λ4 + λ6)ρyσz. σv inverts z-
component.

Figure 5.8: Magnetization for Rashba-like
A1 SDW order parameter 3 of the form
(λ3−

p
3λ8)ρxσy−τz(

p
3λ3+λ8)ρxσx . σv

inverts y-component.

Figure 5.9: Magnetization for Rashba-
like A1 SDW order parameter 4 of the
form (−

p
3λ1+

p
3λ4)ρxσy −τz(λ1+λ4−

2λ6)ρxσx . σv inverts y-component.

Figure 5.10: Magnetization for helicity-like
A1 SDW order parameter 5 of the form
τz(λ3−

p
3λ8)ρyσx+(

p
3λ3+λ8)ρyσy . σv

inverts y-component.

Figure 5.11: Magnetization for helicity-
like A1 SDW order parameter 6 of the
form τz(−

p
3λ1+

p
3λ4)ρyσx +(λ1+λ4−

2λ6)ρyσy . σv inverts y-component.
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Figure 5.12: Magnetization in z-direction
for Ising-like A2 SDW order parameter 7 of
the form τzρxσz . σv inverts x-component.

Figure 5.13: Magnetization in z-direction
for Ising-like A2 SDW order parameter 8 of
the form τz(λ1+λ4+λ6)ρxσz. σv inverts
x-component.

Figure 5.14: Magnetization for Rashba-like
A2 SDW order parameter 9 of the form
(λ3−

p
3λ8)ρyσy−τz(

p
3λ3+λ8)ρyσx . σv

inverts x-component.

Figure 5.15: Magnetization for Rashba-
like SDW order parameter 10 of the form
(−
p

3λ1 +
p

3λ4)ρyσy − τz(λ1 + λ4 −
2λ6)ρyσx . σv inverts x-component.

Figure 5.16: Magnetization for helicity-like
A2 SDW order parameter 11 of the form
τz(λ3−

p
3λ8)ρxσx+(

p
3λ3+λ8)ρxσy . σv

inverts x-component.

Figure 5.17: Magnetization for helicity-
like A2 SDW order parameter 12 of the
form τz(−

p
3λ1+

p
3λ4)ρxσx +(λ1+λ4−

2λ6)ρxσy . σv inverts x-component.
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5.3 Spin density wave susceptibility calculations

In this section we compute susceptibilities for the SDW order parameters depending on different
momentum transfers Q1,2,3. The spin density wave susceptibility describes the tendency of the system for
the formation of density waves. The susceptibilities will peak for the favored momentum transfers. Since
we choose the perfect nesting case we expect a peak for the nesting vector Q1 = (2kF , 0) where kF is the
Fermi momentum. Due to the C3v symmetry the susceptibility should also show peaks for Q2 = C3Q1
and Q3 = C2

3 Q1. There has been other work doing similar susceptibility computations without prior
symmetry classification [44].

Our spinor and our order parameters are defined in τ⊗λ⊗ρ⊗σ space. At first we define projectors
on the subspaces that we use later in the calculations. In the λ space we get

Πλ=1 = 1⊕ 02 =







1 0 0
0 0 0
0 0 0






, (5.37)

Πλ=2 = 0⊕ 1⊕ 0=







0 0 0
0 1 0
0 0 0






, (5.38)

Πλ=3 = 02⊕ 1 =







0 0 0
0 0 0
0 0 1






. (5.39)

For τ and ρ space we define similar projectors e.g.

Πτ=+ = 1⊕ 0=

�

1 0
0 0

�

, Πτ=− = 0⊕ 1=

�

0 0
0 1

�

. (5.40)

We rewrite the Hamiltonian Eq. (5.14) in a way which is more appropriate to perform the susceptibility
calculations. Since the Hamiltonian is diagonal in the τ, λ and ρ spaces we can indices to the
Hamiltonian for each of the subspaces as follows

E0
τλρ(k) = E0(k +ρQλ/2)τ (5.41)

bHτλρ(k) = E0
τλρ(k) + vk(kxτσy − kyσx) +

Λ
2

�

k3
+− k3

−

�

σz (5.42)

= E0
τλρ(k) + gτ(k) ·σ

where we introduced the vector gτ(k) =
�

−vkky , vkτkx ,Λ
�

k3
+− k3

−

�

/2
�

for simplicity of notation.
The eigenvalues are given by

Eτλρσ(k) = E0
τλρ(k) +σ|gτ(k)|= E0(k +ρQλ/2)τ+σ|gτ(k)|. (5.43)

We determine the non-interacting Green’s function bG0
τλρ
(k, ikn) by solving the equation

1= [ikn− bHτλρ(k)]bG0
τλρ(k, ikn) (5.44)

where ikn = (2n+ 1)π/β are fermionic Matsubara frequencies. We find

bG0
τλρ(k, ikn) =

ikn− E0
τλρ
(k) + gτ(k) ·σ

�

ikn− E0
τλρ
(k)
�2
+ |gτ(k)|2

. (5.45)
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In the next step we split the Green’s function into a sum using partial fractions and obtain two summands,
one for each spin direction. We obtain

bG0
τλρ(k, ikn) =

1

2|gτ(k)|

�

|gτ(k)|+ gτ(k) ·σ
ikn− Eτλρ+(k)

+
|gτ(k)| − gτ(k) ·σ

ikn− Eτλρ−(k)

�

=
bPτ+(k)

ikn− Eτλρ+(k)
+

bPτ−(k)
ikn− Eτλρ−(k)

(5.46)

with the projectors

bPτσ(k) =
|gτ(k)|+σgτ(k) ·σ

2|gτ(k)|
. (5.47)

By multiplication with the previously defined subspaces projectors we can extend the projectors bPτσ(k)
to act on the whole τ⊗λ⊗ρ⊗σ space as follows

bPτλρσ = Πτ⊗Πλ⊗Πρ ⊗ bPτσ . (5.48)

We compute the susceptibility for the operators A and B by evaluating the Matsubara sum over the
fermionic Matsubara frequencies ikn and get

χ0
AB(q , iqn) =−

1

Vβ

∫

dk Tr
∑

ikn

bG0(k, ikn)bA(k)bG0(k + q , ikn+ iqn)bB(k + q)

=−
1

Vβ

∫

dk Tr
∑

ikn

∑

µν

bPµ(k)bA(k)bPν(k + q)bB(k + q)
�

ikn− Eµ(k)
�

�

ikn+ iqn− Eν(k + q)
�

=−
1

V

∫

dk
∑

µν

nF

�

Eµ(k)
�

− nF
�

Eν(k + q)
�

iqn+ Eµ(k)− Eν(k + q)
Tr
¦

bPµ(k)bA(k)bPν(k + q)bB(k + q)
©

(5.49)

where iqn = 2nπ/β is a bosonic Matsubara frequency. In our case the momentum transfer is included in
the spinor. This means we set Q1 = q and the other wave vectors Q2,3 rotated by 120◦. We get then

χ0
AB(q , iqn) =−

1

V

∫

dk
∑

µν

nF (Eµ (k))− nF
�

Eν(k)
�

iqn+ Eµ(k)− Eν(k)
Tr
¦

bPµ(k)bA(k)bPν(k)bB(k)
©

. (5.50)

Now we add all the λ, ρ, τ and σ variables with an additional 1/2 because of the τ double counting and
obtain

χ0
AB(q , iqn) =−

1

2V

∫

dk
±
∑

ττ′

1,2,3
∑

λλ′

±
∑

ρρ′

±
∑

σσ′

nF

�

Eτλρσ(k)
�

− nF

�

Eτ′λ′ρ′σ′(k)
�

iqn+ Eτλρσ(k)− Eτ′λ′ρ′σ′(k)

× Tr
¦

bPτλρσ(k)bA(k)bPτ′λ′ρ′σ′(k)bB(k)
©

. (5.51)

We evaluate the susceptibilities at T = 1 K using Mathematica and integration in a small C program. The
plots for the susceptibilities are shown in Figs. 5.18 to 5.22. For the order parameters 3, 5, 9 and 11 we
find peaks at Q1 = (2kF , 0) where kF is the Fermi momentum. This means that we found the favored
momentum transfer which was suggested by the Fermi surface nesting. For further determination of the
favored order parameter it is necessary to perform a Ginzburg-Landau theory or to solve microscopic
self-consistency equations.
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(a) Susceptibility(2D projection) (b) Susceptibility along z-direction

Figure 5.18: Q1 dependent susceptibilities for Ising-like SDW order parameters 1 and 7 of the
form τzρy,xσz

(c) Susceptibility(2D projection) (d) Susceptibility along z-direction

Figure 5.19: Q1 dependent susceptibilities for Ising-like SDW order parameters 2 and 8 of the
form τz(λ1+λ4+λ6)ρy,xσz

(a) Susceptibility(2D projection) (b) Susceptibility along z-direction

Figure 5.20: Q1 dependent susceptibilities for Rashba-like SDW order parameters 3 and 9 of the
form (λ3−

p
3λ8)ρx ,yσy −τz(

p
3λ3+λ8)ρx ,yσx . The susceptibility peaks for Q1 = (2kF , 0),

Q2 = C3Q1 and Q3 = C3Q2.
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(a) Susceptibility(2D projection) (b) Susceptibility along z-direction

Figure 5.21: Q1 dependent susceptibilities for Rashba-like SDW order parameters 4 and 10 of
the form (−

p
3λ1+

p
3λ4)ρx ,yσy −τz(λ1+λ4− 2λ6)ρx ,yσx .

(c) Susceptibility color encodes (d) Susceptibility along z-direction

Figure 5.22: Q1 dependent susceptibilities for helicity-like SDW order parameters 5 and 11 of
the form τz(λ3−

p
3λ8)ρy,xσx + (

p
3λ3+λ8)ρy,xσy . The susceptibility peaks for Q1 = (2kF , 0),

Q2 = C3Q1 and Q3 = C3Q2.

(a) Susceptibility(2D projection) (b) Susceptibility along z-direction

Figure 5.23: Q1 dependent susceptibilities for helicity-like SDW order parameters 6 and 12 of
the form τz(−

p
3λ1+

p
3λ4)ρy,xσx + (λ1+λ4− 2λ6)ρy,xσy .



5.4. Coexistence of spin density waves and superconductivity 59

Singlet superconductor

Bulk topological insulator Bi2Te3

(a) Superconductor placed on top of Bi2Te3

Bulk topological insulator Bi2Te3

(b) Superconducting nanowire on top of bulk
topological insulator

Figure 5.24: Heterostructures

5.4 Coexistence of spin density waves and superconductivity

It has been proposed that topological superconductors can be constructed by placing a s-wave supercon-
ductor on top of a 3D topological insulator as in the schematic Fig. 5.24a [42]. Similarly in our case
the superconducting proximity effect will add a term to the effective surface Hamiltonian which is then
given by

bHSDW+SC(k) = bH(k)−MSDW−∆τyσy . (5.52)

where ∆= |∆|eiφ with φ = 0 is the superconducting gap parameter. The mechanism for this proximity
effect needs further investigation. In this work we just assume the existence of correlations leading to the
additional term in the Hamiltonian. In our case we want to investigate the coexisting spin density wave
and superconductivity phases, therefore we included one spin density wave order parameter MSDW in
the Hamiltonian. The only symmetry of the resulting Hamiltonian bHSDW+SC(k) is the generalized charge
conjugation symmetry Ξ = τxK which squares to one. Since Ξ2 = 1 the system belongs to the BdG
class D. Depending on the parameter MSDW we might be able to block diagonalize in λ and get multiple
class D systems. If we use MSDW = M

�

(λ3−
p

3λ8)ρxσy −τz(
p

3λ3+λ8)ρxσx

�

as a spin density
wave order parameter the system is block diagonal in λ space and we obtain three class D systems
with eight bands each as shown in Fig. 5.25 around k = 0. For a certain value of the superconducting
gap ∆ the three systems will be in a topologically non-trivial phase. If we tune the parameter M the
three subsystems transit from topologically trivial to topologically non-trivial phase. Fig. 5.26 shows the
qualitative numeric solutions for the two inner bands for each of the three subsystems at the point of the
topological phase transition. The point of the topological phase transition is specified by the occurrence
of gap closings. The exact phase diagram and the analytic relation between M and ∆ require further
investigations. In the topological phase the topological superconductor hosts Majorana modes. Specific
setups like a superconducting nanowire on top of the 3D topological insulators as in Fig. 5.24b lead
to Majorana bound states at the edges of the wire. Majorana bound states at the edges of nanowires
can be used for braiding operations as demonstrated in [16]. Such a system could finally lead to the
construction of a topological quantum computer. Due to the C3v symmetry and the existence of three
subsystems the topological insulator Bi2Te3 might offer interesting properties.
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Figure 5.25: Eight bands of the three subsystems around the Γ point

(a) For a certain M the first one subsystem transits into the topologically non-trivial phase. The gap closing
marks the point of the topological phase transition.

(b) For larger M the other two subsystem transit into the topologically non-trivial phase. The gap closing
marks the point of the topological phase transition.

Figure 5.26: Lowest two bands around the Γ point for the three subsystems for different values
of the spin density wave order parameter M



Chapter 6

Conclusions and outlook

In this chapter we shortly summarize the main results of the thesis and discuss further work.

6.1 Results

In this thesis we performed an exhaustive classification of order parameters for systems exhibiting
coexistence of superconductivity and density waves with an commensurate wave vector. We focused on
the point group D4h for the classification. We found general results concerning the symmetry transforma-
tions inversion transformation I, time reversal transformation T , charge conjugation transformation C
and point group transformations. The classification also includes an investigation of a possible symmetry
breaking scheme of the point group.

Furthermore we performed an exhaustive investigation for all possible 2× 2 and 4× 4 Hamiltonians
using the generalized symmetries: time reversal symmetry Θ, charge conjugation symmetry Ξ and chiral
symmetry Π. These generalized symmetries determine the symmetry class the Hamiltonian belongs to.
The symmetry class is directly connected to the topological properties of the system. It determines if
a system can exhibit Z or Z2 topological invariants. For the 4× 4 Hamiltonians we find four distinct
cases depending on the algebraic properties of the terms occurring in the Hamiltonian. These results
can be used as a basis for further investigations concerning topological systems. The results allow the
construction of Hamiltonians with desired properties thus allowing the construction of models explaining
phenomenological effects which were observed in experiments.

We applied our symmetry and topological analysis to two systems which exhibit density waves. In
the first phase of this thesis we analyzed a topological density wave model which exhibits a rich phase
diagram. The model was constructed from various density wave terms which have been proposed for
different materials e.g. the cuprates. Another system we discussed were the surface modes of Bi2Te3.
The Bi2Te3 surface modes show a characteristically warped Fermi surface with a C3v symmetry. We
investigated the possibilities for spin density waves in the perfect nesting case and performed a symmetry
classification of spin density wave order parameters using the point group C3v. For each of the order
parameters we performed an analysis of the magnetic order and the susceptibilities. After that we
studied the occurrence of Majorana modes when superconductivity is induced by proximity effects, e.g.
by an s-wave superconductor which is placed on top of the 3D topological insulator Bi2Te3. We found
that the surface modes can be in a topologically trivial and non-trivial phase. The non-trivial phase
exhibits Majorana modes. This could be used to construct systems which host Majorana bound states
for example at the edges of a a nanowire. The Majorana bound states can be used as building blocks
for topological quantum computation. It is also important to mention that characteristic properties of
Majorana systems can be used to propose setups to demonstrate the existence of Majorana states in
condensed matter systems.

61
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6.2 Further work

This thesis describes the work that we performed over the last year. Our work had different directions.
Concerning the general work the symmetry classification of Hamiltonians requires further analysis and
generalization to higher dimensions. Further investigations are necessary in the field of weak topological
invariants which are not covered in detail by the periodic table of topological insulators.

Concerning the Bi2Te3 system there are multiple perspectives for further work. At first the sus-
ceptibility calculations for the spin density wave order parameters have to be performed in a random
phase approximation. Using a Ginzburg-Landau theory or a microscopic self-consistent analysis we
plan to explore the thermodynamic phase diagram of the system for coexisting density waves and
superconductivity. This will allow us to analyze the topological phase diagram of the system also more
in detail. Finally we want to continue our studies on the superconducting proximity effect and its
microscopic mechanism.



Appendix A

Symmetry breaking scheme of the point
group D4h

In this appendix we shown the symmetry breaking of the point group D4h if different representations
of the group D4h are added. The resulting expression belongs then to a representation of a subgroup
of the D4h. Such a case could occur for example in a Hamiltonian which is a sum one-dimensional
representations of the symmetry group of the system. The reason for the symmetry breaking is that
different representations show different behavior for a group operation. The resulting expression is
then not invariant anymore under this group operation effectively breaking the symmetry to a subgroup.
For example the representations A1g (even) and A1u (odd) behave differently under inversion I. The
resulting representation A1 = A1g+A1u belongs to the subgroup D4. A more physical interesting example
is a Hamiltonian with Rashba vs. helicity terms

bHRashba(k) =
k2

2m
︸︷︷︸

A1g

+v kz

�

kxσy − kyσx

�

︸ ︷︷ ︸

A1g

, (A.1)

bHHelicity(k) =
k2

2m
︸︷︷︸

A1g

+v kz

�

kxσx + kyσy

�

︸ ︷︷ ︸

A2g

(A.2)

where the Hamiltonian with the helicity term breaks the rotation symmetries 2C ′2 and 2C ′′2 effectively
rendering the Hamiltonian only C4h invariant. In contrast the Rashba Hamiltonian stays D4h invariant.

The later tables show all the possible breakings of the point group D4h when two, three or four
different representations are added. Five different representations will always break the point group to
C2. Especially interesting is that there are cases when D4h can break in two different ways. These two
cases are marked with red and blue color respectively in the table. It is also important to mention that
not all representations of the subgroups can be reached. Some subgroups can therefore not be reached
at all. In this case the group Cs which consists only of the σv operation and Ci which only consists of the
inversion operation I cannot be reached.
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Table A.1: Character table of the point group D4h

I.R. E 2C4 C2 2C ′2 2C ′′2 I 2S4 σh 2σv 2σd Linear, Rotations Higher functions
A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 x2 + y2, z2

A2g +1 +1 +1 −1 −1 +1 +1 +1 −1 −1 Rz x y(x2 − y2)
B1g +1 −1 +1 +1 −1 +1 −1 +1 +1 −1 x2 − y2

B2g +1 −1 +1 −1 +1 +1 −1 +1 −1 +1 x y
Eg +2 0 −2 0 0 +2 0 −2 0 0 (Rx , R y) (xz, yz)
A1u +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 x yz(x2 − y2)
A2u +1 +1 +1 −1 −1 −1 −1 −1 +1 +1 z
B1u +1 −1 +1 +1 −1 −1 +1 −1 −1 +1 x yz
B2u +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 z(x2 − y2)
Eu +2 0 −2 0 0 −2 0 +2 0 0 (x , y)

Table A.2: Symmetry breaking of the point group D4h if two different irreducible representations
are added

D4h I.R. Subgroup E 2C4 C2 2C ′2 2C ′′2 I 2S4 σh 2σv 2σd

A1g + A1u D4 A1 +1 +1 +1 +1 +1
A2g + A2u A2 +1 +1 +1 −1 −1
B1g + B1u B1 +1 −1 +1 +1 −1
B2g + B2u B2 +1 −1 +1 −1 +1
Eg + Eu E +2 0 −2 0 0
A1g + B1g D2h Ag +1 +1 +1 +1 +1 +1
A1u + B1u Au +1 +1 +1 −1 −1 −1
A2g + B2g B1g +1 +1 −1 +1 +1 −1
A2u + B2u B1u +1 +1 −1 −1 −1 +1
A1g + B2g Ag +1 +1 +1 +1 +1 +1
A1u + B2u Au +1 +1 +1 −1 −1 −1
A2g + B1g B1g +1 +1 −1 +1 +1 −1
A2u + B1u B1u +1 +1 −1 −1 −1 +1
A1g + B1u D2d A1 +1 +1 +1 +1 +1
A2g + B2u A2 +1 +1 −1 +1 −1
B1g + A1u B1 +1 +1 +1 −1 −1
B2g + A2u B2 +1 +1 −1 −1 +1
A1g + B2u A1 +1 +1 +1 +1 +1
A2g + B1u A2 +1 +1 −1 +1 −1
B2g + A1u B1 +1 +1 +1 −1 −1
B1g + A2u B2 +1 +1 −1 −1 +1
Eg + Eu E +2 0 −2 0 0
A1g + A2g C4h Ag +1 +1 +1 +1 +1 +1
B1g + B2g Bg +1 −1 +1 +1 −1 +1
A1u + A2u Au +1 +1 +1 −1 −1 −1
B1u + B2u Bu +1 −1 +1 −1 +1 −1
A1g + A2u C4v A1 +1 +1 +1 +1 +1
A2g + A1u A2 +1 +1 +1 −1 −1
B1g + B2u B1 +1 −1 +1 +1 −1
B2g + B1u B2 +1 −1 +1 −1 +1
Eg + Eu E +2 0 −2 0 0
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Table A.3: Symmetry breaking of the point group D4h if three different irreducible representations
are added

D4h I.R. Subgroup E 2C4 C2 2C ′2 2C ′′2 I 2S4 σh 2σv 2σd

A1g + B2g + A1u D2 A +1 +1 +1
A1g + B2g + B2u A +1 +1 +1
A1g + A1u + B2u A +1 +1 +1
B2g + A1u + B2u A +1 +1 +1
A2g + B1g + B1u B1 +1 +1 −1
A2g + A2u + B1u B1 +1 +1 −1
A2g + B1g + A2u B1 +1 +1 −1
B1g + A2u + B1u B1 +1 +1 −1
A1g + B1g + A1u A +1 +1 +1
A1g + B1g + B1u A +1 +1 +1
A1g + A1u + B1u A +1 +1 +1
B1g + A1u + B1u A +1 +1 +1
A2g + B2g + B2u B1 +1 +1 −1
A2g + B2g + A2u B1 +1 +1 −1
A2g + A2u + B2u B1 +1 +1 −1
B2g + A2u + B2u B1 +1 +1 −1
A1g + A1u + A2u C4 A +1 +1 +1
A2g + A1u + A2u A +1 +1 +1
A1g + A2g + A1u A +1 +1 +1
A1g + A2g + A2u A +1 +1 +1
B1g + B1u + B2u B +1 −1 +1
B2g + B1u + B2u B +1 −1 +1
B1g + B2g + B2u B +1 −1 +1
B1g + B2g + B1u B +1 −1 +1
A2g + B1g + B2g C2h Ag +1 +1 +1 +1
A1g + B1g + B2g Ag +1 +1 +1 +1
A1g + A2g + B2g Ag +1 +1 +1 +1
A1g + A2g + B1g Ag +1 +1 +1 +1
A2u + B1u + B2u Au +1 +1 −1 −1
A1u + B1u + B2u Au +1 +1 −1 −1
A1u + A2u + B1u Au +1 +1 −1 −1
A1u + A2u + B2u Au +1 +1 −1 −1
A1g + B2g + B1u C2v A1 +1 +1 +1
A1g + A2u + B1u A1 +1 +1 +1
A1g + B2g + A2u A1 +1 +1 +1
B2g + A2u + B1u A1 +1 +1 +1
B1g + A1u + B2u A2 +1 +1 −1
A2g + A1u + B2u A2 +1 +1 −1
A2g + B1g + A1u A2 +1 +1 −1
A2g + B1g + B2u A2 +1 +1 −1
B1g + A2u + B2u A1 +1 +1 +1
A1g + B1g + A2u A1 +1 +1 +1
A1g + B1g + B2u A1 +1 +1 +1
A1g + A2u + B2u A1 +1 +1 +1
A2g + B2g + B1u A2 +1 +1 −1
A2g + B2g + A1u A2 +1 +1 −1
A2g + A1u + B1u A2 +1 +1 −1
B2g + A1u + B1u A2 +1 +1 −1
A1g + A2g + B1u S4 A +1 +1 +1
A1g + A2g + B2u A +1 +1 +1
A2g + B1u + B2u A +1 +1 +1
A1g + B1u + B2u A +1 +1 +1
B1g + B2g + A2u B +1 +1 −1
B1g + B2g + A1u B +1 +1 −1
B1g + A1u + A2u B +1 +1 −1
B2g + A1u + A2u B +1 +1 −1
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Table A.4: Symmetry breaking of the point group D4h if four different irreducible representations
are added. The cases which break down to C2 are omitted.

D4h I.R. Subgroup E 2C4 C2 2C ′2 2C ′′2 I 2S4 σh 2σv 2σd

A1g + B2g + A1u + B2u D2 A +1 +1 +1
A2g + B1g + A2u + B1u B1 +1 +1 −1
A1g + B1g + A1u + B1u A +1 +1 +1
A2g + B2g + A2u + B2u B1 +1 +1 −1
A1g + A2g + A1u + A2u C4 A +1 +1 +1
B1g + B2g + B1u + B2u B +1 −1 +1
A1g + A2g + B1g + B2g C2h Ag +1 +1 +1 +1
A1u + A2u + B1u + B2u Au +1 +1 −1 −1
A1g + B2g + A2u + B1u C2v A1 +1 +1 +1
A2g + B1g + A1u + B2u A2 +1 +1 −1
A1g + B1g + A2u + B2u A1 +1 +1 +1
A2g + B2g + A1u + B1u A2 +1 +1 −1
A1g + A2g + B1u + B2u S4 A +1 +1 +1
B1g + B2g + A1u + A2u B +1 +1 −1

D4h

D4 C4h C4v

C4
D2h D2d

S4

C2h C2vD2

C2

CsCi

Figure A.1: All subgroups of the point group D4h. The arrows correspond to a breaking of the
symmetry to a subgroup. The subgroups Cs and Ci cannot be reached by the discussed symmetry
breaking scheme.



Appendix B

Classification for Q = (π,π, 0)

We show a classification of order parameters for systems with one commensurate wave vector Q =
(π,π, 0). The symmetry classification for I, T and tQ coincides with the classification for the system
with Q = (π,π,π) but the basis functions differ.

Table B.1: Classifying the singlet generators which carry the A1g representation

Generator q p T I tQ I.R. Representative basis functions
τz 0 0 + + + A1g 1, cos kz , cos kx cos ky , cos2kx + cos2ky
τzρx 0 Q + A2g sin kx sin ky(cos 2kx − cos 2ky)
τyσy 2e 0 + B1g cos 2kx − cos 2ky
τxσy 2e 0 − B2g sin kx sin ky
τyρxσy 2e Q +
τxρxσy 2e Q −
τzρz 0 0 + + − A1g cos kx + cos ky
ρy 0 Q − A2g sin kx sin ky(cos kx − cos ky)
τyρzσy 2e 0 + B1g cos kx − cos ky
τxρzσy 2e 0 − B2g sin kx sin ky(cos kx + cos ky)

ρx 0 Q − − + A1u sin kx sin ky sin kz(cos 2kx − cos 2ky)
A2u sin kz
B1u sin kx sin ky sin kz
B2u sin kz(cos2kx − cos 2ky)

ρz 0 0 − − − A1u sin kx sin ky sin kz(cos kx − cos ky)
τzρy 0 Q + A2u sin kz(cos kx + cos ky)
τyρyσy 2e Q + B1u sin kx sin ky sin kz(cos kx + cos ky)
τxρyσy 2e Q − B2u sin kz(cos kx − cos ky)
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Table B.2: Classifying the triplet generators in the z-direction which carry the A2g representation

Generator q p T I tQ Rep. Representative basis functions
τzσ̃z 0 0 − + + A1g sin kx sin ky(cos 2kx − cos2ky)
τzρx σ̃z 0 Q − A2g 1, cos kz , cos kx cos ky , cos2kx + cos2ky

B1g sin kx sin ky
B2g cos 2kx − cos 2ky

τzρzσ̃z 0 0 − + − A1g sin kx sin ky(cos kx − cos ky)
ρyσ̃z 0 Q + A2g cos kx + cos ky
τxρy iσyσ̃z 2e Q + B1g sin kx sin ky(cos kx + cos ky)
τyρy iσyσ̃z 2e Q − B2g cos kx − cos ky

σ̃z 0 0 + − + A1u sin kz
ρx σ̃z 0 Q + A2u sin kx sin ky sin kz(cos kx − cos ky)
τy iσyσ̃z 2e 0 − B1u sin kz(cos 2kx − cos 2ky)
τx iσyσ̃z 2e 0 + B2u sin kx sin ky sin kz
τxρx iσyσ̃z 2e Q +
τyρx iσyσ̃z 2e Q −
ρzσ̃z 0 0 + − − A1u sin kz(cos kx + cos ky)
τzρyσ̃z 0 Q − A2u sin kx sin ky sin kz(cos kx − cos ky)
τxρz iσyσ̃z 2e 0 + B1u sin kz(cos kx − cos ky)
τyρz iσyσ̃z 2e 0 − B2u sin kx sin ky sin kz(cos kx + cos ky)

Table B.3: Classifying the triplet generators in the x- and y-direction which carry the Eg repre-
sentation

Generator q p T I tQ I.R. Representative basis functions
τzσ̃x y 0 0 − + + A1g sin kz(− sin2ky , sin 2kx)
τzρx σ̃x y Q − A2g sin kz(sin2kx , sin 2ky)

B1g sin kz(sin2ky , sin2kx)
B2g sin kz(sin2kx ,− sin 2ky)

τzρzσ̃x y 0 0 − + − A1g sin kz(− sin ky , sin kx)
ρyσ̃x y 0 Q + A2g sin kz(sin kx , sin ky)
τxρy iσyσ̃x y 2e Q + B1g sin kz(sin ky , sin kx)
τyρy iσyσ̃x y 2e Q − B2g sin kz(sin kx ,− sin ky)

σ̃x y 0 0 + − + A1u (sin2kx , sin 2ky)
ρx σ̃x y 0 Q + A2u (− sin2ky , sin 2kx)
τx iσyσ̃x y 2e 0 + B1u (sin2kx ,− sin 2ky)
τy iσyσ̃x y 2e 0 − B2u (sin2ky , sin 2kx)
τxρx iσyσ̃x y 2e Q +
τyρx iσyσ̃x y 2e Q −
ρzσ̃x y 0 0 + − − A1u (sin kx , sin ky)
τzρyσ̃x y 0 Q − A2u (− sin ky , sin kx)
τxρz iσyσ̃x y 2e 0 + B1u (sin kx ,− sin ky)
τyρz iσyσ̃x y 2e 0 − B2u (sin ky , sin kx)
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