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Chapter 1

Introduction

Classical computers consistently improved in the past and continue to do so at a stable

rate, such that even personal computers or a modern smartphone have become amazingly

powerful devices. Yet there are countless computational problems that cannot be solved

in a sufficiently small amount of time. A famous example is the factorization of large

prime numbers. The computation time increases exponentially with the size of the prime

number; at least a faster algorithm has not been found yet. Shor’s algorithm [1] on the

other hand shows that this problem can be solved in polynomial time using a quantum

computer, which has been demonstrated on a small scale in experiment [2]. Another

challenge for classical computers is the simulation of quantum systems. In general the

Hilbert space of a quantum system scales exponentially with the number particles and

states, due to the number of possible configurations to excite these states. While a

classical computer cannot treat this problem efficiently, a quantum computer can [3].

Using quantum devices to address such computational problems was proposed by

Richard Feynman in 1982 [4], and has since been intensively studied. However the

estimated amount of physical quantum bits (qubits) needed for the realization of a

universal quantum computer with implemented quantum error correction is upwards of

ten thousand [5] for the realization of one logical qubit. Therefore a universal quantum

computer consisting of a large number of logical qubits would demand a very large

number of physical qubits. However, the state of technology is still at the level of the

implementation of a few qubits with the focus on improving the properties of single

qubits.

An approach besides universal quantum computing is quantum emulation. Instead of

a multi-purpose device that allows for the simulation of an arbitrary problem, a quantum

emulator is a quantum device that emulates one specific problem; an analogue quantum

emulator is an artificial quantum device with a Hamiltonian which is equivalent to the

Hamiltonian of a quantum system it emulates. Such a device potentially requires far

less qubits to function than a multi-purpose quantum computer.

Systems of great interest for emulation are fermionic systems. These systems are of

course very important in nature, but for larger system sizes, they are often not treatable
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Chapter 1. Introduction

trough analytic calculation or numerical simulation with a classical computer.

An example of an interesting fermionic model is the Fermi-Hubbard model. Emu-

lators of this model based on atoms in optical traps have been realized [6, 7], but the

manipulation and readout of single atoms in these systems is difficult. The technol-

ogy this thesis focuses on are superconducting circuits: As macroscopic structures, they

potentially allow for easy manipulation and scalability [8, 9]. There are also several

designs to implement a qubit in a superconducting circuit [10, 8], where we focus on the

transmon qubit [11]. Modern transmons designs already have relatively high coherence

times [12, 13], which in turn may lead to relatively long emulation times. The idea

is to represent fermionic states—which can be occupied or non-occupied—by qubits as

two level systems. This is however nontrivial: Qubit excitations are bosonic with differ-

ent commutation relations than fermions; the emulators based on optical traps simply

use fermions as particles in the trap. Fortunately, there are solutions to correctly map

fermions onto qubits.

This thesis will construct a circuit design for an emulator for the one-dimensional

Fermi-Hubbard model using transmon qubits in a superconducting circuit.

We will start by explaining the concept of quantum emulation in more detail and

give requirements an emulator needs to fulfill. We continue by giving an overview how

quantum circuits are treated in calculations and how the tunable transmon qubit as the

fundamental element of the emulator circuit functions. We explain the Jordan-Wigner

transformation and apply it to the one-dimensional Fermi-Hubbard model to see its

equivalence to a qubit system, where the qubits are coupled by their σz and σx Pauli

operators.

We will proceed by giving circuit diagrams that produce these types of couplings

between tunable transmons. We will show that the σx-type interaction can be achieved

by coupling the transmons through additional inductances or capacitances, and explain

why the method of using capacitances is preferable. We will also derive how the coupling

of the tunable transmons by a mutual inductance formed by their intrinsic inductances

will couple the qubits by their σz operators, which has not been proposed before. This is

followed by the full circuit diagram for the emulator of the Fermi-Hubbard model and a

discussion about the tunability of its parameters as well as the experimental realization

in possibly near future.

Subsequently, we will explain the standard initialization scheme for a transmon in

detail. In addition to the usual readout procedure, we will also provide a readout method

based on the mechanism of coupling to a tunable transmon via a mutual inductance.

This is followed by a discussion how to treat the situation of multiple qubits coupled

to each other, as this is the situation in the emulator and will enable us to initiate a

certain quantum state in the emulator and measure the emulation result afterwards.

In the end, we will briefly address certain sources of error in the emulator, which is

especially important, since there are no error correcting methods implemented in the

emulator. We will focus on general sources of error like temperature and disorder, but

also specific problems of our emulator concerning the level spectrum of a transmon. This
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is why we will also show an approach to gain confidence in the emulation results, before

we will eventually draw a conclusion of the findings of this thesis.
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Chapter 2

Elementary Concepts

In this chapter, we start by explaining what quantum emulation and the general idea

behind it is. We then explore the technology which we intend to use to build a quan-

tum emulator, namely superconducting circuits. For this we also introduce tunable

transmons as a key element of the circuits in mind. We proceed by establishing how

these quantum circuits will help us to emulate fermionic systems and we will explicitly

conceptualize the design of an emulator for the Fermi-Hubbard model in one dimension.

This will give us the foundation to address the concrete circuit design of our quantum

emulator, its range of validity and limitations, as well as the discussion of certain error

sources in the following chapters.

2.1 Quantum Emulation

Let us explore the concept of quantum emulation in more detail. Imagine a problem

one wants to find the solution for, but there is no (practical) analytic solution to it, and

the problem is also inefficient to simulate numerically on a classical computer. This is

for example the case for the time evolution of fermionic systems with a number of n

different fermionic states; without demanding any sorts of restrictions, the computation

time on a classical computer would generally scale exponentially, since the problem can

always be broken down to the diagonalization of a 2n× 2n matrix. For this reason large

values of n are not accessible.

On a universal quantum computer this specific problem would only scale polynomi-

ally in the number of qubits and operations [3], but the realization of such a device is

in quite distant future. The difficulty here is the number of quantum bits one has to

implement in hardware to account for one logical qubit, which is still estimated to be

in the ten thousands, if one implements quantum error correction [5]. A multi-purpose

quantum computer consisting out of a large number of logical qubits would therefore

need an even larger amount of physical qubits to be implemented on the hardware level.

However, the current status of the technology is rather to have single or a few qubits on

a chip and the focus is still on improving the properties of individual quantum bits.
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A question that arises now, is what useful applications are there in between the

state of having single qubits on a chip and implementing millions for a universal quan-

tum computer. This is where the concept of quantum emulation comes in. An emulator

captures the features of a given system and emulates—or imitates—them on a different

technological system. In quantum emulation, one seeks to obtain information about

quantities or the time evolution of a specific quantum system (which cannot be deter-

mined through calculation or measurement) by creating an artificial quantum system

which is equivalent to the original one, one is interested in; meaning their Hamiltonians

are equivalent. The artificial system—the quantum emulator—is designed such that

desired initial conditions can be set and manipulated, and the quantities one wants to

study are accessible through measurement.

The anticipated benefit is obvious: Due to only emulating a specific system instead

of potentially simulating any given system, the quantum emulator should need signifi-

cantly less qubits than a multi-purpose quantum computer. The goal of this thesis is

to conceptualize an emulator that would work with an amount of qubits to build it in

near future, yet does not produce trivial results. To limit the number of qubits we avoid

digital information processing and logic gates, and focus instead on an analog approach,

where our quantum emulator intrinsically has the desired Hamiltonian.

The cue about nontrivial results brings us to a final concern: addressing what a

quantum emulator should accomplish. This was nicely evaluated and then specified by

Hauke et al. in four criteria [14]:

1. Relevance: The emulated systems should be of some relevance for applications or

our understanding.

2. Controllability: A quantum emulator should allow for broad control of the pa-

rameters of the emulated system, and for control of preparation, initialization,

manipulation, evolution, and detection of the relevant observables of the system.

3. Reliability: Within some prescribed error, one should be assured that the observed

physics of the quantum emulator corresponds faithfully to that of the ideal model

whose properties we seek to understand.

4. Efficiency: The quantum emulator should solve problems more efficiently than it

is practically possible on a classical computer.

After we will have established our design of a quantum emulator, we will have to examine,

whether it holds up against these four conditions. But first we need to develop the

concepts necessary to design the emulator.

2.2 Superconducting Circuits

The question at this point is of course what technology to use to build a quantum em-

ulator. There are multiple options of artificial and controllable quantum systems, an
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Chapter 2. Elementary Concepts

CLU
⊗

Φ0

Figure 2.1: Circuit diagram of an LC circuit with inductance L and capacitance C, with a voltage U
across the elements. An external magnetic flux Φ0 is passing through the loop.

example would be ultra cold gases in optical traps. This thesis will work with super-

conducting circuits, as they offer good capabilities for external manipulation and are

potentially easily scalable towards larger systems [8, 9]. Therefore, they are a promising

candidate for a realization of a quantum emulator in the foreseeable future.

This section will now build the foundation of how to treat such circuits and their

quantum mechanical nature by introducing methods to calculate the behavior of any

given circuit, which will be used throughout this document. Also introduced will be the

transmon qubit as the fundamental element of our emulator design.

2.2.1 Treating Quantum Circuits

Basically, there are three different electric components to wire together in a supercon-

ducting circuit. Because of the superconductivity, dissipation through resistors can be

ignored. However, a piece or loop of wire will intrinsically obtain a certain inductance,

and wires placed next to each other will form a capacitance. A third and very important

element is the Josephson junction. Such a junction is formed by two superconductors

connected through a very small isolating layer functioning as a weak link between them;

in superconducting circuits the size of these layers is typically of the order of nanome-

ters. They can be produced by applying superconducting metal on a substrate, letting it

build up a thin layer of oxide and then applying superconducting metal on top [10]. The

nonlinear effect these junctions produce is crucial to the functionality of our circuits,

which will be seen in the application in the transmon qubit.

To perform calculations on the various circuits in the latter quickly, we will always

use the same procedure. To understand where it stems from, let us first derive it by

the simple example of an LC circuit shown in figure 2.1, which means a loop with

a capacitance C, an inductance L, a voltage U across those elements and a constant

external flux Φ0 through the loop. The current through C can be expressed as the time

derivative of its charge Q̇ = CU̇ , for current IL through the inductance it holds that

İL = − 1
LU . By also regarding that voltage can be written as time derivative of induced

magnetic flux, hence U = Φ̇, and using Kirchhoff’s law for currents we find

0 = CU̇ +
1

L

∫
U dt = CΦ̈ +

1

L
(Φ− Φ0), (2.1)

where Φ0 enters as the constant of integration; the reason for that will be clear in a
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2.2. Superconducting Circuits

second. This result can be compared with the Euler-Lagrange equation 0 = d
dt
∂L
∂Φ̇
− ∂L

∂φ ,

leading to a Lagrangian

LLC(Φ̇,Φ) =
1

2
CΦ̇2 − 1

2L
(Φ− Φ0)2. (2.2)

We can now see how the capacitor contributes a kinetic energy term TC = 1
2CΦ̇2 and the

inductance a potential energy VL = 1
2L (Φ−Φ0)2, where it is clear now, that the external

flux had to enter as a constant of integration, since it adds to the total flux through the

inductance and therefore to the energy; keep in mind that generating the external flux

through the loop consumed energy. The external flux will be important later, because

it will enable us to manipulate certain properties of circuits from the outside.

To acquire the quantum mechanics of the LC circuit we transform from LLC to the

Hamiltonian

HLC(pΦ,Φ) = pΦΦ̇− LLC =
1

2C
p2

Φ +
1

2L
(Φ− Φ0)2, (2.3)

with the canonical momentum pΦ = ∂LLC

∂Φ̇
. Treating Φ0 as a constant that just shifts

the potential and understanding Φ and pΦ as operators with the canonical commutation

relations [Φ, pΦ] = i~, we of course know that this is a quantum harmonic oscillator

with frequency ω = 1√
LC

. This is no surprise as the LC circuit is already classically well

known to be a harmonic oscillator. This scheme of starting with the classical Lagrangian,

transforming to the Hamiltonian, and introducing quantum mechanics through canonical

commutation relations has proven to consistently give correct results [8]. We start with

the Lagrangian and not directly with a Hamiltonian because finding the correct canonical

momentums and how they enter in the Hamiltonian is—as opposed to this example—

often not obvious. We will observe this in later chapters (especially section 3.1.2).

One piece of equipment we still need is the Josephson junction. Here, for the voltage

U across and the current I through the junction, the Josephson equations

U =
~
2e
φ̇, and I = Ic sin(φ), (2.4)

hold, where Ic is the critical current (a structural constant) of the junction, and φ is

the phase difference of the superconducting wave functions on each side of the junction.

With the integration of such junctions in a circuit it makes sense to switch our variables

in the Lagrangian from flux Φ to phase φ by combining the identities for the voltage

Φ̇ = U = ~
2e φ̇, hence Φ = ~

2eφ. One can then check that a Josephson junction J will

contribute a potential

VJ =

∫
UI dt =

~
2e
Ic

∫
sin(φ)φ̇ dt = − ~

2e
Ic cos(φ) (2.5)

to the Lagrangian. The phase is constant in every piece of wire in a circuit, due to long

coherence lengths in superconductors, and elements in parallel will have the same phase
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Chapter 2. Elementary Concepts

Contributions to the Lagrangian:

φ

C

φ

C
L

φ

CJ

Kinetic energy: Potential: Potential:

TC = ( ~
2e )2 1

2Cφ̇
2 VL = ( ~

2e )2 1
2L (φ− φ0)2 VJ = − ~

2eIc cos(φ)

Figure 2.2: Circuit diagrams of a capacitance C, an inductance L and a Josephson junction J (with
critical current Ic) with a phase difference of φ occurring across each element. The elements then
contribute a kinetic or potential term to the Lagrangian L = T − V as listed, where T is the sum of all
kinetic energies, and V is the sum of all potentials.

difference across them; analogously to voltage in the classical treatment of electrical

circuits.

Also note that if we introduce the phase in the Lagrangian of the LC circuit

LLC =
( ~

2e

)2 1

2
Cφ̇2 −

( ~
2e

)2 1

2L
(φ− φ0)2, (2.6)

when we transform again to the Hamiltonian, we get

HLC =
(2e)2

2C
N2 +

( ~
2e

)2 1

2L
φ2, (2.7)

where we used N = 1
~
∂L
∂φ̇

, so [φ,N ] = i. In comparison with the energy Q2

2C of a capacitor,

we find the physical meaning of the canonical momentum to the phase: the operator N

counts the number of charges (in units of 2e).

Summary of the Method

For a better overview, let us condense how we will handle the superconducting circuits

in the following. Each isolated piece of wire will be given a distinct phase. A phase

difference φ across a conductance C will lead to a kinetic term TC = ( ~
2e )2 1

2Cφ̇
2, across

an inductance L it will lead to a potential term VL = ( ~
2e )2 1

2L (φ−φ0)2 (with an external

flux Φ0 = ~
2eφ0 present), and across a Josephson junction J it will give a potential

VJ = − ~
2eIc cos(φ); as taken together in figure 2.2. The terms of all elements in the

circuit will then be summed up in the Lagrangian L = T−V depending on all the phases

and their time derivatives, where of course T is the sum of all kinetic terms and V of

all potential terms. The Lagrangian will then be transformed to a Hamiltonian, where

the new canonical variables will be treated as operators with canonical commutation

relations to study the quantum mechanics of the circuit.

– 12 –



2.3. The Tunable Transmon Qubit

(a)

⊗
Φ0

⊗
Φ0J JC C

L

φl φr

(b)

Figure 2.3: (a) Schematic of a tunable transmon qubit. The two Josephson junctions are sketched
as small disruptions in the superconducting metal. They form a loop containing a magnetic flux
Φ0. The junctions are shunted by two large finger capacitors, which are interlacing structures of the
superconductors with a relatively large capacitance due to the geometry. The size of the hole structure is
about 100 µm. (b) The corresponding circuit diagram with the Josephson junctions J , the capacitances
C in parallel, and the intrinsic inductance L of the loop. The phase differences across the junctions
(and capacitances) are labeled φl and φr.

2.3 The Tunable Transmon Qubit

The fundamental structures of our quantum emulator are going to be superconducting

qubits. The question was what type of qubits we would like to use, because there are

many options for the implementation of a qubit in a superconducting circuit [10, 8].

The decision fell for the transmon, which was originally made popular by researchers in

Yale [11]. It has great potential for a useful realization of the emulator in near future

as the coherence times of modern transmon designs are already quite high [12, 13] and

could therefore allow for a long calculation time of the emulator while still producing a

trustworthy result. We also want to be able to access the transmons from the external,

therefore we will be using tunable transmons.

The construction of a tunable transmon is shown in figure 2.3 (a): It consists of a

superconducting loop containing two Josephson junctions, with two big finger capacitors

as shunt capacitances in parallel. This is the main feature of the transmon, because

these capacitances reduce the effects of noise on the charge operator, decreasing the

fluctuations of the energy levels. A constant external magnetic flux Φ0 is applied through

the loop, which will be our tool for manipulation from the outside. The size of the

structure is typically of the order of 100 µm. Figure 2.3 (b) then shows the circuit

diagram of this structure with the two Josephson junctions J (with critical current Ic)

forming a loop which has an inductance L, and the capacitances C in parallel, where

the intrinsic geometric capacitances of the junctions have been absorbed into C. The

phases across these two junctions (and their shunt capacitances) are denoted φl and φr,

for the external flux we introduce φ0 = 2e
~ Φ0. With the work of the previous section

(see figure 2.2) we can write down the Lagrangian of the system to be

LT =
( ~

2e

)2 1

2
C(φ̇2

l + φ̇2
r )2 +

~
2e
Ic(cos(φl) + cos(φr))

2 −
( ~

2e

)2 1

2L
(φl − φr − φ0)2.

(2.8)

Using addition theorems for the cosine we get cos(φl)+cos(φr) = 2 cos(φl+φr

2 ) cos(φl−φr

2 ),
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Chapter 2. Elementary Concepts

introducing new variables φ = 1
2 (φl +φr) and φ− = 1

2 (φl−φr−φ0), using φ̇0 = 0 we get

LT =
( ~

2e

)2

C(φ̇2 + φ̇2
−) +

~
e
Ic cos(φ) cos(φ− +

φ0

2
)−

( ~
2e

)2 2

L
φ2
−, (2.9)

which transforms to the Hamiltonian

HT = EC(N2 +N2
−)− EJ cos(φ) cos(φ− +

φ0

2
) +

EL
2
φ2
−, (2.10)

with N(−) = 1
~
∂LT

∂φ̇(−)
as well as EC = e2

C , EJ = ~
e Ic and EL = (~

e )2 1
L .

The inductance of the loop is very small and therefore EL is very large. Compared

to EJ it is typically over three orders of magnitude larger. For the degree of freedom

associated with φ−, this means that the cosine potential term can be neglected for this

coordinate and we find a harmonic oscillator

H− = ECN
2
− +

EL
2
φ2
−. (2.11)

Again, since EL is such a large energy scale, it leads to this oscillator not being excited

by processes in the circuit or the environment. Therefore we can effectively set it to

zero and end up with an effective Hamiltonian

HT = ECN
2 − EJ cos(

φ0

2
) cos(φ). (2.12)

So the transformation of variables and fixing of the high-energy degree of freedom in-

troduces the external phase φ0 as a prefactor in the potential of the remaining degree of

freedom. This is in the end our tool to manipulate our transmon qubit from the outside.

The remaining degree of freedom is an anharmonic oscillator (compare it with a

pendulum), and for the application as a qubit, which means a quantum two level sys-

tem, only the ground state and the first excitation are relevant. This means small

displacement so we can expand the cosine term for small φ giving

HT ≈ ECN2 +
EJ
2

cos(
φ0

2
)φ2, (2.13)

where we ignored constant contributions to the Hamiltonian. This is now indeed a

harmonic oscillator

HT = ~ω(a†a+
1

2
), (2.14)

with ~ω =
√

2ECEJ cos(φ0/2), as well as the identities φ = 1√
2
( 2EC
EJ cos(φ0/2) )

1
4 (a† + a)

and N = i 1√
2
(EJ cos(φ0/2)

2EC
)

1
4 (a† − a). We now bring this in the usual form for qubits by

projecting these expressions onto the space with basis {|0〉, |1〉} of the ground state |0〉
and the first excited state |1〉. With the well-known Pauli operators σx = |1〉〈0|+ |0〉〈1|,
σy = i(|1〉〈0| − |0〉〈1|), and σz = |1〉〈1| − |0〉〈0| we find (up to constant) the qubit
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2.3. The Tunable Transmon Qubit

Hamiltonian

HT =
1

2
εσz, (2.15)

with the qubit energy

ε(φ0) =

√
2ECEJ cos(

φ0

2
), (2.16)

depending on the external flux, and the representations

φ =
1√
2

( 2EC

EJ cos(φ0

2 )

) 1
4

σx, (2.17)

N =
1√
2

(EJ cos(φ0

2 )

2EC

) 1
4

σy, (2.18)

which will be of use later. Also needed in a later section is the identity

cos(φ) ≈ 1− φ2

2
= 1− 1

4

√
2EC

EJ cos(φ0

2 )
(a†

2
+ a2 + 2a†a+ 1)

= −1

4

√
2EC

EJ cos(φ0

2 )
σz +

(
1− 1

2

√
2EC

EJ cos(φ0

2 )

)
1. (2.19)

To finish this section, we will investigate the important property of anharmonicity.

For this we study the contribution to the eigenenergies of the harmonic oscillator us-

ing first order perturbation theory by expanding the cosine to fourth order, giving a

perturbing potential

H1 = −EJ cos(φ0

2 )

24
φ4 = −EC

24
(a† + a)4. (2.20)

The correction to the nth eigenenergy in first order is then given by −EC24 〈n|(a†+a)4|n〉,
where the matrix element is calculated by taking the six terms of the expansion of

(a† + a)4 with a† and a each contributing twice and applying [a, a†] = 1 multiple times

to end up with 〈n|(a†+a)4|n〉 = 〈n|
(
6(a†a)2+6a†a+3|n〉. Hence, we find the corrections

to the eigenenergies to be

〈n|H1|n〉 = −EC
8

(
n(n+ 1) +

1

2

)
. (2.21)

Therefore, the transition energy from the ground state to the first excited state is larger

than the transition energy from the first to the second excited state; the difference of

these transition energies is EC
4 . This is very important for the transmon to function as a

viable two level system: Typically qubits might also have a level structure of more than

two levels, however with the levels above the first two being energetically much higher,

excitations of these levels can be neglected. As we can see this is not the case for the
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Chapter 2. Elementary Concepts

transmon. Here transitions between the first two levels are always caused by resonant

effects. The anharmonicity is then important as it protects from unwanted transitions

from the first to the second excited state due to these transitions not meeting the correct

resonance condition.

Now that the theory of transmons is established, we can continue by explaining how

they will help building an emulator for fermionic systems.

2.4 Mapping Fermions onto Transmon Qubits

The key idea of a mapping between fermions and transmons is that fermionic states

can either be occupied or non-occupied. So naturally one is tempted to represent every

fermionic state by one qubit as a two level system. This naive thought does however

ignore one fundamental problem: As the previous section 2.3 shows, the excitations of

a transmon are bosonic. This means they have different commutation relations than

fermionic excitations and can therefore in general not directly represent them. While

there are in principle different qubit designs whose excitations are intrinsically fermionic,

for example electrons on quantum dots or atoms in cold gases in optical traps, these

realizations of qubits have other drawbacks towards transmons. So henceforth, when

qubit excitations are mentioned, bosonic ones are meant.

Now let us look at the problem in more detail. When we imagine a system of

fermions with n different states, and look at the creation and annihilation operators

c†j and cj with j ∈ {1, . . . , n} for these states, they obey the anticommuting relations

{cj , c†j′} = δjj′ and {cj , cj′} = {c†j , c†j′} = 0. If we take a set of n transmons, the

corresponding operators would be the raising and lowering operators σ+
j and σ−j , which

can be expressed by σ±j = 1
2 (σxj ± iσyj ) with the Pauli operators σxj and σyj of the jth

qubit. For an individual qubit we find {σ−j , σ+
j } = 1 and {σ−j , σ−j } = {σ+

j , σ
+
j } = 0,

however for j 6= j′ we find [σ−j , σ
+
j′ ] = [σ−j , σ

−
j′ ] = [σ+

j , σ
+
j′ ] = 0, which are not the desired

anticommuting relations we would need to equivalently represent fermionic states. One

possible solution to this problem will be presented in the following.

2.4.1 The Jordan-Wigner Transformation

Pascual Jordan and Eugene Wigner introduced a mapping between spin operators and

fermions already in 1928 [15]. Start again with a set of raising and lowering operators

σ+
j and σ−j , where j ∈ {1, . . . , n}. One can then formally define operators

cj = eiπλjσ−j , c
†
j = e−iπλjσ+

j , (2.22)

with λj =
∑j−1
l=1 σ

+
l σ
−
l . If one uses the representation

cj = (−1)λjσ−j , c
†
j = (−1)−λjσ+

j (2.23)
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2.4. Mapping Fermions onto Transmon Qubits

one can see what this transformation essentially does: The qubits are given numbers,

and λj counts, how many qubits in front of the jth one are excited. The lowering and

raising operators are then adjusted by a minus sign for every excited preceding qubit.

Using {σ−j , σ+
j } = 1 and {σ−j , σ−j } = {σ+

j , σ
+
j } = 0 as well as [σ−j , σ

+
j′ ] = [σ−j , σ

−
j′ ] =

[σ+
j , σ

+
j′ ] = 0 for j 6= j′, one can then check, that it holds that

{cj , c†j′} = δjj′ and {cj , cj′} = {c†j , c†j′} = 0, (2.24)

so the resulting operators are fermionic creation and annihilation operators; using this

transformation, one is able to represent a fermionic system by a qubit system.

There is however a drawback to this method. If we would look at interactions between

the jth and j′th fermionic states with j < j′, the interaction terms would be of the form

c†jcj′ = σ+
j (−1)λj′−λjσ−j′ . (2.25)

This means that it depends on the term λj′ − λj =
∑j′−1
l=j σ+

l σ
−
l , which in turn means

that it depends not just on the spin operators with number j and j′, but also on all

the spin operators with numbers between j and j′. Therefore arbitrary interactions

between only two fermions end up to map on interactions between possibly a large

number of qubits. With our quantum emulator in mind, this means complicated multi-

qubit interactions, which are not desired. On the other hand we find

c†jcj = σ+
j σ
−
j =

1

2
(σzj + 1),

c†jcj+1 = σ+
j σ
−
j+1.

(2.26)

If you look closely you will realize that these equations give you the tools to conve-

niently transform one-dimensional fermionic systems that only have nearest neighbor

interactions between the fermions. Jordan and Wigner also used their transformation to

study one-dimensional systems, e. g., they worked with the equivalence between the one-

dimensional Heisenberg model, resp. the Heisenberg spin chain, and a chain of spinless

fermions with only next neighbor interaction.

But again, arbitrary interactions are difficult to realize, which will especially be

the case in dimensions greater than one. An interesting model, which can still be

transformed without having to introduce multi-qubit interactions is the Fermi-Hubbard

model in one dimension. This is the model which will be analyzed in this thesis.

2.4.2 Mapping of the Fermi-Hubbard Model in One Dimension

The Fermi-Hubbard model is of course a significant model in physics, especially con-

densed matter physics. As an extension to the tight-binding model, it serves as a sim-

ple description of systems of strongly correlated electrons in a narrow band structure.

It has applications for example to describe transitions between a conducting and an

isolating state of a system. Using mean field approximation, it can explain ferromag-
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Chapter 2. Elementary Concepts

netism within the Stoner model. Recently it has also been considered as mechanism for

high-temperature superconductivity. The one-dimensional version of the Fermi-Hubbard

Hamiltonian could serve as a model for chains of atoms in cold gases, an approximation

for the behavior of certain molecules, or as a description of systems on the nanoscale,

which are effectively one-dimensional due to geometric confinements. One should men-

tion at this point that there exists an analytic solution for the one (and infinite) dimen-

sional case. The solution in one dimension was published by Lieb and Wu in 1968 [16]

using a Bethe ansatz. While a number of properties could be extracted from this so-

lution [17, 18], using constrains like half-filling or looking at thermodynamic limits, a

general time evolution for example would still be impractical to extract from this solu-

tion, as the representation of the eigenstates of a system with n sites contains a sum

over (2n)! different terms. So an emulator of this model could still produce valuable

results.

The Hamiltonian of the one-dimensional Fermi-Hubbard model with n sites, on-site

energy U , transfer energy t, with interaction only between next neighbors and without

spin-flip reads

HFH = U

n∑

j=1

c†j,↑cj,↑c
†
j,↓cj,↓ − t

n−1∑

j=1

∑

s=↑,↓
(c†j,scj+1,s + c†j+1,scj,s), (2.27)

where c†j,s and cj,s are fermionic creation and annihilation operators. We then introduce

2n qubits to represent these fermionic states, where we label their Pauli operators as

well as their raising and lowering operators accordingly by σ
(·)
j,s, where j ∈ {1, . . . , n}

and s ∈ {↑, ↓}.
We will now perform the Jordan-Wigner transformation on these spin operators.

Formally, since one has to number all operators consecutively, imagine for the moment

a numbering where we would change the indices with a mapping (j, ↑) 7→ j and (j, ↓) 7→
j + n. Performing the Jordan-Wigner transformation using the identities (2.26) we find

HFH = U

n∑

j=1

c†j,↑cj,↑c
†
j,↓cj,↓ − t

n−1∑

j=1

∑

s=↑,↓
(c†j,scj+1,s + c†j+1,scj,s)

=
U

4

n∑

j=1

(σzj,↑ + 1)(σzj,↓ + 1)− t
N−1∑

j=1

∑

s=↑,↓
(σ+
j,sσ

−
j+1,s + σ+

j+1,sσ
−
j,s), (2.28)

so we now have a qubit system, which resembles the Fermi-Hubbard model in one

dimension.

Let us further analyze this system. We will start with the first sum

U

4

n∑

j=1

(σzj,↑ + 1)(σzj,↓ + 1) =
U

4

n∑

j=1

σzj,↑σ
z
j,↓ +

U

4

n∑

j=1

(σzj,↑ + σzj,↓) + n
U

4
. (2.29)

If we would like to have particle conservation in the fermionic system, this would result

in the second sum of the right hand side to be constant, as it is a measure of the overall
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· · ·

· · ·

1, ↓ 2, ↓ 3, ↓ n, ↓

1, ↑ 2, ↑ 3, ↑ n, ↑

σz σz σz σz

σx σx σx σx

σx σx σx σx

Figure 2.4: A sketch of a system of transmons that provide a Hamiltonian, that is equivalent to the
Fermi-Hubbard model in one dimension. It consists of two chains of n qubits, which represent the spin-
up and spin-down states of the Fermi-Hubbard model. Neighboring qubits in each chain are coupled via
their σx operators to accomplish the transfer integral terms of the Fermi-Hubbard model with nearest
neighbor interaction. Laying out the two chains next to each other with opposing transmons being
coupled via σz gives the on-site energy terms.

qubit excitations. Since nU4 is trivially constant as well, we end up with the equivalence

U

4

n∑

j=1

(σzj,↑ + 1)(σzj,↓ + 1) ∼ U

4

n∑

j=1

σzj,↑σ
z
j,↓. (2.30)

To tackle the remaining sum of the qubit system, consider all qubits to have the same

energy splitting ε between their two levels and the parameter t to be small compared to

ε. As a result, terms of the form tσ+
j,sσ

+
j+1,s and tσ−j,sσ

−
j+1,s will effectively vanish since

the transitions between states caused by such terms violate energy conservation. This

means that in this limit the second sum of our transmon system has the similarity

t

n−1∑

j=1

∑

s=↑,↓
(σ+
j,sσ

−
j+1,s + σ+

j+1,sσ
−
j,s) ∼ t

n−1∑

j=1

∑

s=↑,↓
(σ+
j,s + σ−j,s)(σ

+
j+1,s + σ−j+1,s)

= t
n−1∑

j=1

∑

s=↑,↓
σxj,sσ

x
j+1,s. (2.31)

With this result, we are at the point where we know how to build our quantum

emulator in principle, as illustrated in figure 2.4: We take two chains of n transmon

qubits, with neighboring transmons in each chain being coupled by a σx-type interaction.

This represents the nearest neighbor interaction in each spin chain in the Fermi-Hubbard

Hamiltonian. The two chains are placed next to each other and opposing transmons need

to be coupled by their σz operators. If we consider equal transmons with energy splitting

ε, and equal coupling energies gx of the σx-type coupling and gz for the coupling via σz

respectively, the Hamiltonian HE of such an emulator would read

HE =

n∑

j=1

∑

s=↑,↓

1

2
εσzj,s + gz

n∑

j=1

σzj,↑σ
z
j,↓ + gx

n−1∑

j=1

∑

s=↑,↓
σxj,sσ

x
j+1,s, (2.32)

where ↑ and ↓ of course denote the two mentioned chains. Finally in the also mentioned
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limiting constrains of conservation of qubit excitations—hence particle conservation in

the fermionic system—and gx

ε � 1, the above shows that this Hamiltonian is equivalent

to the one-dimensional Fermi-Hubbard model, i. e. HE ∼ HFH with the identities

U = 4gz and t = −gx. (2.33)

Bear in mind at this point, that the constraint gx

ε � 1 is—in an otherwise ideal system—

only technical and does not affect the range of the parameters U and t which can be

emulated, since only the relation of U and t relative to each other is important for the

properties of the Fermi-Hubbard model, which means that gz just has to be adjusted in

the correct fashion to resemble the desired set of parameters.

Lastly, having achieved to find an equivalent Hamiltonian, the subsequent task is

clear: Methods of implementing the interactions via σx and σz between transmons need

to be found. Also, the circuit designs of these implementations should be as simple as

possible; this allows for an approach of building such an emulator in near future and is

undoubtedly something to wish for. The next chapter will address these challenges and

will also provide very satisfying options to meet them.
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Chapter 3

Construction of the Emulator

Chapter 2 made the assignment for the construction of an emulator for the one-dimen-

sional Fermi-Hubbard model based on transmons clear. Figure 2.4 shows how the qubits

have to be coupled by their σz and σx operators.

This chapter provides circuit diagrams to realize these couplings, starting with the

the σx-type interaction, followed by the more subtle mechanism to couple two transmons

via σz. We will also give analytic expressions for the coupling energies depending on

the quantities in the circuit.

We will conclude by briefly discussing the possibility of the experimental realization

of the found circuit diagrams to convince ourselves, that the discussed mechanisms are

in fact manufacturable.

3.1 Coupling of Tunable Transmons via σx

The first type of transmon coupling we address is the coupling via their σx operators.

It is quite clear that using inductances or capacitances to connect individual qubits, we

will obtain linear coupling terms between their phase or charge operators, which can be

seen from the terms they contribute in the Lagrangian summarized in figure 2.2 and the

fact that the charge operator is related to the time derivative of the phase. Looking at

the equations (2.17) and (2.18), we then see how this will give linear coupling via σx or

σy; note that in the limit of small coupling these interactions are effectively equivalent,

which will be explained in more detail in the following section 3.1.2.

This is also not a new insight, such coupling has already been established in exper-

iment, especially since—as section 4.1.3 will explain—this type of coupling is also used

to flip qubits from the ground into the excited state for initialization [11].

We will now proceed to carry out the calculations for the two coupling methods in

detail in order to understand the mechanisms properly. We will then also be able to

give formulas to calculate the coupling energies depending on the values of the circuit

elements. As a last step we will compare the two methods of coupling to see why the

capacitative coupling is the better choice for an experimental realization.
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⊗
Φj0

L

J JC C

φjl φjr

⊗
Φ(j+1)0

L

J JC C

φ(j+1)l φ(j+1)r

LgLg Lg

Figure 3.1: The circuit diagram of a chain of coupled identical transmons. They are each made out of
a loop containing two Josephson junctions J (with critical current Ic) and intrinsic inductance L. The
junctions are shunted by the capacitances C. Each of the n transmons can be tuned by an individual
external flux Φj0 = ~

2e
φj0. The phases across the junctions of the jth qubit are denoted φjl and φjr.

The bottom parts of the transmons are connected to ground and the upper parts are connected through
coupling inductances Lg between neighboring qubits. For large values of Lg , this setup gives a small
σx coupling between the qubits.

3.1.1 Coupling through Inductances

The first option of linear coupling between transmons we investigate is the coupling

by additional inductances. For this, consider a chain of n identical tunable transmons

which are then coupled by inductances, which is shown in figure 3.1. Each transmon

consists of two Josephson junctions J (with critical current Ic) and shunt capacities

C, the inductance of the loop is labeled L. Each transmon can be tuned individually

with external magnetic flux Φj0 = ~
2eφj0 at the jth qubit. The coupling is done via

inductances Lg. The phase differences across the junctions of the jth transmon are

denoted φjl and φjr.

Before we continue deriving the Lagrangian, note that we set the lower parts of all

transmons to ground. For a start, one could simply connect this part to ground in an

experiment, or one could wire the lower parts together which is equivalent in this case.

If one does not do that, one has to account for the phase differences between these parts

of the circuit as they will enter in the potential energies of the coupling inductances.

One can for example introduce ground as reference and connect the qubits to ground

through a capacitance; this would always be the case in a real experiment if the qubits

on the chip would not be wired to ground directly anyhow. These extra phases in

the Lagrangian would either not have an own dynamic at all, or the dynamic can be

decoupled from the system in a way. In the end, such setups would just lead to the

same circuit as in figure 3.1, with redefined quantities. Therefore, we can stick with this

circuit diagram without making any qualitative mistake. In a more precise calculation

for an experiment one would have to adjust to the detailed experimental realization; but

again, to see how the coupling works in general, this circuit covers all that is needed.

Let us derive the Lagrangian now. For this, we use our findings in figure 2.2 of sec-

tion 2.2.1, so that, with the help of the circuit diagram in figure 3.1, we can immediately
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write down the Lagrangian

LxL =

n∑

j=1

(( ~
2e

)2 1

2
C(φ̇2

jl + φ̇2
jr) +

~
2e
Ic(cos(φjl) + cos(φjr))

−
( ~

2e

)2 1

2L
(φjl − φjr − φj0)2

)
−
n−1∑

j=1

( ~
2e

)2 1

2Lg
(φjr − φ(j+1)l)

2, (3.1)

where the first sum consists of the usual qubit terms and the second sum accounts

for the coupling. We continue analogously to section 2.3 and introduce the phases

φj = 1
2 (φjl +φjr) as well as φj− = 1

2 (φjl−φjr−φj0), and also use the addition theorems

for the cosine and arrive at

LxL =

n∑

j=1

(( ~
2e

)2

C(φ̇2
j + φ̇2

j−) +
~
e
Ic cos(φj− +

φj0
2

) cos(φj)−
( ~

2e

)2 2

L
φ2
j−

)

−
n−1∑

j=1

( ~
2e

)2 1

2Lg

((
φj − φj− −

φj0
2

)
−
(
φj+1 + φ(j+1)− +

φ(j+1)0

2

))2

, (3.2)

which, with Nj = 1
~
∂LxL
∂φ̇j

and Nj− = 1
~
∂LxL
∂φ̇j−

, easily transforms to the Hamiltonian

Hx
L =

n∑

j=1

(
EC(N2

j +N2
j−)− EJ cos(φj− +

φj0
2

) cos(φj) +
1

2
ELφ

2
j−

)

+

n−1∑

j=1

1

8
ELg

((
φj − φj− −

φj0
2

)
−
(
φj+1 + φ(j+1)− +

φ(j+1)0

2

))2

, (3.3)

with EC = e2

C , EJ = ~
e Ic and EL(g)

= (~
e )2 1

L(g)
.

In section 2.4.2 we established that we need to operate in the limit of small coupling

for the σx-type coupling, hence we need to have ELg � EJ , which means the coupling

inductances need to be very large. Section 2.3 established that due to the small intrinsic

inductance in the loop of the transmon, EL is a dominant energy scale towards the qubit

excitation energy. Combining this, we find that EL stays dominant in this system of

coupled transmons, so we can proceed as in section 2.3 and fix the degrees of freedom

associated with this high energy to zero, hence φj−, Nj− ≈ 0, as excitations of these

degrees of freedom are unlikely. This gives

Hx
L =

n∑

j=1

(
ECN

2
j − EJ cos(

φj0
2

) cos(φj)

)

+

n−1∑

j=1

1

8
ELg

((
φj −

φj0
2

)
−
(
φj+1 +

φ(j+1)0

2

))2

=

n∑

j=1

1

2
εjσ

z
j +

n−1∑

j=1

1

8
ELg

((
αxj σ

x
j −

φj0
2

)
−
(
αxj+1σ

x
j+1 +

φ(j+1)0

2

))2

, (3.4)
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where we used the equations (2.15) and (2.17) to transform into the qubit eigenbasis

with εj =
√

2ECEJ cos(φj0/2) and αxj = 1√
2
( 2EC
EJ cos(φj0/2) )

1
4 .

Let us study the coupling term

Hx
1 =

n−1∑

j=1

1

8
ELg

((
αxj σ

x
j −

φj0
2

)
−
(
αxj+1σ

x
j+1 +

φ(j+1)0

2

))2

(3.5)

in more detail. Remember that, once they are set, the external phases are constant, and

also that (σx)2 = 1, so if we expand this expression and neglect constant contributions

we find

Hx
1 =

n−1∑

j=1

1

4
ELg

(
− αxj (φj0 + φ(j+1)0)σxj + αxj+1(φj0 + φ(j+1)0)σxj+1 − αxjαxj+1σ

x
j σ

x
j+1

)
.

(3.6)

The last term yields our desired σx-type coupling between the transmons. To address

the other two terms, keep in mind that our transmons are considered equal and that they

need to be tuned to all have the same energy splitting for the emulation of the Fermi-

Hubbard model. This is because the energy of the sum of all qubit excitations has to be

constant, as mentioned in section 2.4.2. This means that our external phases φj0 as well

as the coefficients αxj should pairwise be approximately equal for every j ∈ {1, . . . , n}.
This in turn means that, if you look closely, you can see how the first two terms yield a

telescoping sum

n−1∑

j=1

1

4
ELg

(
− αxj (φj0 + φ(j+1)0)σxj + αxj+1(φj0 + φ(j+1)0)σxj+1

)
≈ 0, (3.7)

which vanishes under these conditions, when we also neglect the boundary terms (they

would also cancel if one decides to use continuous boundary conditions). Note that even

if some terms do not completely cancel out to zero, in any case it holds that
ELg
εj
� 1,

hence the off-diagonal terms that add up to the individual qubit terms would only

cause tiny rotations of the eigenstates of each qubit out of the z-axis. Therefore the

approximation in equation (3.7) is valid and we end up with the effective Hamiltonian

Hx
L =

n∑

j=1

1

2
εjσ

z
j +

n−1∑

j=1

gjσ
x
j σ

x
j+1, (3.8)

with gj = − 1
4ELgα

x
jα

x
j+1 = − 1

8ELg

√
2EC
EJ

( 1
cos(φj0/2) cos(φ(j+1)0/2) )

1
4 . So if we, for all

j ∈ {1, . . . , n}, write φj0 = φ0 resulting in εj = ε =
√

2ECEJ cos(φ0/2), since our

external fields are ideally equal, we get

Hx
L =

n∑

j=1

1

2
εσzj + gxL

n−1∑

j=1

σxj σ
x
j+1, (3.9)
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with the coupling strength

gxL = −1

8
ELg

√
2EC

EJ cos(φ0

2 )
= −1

8

ε

EJ cos(φ0

2 )
ELg , (3.10)

which is precisely the form desired from equation (2.32) to emulate the hopping terms

in the Fermi-Hubbard model with transfer energy t = −gxL.

This shows how the coupling through an inductance—one of the linear elements of

superconducting circuits—leads to an interaction via σx, like predicted. We will now

proceed by checking how coupling through capacitances will work, to be able to compare

the different results.

3.1.2 Coupling through Capacitances

A Mathematical Excursus

Before we begin to study the circuit of tunable transmons coupled via capacitances, we

will briefly face a mathematical problem that will reappear in the later calculation. For

this, we define the n× n matrices Qq and Aq for q ∈ (− 1
2 ,

1
2 ) by

Qq =




0 q 0 0 · · ·
q 0 q 0 · · ·
0 q 0 q · · ·
0 0 q 0 · · ·
...

...
...

...
. . .



, and Aq =




1 −q 0 0 · · ·
−q 1 −q 0 · · ·
0 −q 1 −q · · ·
0 0 −q 1 · · ·
...

...
...

...
. . .



, (3.11)

so Qq is a matrix with value q on the first off-diagonals and is zero for every other

matrix element, and Aq = 1 − Qq is a tridiagonal matrix where the diagonal elements

are ones and the elements of the first off-diagonal have the value −q; the rest being

zero. In analogy to the geometric series 1
1−q =

∑∞
m=0 q

m for q ∈ (−1, 1), for values of

q ∈ (− 1
2 ,

1
2 ) one can show that the series

∑∞
m=0Q

m
q converges as well. Since

(1 +Qq +Q2
q + · · ·+Qmq )(1−Qq) = 1−Qm+1

q = 1 +O(qm+1), (3.12)

where we made use of the obvious fact that the matrix elements of Qmq are either zero

or proportional to qm for all natural m, we can see that the geometric series in Qq gives

the inverse matrix to 1−Qq, hence

A−1
q =

∞∑

m=0

Qmq . (3.13)

To check in more detail how the inverse of Aq looks like, one can write the matrix
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⊗
Φj0

L

J JC C

φjl φjr

⊗
Φ(j+1)0

L

J JC C

φ(j+1)l φ(j+1)r

CgCg Cg

Figure 3.2: Again a circuit diagram of a chain of coupled identical transmons, with Josephson junctions
J (with critical current Ic), shunt capacitances C and loop inductance L. They are again individually
tunable though external fluxes Φj0 = ~

2e
φj0, and the phase differences across the junctions of the jth

qubit are denoted φjl and φjr. The bottom parts of the transmons are grounded, but this time the top
parts of the transmons are coupled by capacitances Cg between neighboring transmons. For small values
of Cg , this leads to a σx-type interaction between the transmons, with a coupling strength proportional

to the fraction
Cg
C

.

elements of Qq as (Qq)ij = q(δi,j−1 + δi,j+1) and therefore

(Q2
q)ij =

n∑

l=1

q2(δi,k−1 + δi,k+1)(δk,j−1 + δk,j+1) = q2(δi,j−2 + 2δi,j + δi,j+2). (3.14)

Inductively it is easy to see that the leading order of q on the mth off-diagonal of A−1
q

will be qm and the coefficient in front will be one. One can also check that the next

nonvanishing order will be qm+2. This gives the following expression for the matrix

elements of A−1
q :

(A−1
q )ij = q|i−j| +O(q|i−j|+2). (3.15)

However, the result which we will utilize in particular in the upcoming calculation

is the first order in q, as q will play the role of a small parameter. This can be denoted

by the formula

A−1
q = A−q +O(q2). (3.16)

The Circuit Calculation

We will now derive the quantum mechanics of a circuit analogous to the previous sec-

tion 3.1.1, but replace the coupling inductances by capacitances. The circuit diagram

is given in figure 3.2: Again we have a chain of n identical tunable transmons with

Josephson junctions J (with critical current Ic) and shunt capacities C as well as the

loop inductance L. The phase differences across the junctions of the jth qubit are again

denoted φjl and φjr, and the external flux through the qubits are given by Φj0 = ~
2eφj0.

This time the qubits are however coupled by capacitances Cg. Again the bottom parts

of the transmons are grounded, the reason why this is a valid treatment was already

given in the previous section 3.1.1.

Applying our method to approach quantum circuits summarized in figure 2.2 on the
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circuit diagram in figure 3.2, we obtain the Lagrangian

LxC =

n∑

j=1

(( ~
2e

)2 1

2
C(φ̇2

jl + φ̇2
jr) +

~
2e
Ic(cos(φjl) + cos(φjr))

−
( ~

2e

)2 1

2L
(φjl − φjr − φj0)2

)
+

n−1∑

j=1

( ~
2e

)2 1

2
Cg(φ̇jr − φ̇(j+1)l)

2. (3.17)

Following the same strategy as in section 2.3 and 3.1.1, we introduce φj = 1
2 (φjl + φjr)

as well as φj− = 1
2 (φjl − φjr − φj0), use the addition theorems for the cosine and get

LxC =

n∑

j=1

(( ~
2e

)2

C(φ̇2
j + φ̇2

j−) +
~
e
Ic cos(φj− +

φj0
2

) cos(φj)−
( ~

2e

)2 2

L
φ2
j−

)

+

n−1∑

j=1

( ~
2e

)2 1

2
Cg
(
(φ̇j − φ̇j−)− (φ̇j+1 + φ̇(j+1)−)

)2
, (3.18)

where we made use of the fact that the external phases are constant, hence φ̇j0 = 0.

Just as in the previous section 3.1.1 it will turn out that the degrees of freedom

associated with φj− can effectively be set to zero due to the steep potential resulting

from the small inductance L; we will at this point already do this by fixing φj−, φ̇j− ≈ 0.

This way we have less terms in the Lagrangian to worry about for the transformation

to the Hamiltonian. The Lagrangian now reads

LxC =

n∑

j=1

(( ~
2e

)2

(C + Cg)φ̇
2
j +

~
e
Ic cos(

φj0
2

) cos(φj)

)
−
n−1∑

j=1

( ~
2e

)2

Cgφ̇j φ̇j+1

−
( ~

2e

)2 1

2
Cg(φ̇

2
1 + φ̇2

n) (3.19)

Remember that the coupling strength between the qubits must be small compared

to the qubit energy as stated in section 2.4.2. We will see in the end that this will be

achieved, if the coupling capacitances are small or to be more precise, if
Cg
C � 1. If

we operate in this regime, we can neglect the boundary terms 1
2Cg(φ̇

2
1 + φ̇2

n), because

C+ 1
2Cg ≈ C+Cg and it does only affect the boundary qubits anyhow. We also introduce

the vector φ = (φ1, . . . , φn) and the parameter λ = 1
2

Cg
C+Cg

∈ (0, 1
2 ). One can then check

that with the matrix Aλ, with the definition of the matrix given in equation (3.11) of

the preliminary mathematical excursus, we can express the Lagrangian using matrix

multiplication as

LxC =
( ~

2e

)2

(C + Cg)φ̇
TAλφ̇+

n∑

j=1

~
e
Ic cos(

φj0
2

) cos(φj). (3.20)

Since we want λ to be small, with the findings of equation (3.16), by neglecting terms

of order O(λ2), we can express the inverse of Aλ simply by A−λ. With N = 1
~
∂LxC
∂φ̇

we
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can now easily transform our Lagrangian to the Hamiltonian

Hx
C = EC̃N

TA−λN −
n∑

j=1

EJ cos(
φj0
2

) cos(φj)

=

n∑

j=1

(
EC̃N

2
j − EJ cos(

φj0
2

) cos(φj)
)

+

n−1∑

j=1

2EC̃λNjNj+1, (3.21)

with C̃ = C + Cg, EC̃ = e2

C̃
and EJ = ~

e Ic.

We resort to section 2.3 and equations (2.15) and (2.18) to see that the first sum

will give us the qubit energy terms with qubit energies ε̃j =
√

2EC̃EJ cos(φj0/2) and

we can use Nj = αyjσ
y
j with αyj = 1√

2
(
EJ cos(φj0/2)

2EC̃
)

1
4 . Now our Hamiltonian reads

Hx
C =

n∑

j=1

1

2
ε̃jσ

z
j +

n∑

j=1

2EC̃λα
y
jα

y
j+1σ

y
j σ

y
j+1. (3.22)

As final step we address the fact that we now have σy operators in the coupling

term instead of σx. This is however equivalent, one could just redefine the axes by a

rotation. If we would like to be a bit more detailed about this issue, one can follow the

same argument as in section 2.4.2: Because of the small prefactor λ � 1 in front of

the coupling, the coupling energy is small compared to the qubit energy. As a remark,

for a transmon we would already have
EC̃
ε̃j
� 1 due to the big shunt capacitances.

This means that terms λσ+
j σ

+
j+1 and λσ−j σ

−
j+1 can be neglected since they are not

energy conserving, which means λσyj σ
y
j+1 = λ(σ+

j σ
−
j+1 + σ−j σ

+
j+1 − σ+

j σ
+
j+1 − λσ−j σ−j+1)

is equivalent to λ(σ+
j σ
−
j+1 +σ−j σ

+
j+1 +σ+

j σ
+
j+1 +λσ−j σ

−
j+1) = λσxj σ

x
j+1. We can therefore

write

Hx
C =

n∑

j=1

1

2
ε̃jσ

z
j +

n−1∑

j=1

g̃jσ
x
j σ

x
j+1, (3.23)

with the coupling energy g̃j = 2EC̃λα
y
jα

y
j+1 = 1

2λ
√
ε̃j ε̃j+1.

As a last step, we account for the fact that in the emulator all transmons will be

tuned to have the same energy, therefore we set all external phases equal via φj0 = φ0

for all j ∈ {1, . . . , n}, which leads to ε̃j = ε̃ =
√

2EC̃EJ cos(φ0/2). We will also regard

that in the regime of small coupling, hence
Cg
C � 1, we find C̃ = C + Cg ≈ C; as

a consequence we ignore the small shift of the energies and just drop the tilde in our

terms, using the usual ε =
√

2ECEJ cos(φ0/2) with EC = e2

C and λ = 1
2

Cg
C+Cg

≈ 1
2
Cg
C .

Now we can give the final result

Hx
C =

n∑

j=1

1

2
εσzj + gxC

n−1∑

j=1

σxj σ
x
j+1, (3.24)
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with the coupling energy

gxC =
1

2
λε =

1

4

Cg
C
ε. (3.25)

So we have found another option the couple tunable transmons by their σx operators

as we need it for our emulator of the Fermi-Hubbard model. The question now is which of

the methods derived in this and the preceding section is superior and will subsequently

be the choice for an experimental realization. This problem will be discussed in the

following section.

3.1.3 Why Capacitances Are Preferable

To check which of the mentioned concepts for the σx-type interaction between tunable

transmons should be preferred for the experimental realization, we investigate some of

their potential problems.

We start by comparing the approximations we did during the derivation of the dif-

ferent coupling energies. For both methods we used the usual fixing of the high energy

degree of freedom of the transmon, related to the small intrinsic inductance of the loop

that contains the Josephson junctions, but this has proven not to cause problems for

transmons, and would affect both methods likewise.

For the coupling via inductances, the only other approximation that followed was

given in equation (3.7). However, in the text following that equation it is also argued

how this should not produce much of an error. Even with deviations in the electri-

cal elements—most likely in the Josephson junctions, as they are hard to consistently

manufacture—and tuning of the transmons to the same energy through distinct exter-

nal phases, when this term gives a finite value (due to the αxj now being different), it

is always small compared to the diagonal qubit terms. The effect on the eigenstates is

therefore negligible.

The main approximation in the case of capacitative coupling is more subtle. It lies in

the transformation from the Lagrangian (3.20) to the Hamiltonian (3.21). If one resorts

back to the mathematical excursus in section 3.1.2, checking equation (3.15), we see that

if we would account for higher orders of λ, the Hamiltonian (3.21) would contain not only

nearest neighbor interaction, but also an interaction that decays exponentially over the

distance with λm towards the mth neighbor qubit. Note that this decaying interaction

cannot be mapped on a similar long range interaction between the fermions in the Fermi-

Hubbard model; the Jordan-Wigner transformation would rather transform it into a

complicated interaction of no physical meaning and is therefore unwanted. However,

since λ is very small the approximation is very good. In fact λ could be adjusted such

that terms of order O(λ2) would already disappear in the unavoidable noise of the qubit

system. One can either convince oneself numerically that the coefficients in front of these

terms are quite well behaved and the approximation is valid, or look at the problem of

inverting Aq from equation (3.11) in more detail in the full analytic solution for the
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matrix elements in [19].

From these standpoints there are no advantages for either solution. One difference is

however the coupling energy. As one can see in equation (3.8) and the following definition

of gj , for the coupling via inductances, the coupling strength is shifted relative to the

qubit energy if the external phases are tuned; whereas equation (3.23) and the definition

of g̃j show how in the case of capacitative coupling, the coupling energy always keeps the

same ratio with the qubit energies. One could argue, that this might be an advantage for

the first setup, as the coupling can be tuned relative to the qubit energy and therefore

a range of different parameters for the emulation can be studied on one single chip,

without changing electrical elements. But as it will turn out, the σz-type coupling will

also be tunable, and the ratio of the couplings can be tuned even if the coupling strength

of the coupling via capacitances stays the same relative to the qubit energy. For the

emulator only the ratio of the different couplings is important as this determines the

ratio of the parameters U and t in the Fermi-Hubbard Hamiltonian (2.27), and therefore

determines the dynamics of the fermionic model. In fact, this matter turns out to be

an advantage for the capacitive coupling: Since the coupling energy here scales with

the qubit energies, if one considers deviations in the manufacturing of the transmons

which are evened out through the external fluxes, the coupling strength between all

qubits will be equal. If one couples via inductances this would also lead to deviations

in the coupling energies because of the deviation in the separate fluxes, which does not

resemble the Fermi-Hubbard model as we had intended.

Another important advantage of the coupling via capacitances is that it is much easier

to build. One has to achieve only a small capacitance between neighboring qubits; this

can be done by simply putting them closely next to each other on the chip. By putting

them far apart, the coupling can be made as small as one wishes and theoretically,

even very strong coupling could be achieved if one introduces extra finger capacitors,

similar to those in the transmon qubits (see section 2.3). To obtain small coupling by

inductances is on the other hand a problem: If one checks equation (3.10), and uses
EC
EJ
≈ 1

50 for transmons, one can see that ELg has to be of the order of the qubit energy

to get small coupling, for example
gxC
ε ≈ 1

10 . This means that the inductances Lg must

be quite large. In fact, if one estimates the size of a circular loop with the inductance

large enough to enter this limit, by using the formula Lg ≈ µ0r ln( 8r
d ) [20], where r is

the radius of the loop and d is the thickness of the wire, and plugging in d ≈ 100 nm, one

can estimate a radius r ≈ 4 mm for such a structure. This is a full order of magnitude

larger than a transmon itself. One could optimize this by for example using zigzag lines,

but still one ends up with a very large structure to implement on the chip. This would

make a chip with many transmons unnecessarily large, and the size would make it more

susceptible for noise.

This leads to the conclusion that the coupling via capacitances is the more viable

option to realize our σx-type coupling between transmons and will therefore be the

method we will use in the following. However, before we discuss the complete circuit of

the emulator, we will have to address first how we intent to implement the σz coupling.
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U1 U2

I1

I2

M

L1 L2

Figure 3.3: Circuit diagram of two inductances L1 and L2 forming a mutual inductance M =
kM
√
L1L2 with kM ∈ (0, 1). U1 is the voltage across the left inductance, I1 the current through

it. U2 and I2 are voltage across and current through the right inductance. The dots beside the induc-
tances indicate a sign convention, which describes in which direction parts of the induced magnetic flux
of one inductance enter the other one and vice versa.

3.2 Coupling of Tunable Transmons via σz

To address how our emulator should incorporate the on-site terms of the Fermi-Hubbard

model, we saw in figure 2.4 of section 2.4.2 that we need to couple tunable transmons by

their σz operators. This requires nonlinear coupling between the phases of the transmons

which is not a trivial task to perform; a method how to achieve this had to be invented.

The idea behind this method comes from the mechanism how the transmon is tuned,

as described in section 2.3: The external tuning field couples to the cosine potential of the

qubit’s degree of freedom through the phase difference across the small inductance of the

loop containing the Josephson junctions. The degree of freedom of this phase difference

was ignored because its excitation energy is much larger than the energy splitting of the

qubit. However, we hoped that by coupling the inductances of two transmons to form a

mutual inductance, which means coupling these previously ignored degrees of freedom,

the desired nonlinear interaction would arise.

This section shows that this mechanism in fact does give the correct σz-type inter-

action between the transmons and derives in detail how it works.

3.2.1 Coupled Inductances

In order to calculate the coupling of two transmons by their inductances, we start by

deriving how to treat a mutual inductance in the context of quantum circuits, which

means deriving the energy term to insert into the Lagrangian of a system containing

coupled inductances.

For this, consider two inductances L1 and L2 coupled together to form a mutual

inductance M as shown in figure 3.3. In general, it holds that

M = kM
√
L1L2 (3.26)

with kM ∈ (0, 1), and for the voltage U1 across and the current I1 through the first
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inductance and respectively U2 and I2 for the second one we have

U1 = L1İ1 +Mİ2,

U2 = L2İ2 +Mİ1.
(3.27)

The plus sign in front of the terms with M stems from the sign convention used in

figure 3.3. If both currents enter (or both leave) the inductance at the dot, the sign

is a plus; it is a minus sign otherwise. The origin of this is in which direction, due to

the geometry of the setup, parts of the induced flux in one inductance enter the other

inductance and vice versa; think of two coils in a transformer and regard how they can

be winded in different directions.

Now we look at the energy VM of this system, which can quickly be derived to be

VM =

∫
(U1I1 + U2I2) dt

=

∫ (
L1İ1I1 + L2İ2I2 +M(İ1I2 + İ2I1)

)
dt

=
1

2
L1I

2
1 +

1

2
L2I

2
2 +MI1I2, (3.28)

where we—for the moment—ignore constants of integration. To use this in the context

of superconducting circuits we want to change our variables from currents to fluxes (and

eventually phases). Using the laws of electromagnetic induction, we can write voltage

as time derivative of magnetic flux U(1,2) = −Φ̇(1,2), so by integrating equations (3.27)

we find
−(Φ1 − Φ10) = L1I1 +MI2,

−(Φ2 − Φ20) = L2I2 +MI1,
(3.29)

where we introduced Φ10 and Φ20 as the constants of integration. They can be inter-

preted as constant external magnetic fluxes through each of the inductances and are

important, as seen in section 2.3, since they will end up to be the tool to tune our

transmons. Let us for the moment introduce Φ′(1,2) = Φ(1,2) − Φ(1,2)0 as a convenient

notation. We can then rewrite the upper expressions as

I1 = − 1

L1 − M2

L2

(
Φ′1 −

M

L2
Φ′2
)

= − 1

1− k2
M

1

L1

(
Φ′1 − kM

√
L1

L2
Φ′2
)
, (3.30)

I2 = − 1

1− k2
M

1

L2

(
Φ′2 − kM

√
L2

L1
Φ′1
)
.
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Inserting this in VM from equation (3.28) gives

VM =
( 1

1− k2
M

)2
(

1

2L1

(
Φ′1 − kM

√
L1

L2
Φ′2
)2

+
1

2L2

(
Φ′2 − kM

√
L2

L1
Φ′1
)2

− kM√
L1L2

(
Φ′1 − kM

√
L1

L2
Φ′2
)(

Φ′2 − kM
√
L2

L1
Φ′1
))

=
1

1− k2
M

( 1

2L1
Φ′

2
1 +

1

2L2
Φ′

2
2 −

kM√
L1L2

Φ′1Φ′2
)
. (3.31)

Finally, let us convert this expression into the form used in superconducting circuits by

introducing the phases φ(1,2) = 2e
~ Φ(1,2) across the inductances and φ(1,2)0 = 2e

~ Φ(1,2)0

for the external fluxes. This gives the result

VM =
( ~

2e

)2 1

1− k2
M

( 1

2L1
(φ1 − φ10)2 +

1

2L2
(φ2 − φ20)2

)

−
( ~

2e

)2 kM
1− k2

M

1√
L1L2

(φ1 − φ10)(φ2 − φ20). (3.32)

This result could have also been derived from a generalized form given in the section

of the inductive coupling of flux qubits in the paper from Wendin and Shumeiko [8].

However, the derivation here gave a clearer insight where this result stems from.

Two Identical Inductances

A special case to consider is when the two inductances are equal, i. e. L1 = L2 = L. This

will be important later, since we want to inductively couple two identical transmons.

Equation (3.31) can then be written as

VM =
1

1− k2
M

1

2L

(
(Φ′1 − Φ′2)2 + 2(1− kM )Φ′1Φ′2

)

=
1

1− k2
M

1

2L
(Φ′1 − Φ′2)2 +

1

1 + kM

1

L
Φ′1Φ′2. (3.33)

As a side note, it is interesting at this point to check for the limits for kM . One can

see how kM → 0 will of course eliminate the coupling and the total energy will be the

sum of the energies of the individual inductances. For kM → 1, since the energy should

not diverge (which means V 9 ∞), as a consequence both fluxes will attain the same

value as Φ′1 − Φ′2 has to go to zero; this limit of close coupling is indeed familiar from

transformers.

For the last step here, we will also rewrite this expression using phases and obtain

VM =
( ~

2e

)2 1

1− k2
M

1

2L

(
(φ1 − φ10)− (φ2 − φ20)

)2

+
( ~

2e

)2 1

1 + kM

1

L
(φ1 − φ10)(φ2 − φ20). (3.34)

We will use this form to derive how this inductive coupling mechanism acts on transmons.
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⊗
Φ10

M

L

J JC C

φ1l φ1r

⊗
Φ20

L

JJ CC

φ2lφ2r

Figure 3.4: Circuit diagram of two inductively coupled transmons, where their inductances L form a
mutual inductance M = kML with kM ∈ (0, 1). The transmons are considered to be build identically
with Josephson junctions J and shunt capacities C, but with different external fluxes Φ10 and Φ20 for
tuning. φ(1,2)l and φ(1,2)r denote the phase differences across the junctions. This setup gives a σz-type

interaction between the tunable transmons. The coupling strength is gz = − kM
16

tan(φ10
2

) tan(φ20
2

) ε1ε2
EL

,

where ε(1,2) are the qubit energies, and φ(1,2)0 = 2e
~ Φ(1,2)0 as well as EL = ( ~

e
)2 1
L

; the coupling strength
can therefore be tuned by the external fields, also its sign can be changed.

3.2.2 Two Tunable Transmons Coupled by a Mutual Inductance

Now that we know how to treat a mutual inductance in our circuit, we will analyse

the situation of inductively coupled transmons. For this, consider two transmons with

capacitances C, Josephson junctions J with critical current Ic, and their inductances

L forming a mutual inductance M = kML (kM ∈ (0, 1)), with the phases across the

junctions of the two transmons being denoted φ(1,2)l and φ(1,2)r as shown in figure 3.4.

For the external magnetic fluxes Φ(1,2)0 we introduce the phases φ(1,2)0 = 2e
~ Φ(1,2)0.

The Lagrangian of this setup reads (using figure 2.2 of section 2.2.1 and equation (3.34)

from above):

Lz =
( ~

2e

)2 1

2
C(φ̇2

1l + φ̇2
1r + φ̇2

2l + φ̇2
2r)

+
~
2e
Ic(cos(φ1l) + cos(φ1r) + cos(φ2l) + cos(φ2r))

−
( ~

2e

)2 1

2L

1

1− k2
M

(
(φ1l − φ1r − φ10)− (φ2l − φ2r − φ20)

)2

−
( ~

2e

)2 1

2L

2

1 + kM
(φ1l − φ1r − φ10)(φ2l − φ2r − φ20). (3.35)

Defining φ(1,2) := 1
2 (φ(1,2)l + φ(1,2)r) and φ± := 1

2 ((φ1l−φ1r

2 − φ10

2 ) ± (φ2l−φ2r

2 − φ20

2 )),

using that the external fields are constant, meaning φ̇(1,2)0 = 0, and using the addition

theorem cos(φ(1,2)l) + cos(φ(1,2)r) = 2 cos(
φ(1,2)l+φ(1,2)r

2 ) cos(
φ(1,2)l−φ(1,2)r

2 ) for the cosine
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terms one can rewrite

Lz =
( ~

2e

)2

C(φ̇2
1 + φ̇2

2 + 2φ̇2
+ + 2φ̇2

−)

+
~
e
Ic(cos(φ1) cos(

φ10

2
+ φ+ + φ−) + cos(φ2) cos(

φ20

2
+ φ+ − φ−))

−
( ~

2e

)2 2

L

( 4

1− k2
M

− 2

1 + kM

)
φ2
− −

( ~
2e

)2 2

L

2

1 + kM
φ2

+. (3.36)

Introducing N(1,2,±) = 1
~

∂Lz
∂φ̇(1,2,±)

, defining the energies EC = e2

C , EJ = ~
e Ic as well as

EL = (~
e )2 1

L , furthermore defining ξ+ = 2
1+kM

and ξ− = 4
1−k2M

− 2
1+kM

allows us to

express the corresponding Hamiltonian by

Hz = EC(N2
1 +N2

2 +
1

2
N2

+ +
1

2
N2
−) +

1

2
ELξ+φ

2
+ +

1

2
ELξ−φ

2
−

− EJ cos(φ1) cos(
φ10

2
+ φ+ + φ−)− EJ cos(φ2) cos(

φ20

2
+ φ+ − φ−). (3.37)

Recalling that L is very small, we find EL to be very large (compared to EJ). We

can therefore ignore terms proportional to EJφ
2
± towards those proportional to ELφ

2
±,

which justifies expanding the cosines for small φ± giving

Hz = EC(N2
1 +N2

2 +
1

2
N2

+ +
1

2
N2
−) +

1

2
ELξ+φ

2
+ +

1

2
ELξ−φ

2
−

− EJ cos(φ1)
(

cos(
φ10

2
)− sin(

φ10

2
)(φ+ + φ−)

)

− EJ cos(φ2)
(

cos(
φ20

2
)− sin(

φ20

2
)(φ+ − φ−)

)
. (3.38)

We can now identify the qubit energy terms ECN
2
(1,2) − EJ cos(

φ(1,2)0

2 ) cos(φ(1,2)) =
1
2ε(1,2)σ

z
(1,2) (see equation (2.15)), also harmonic oscillators 1

2ECN
2
± + 1

2ELξ±φ
2
± =

~ω±(a†±a± + 1
2 ) with ω± = 1

~
√
ξ±ECEL and therefore φ± = 1√

2
( EC
ξ±EL

)
1
4 (a†± + a±).

We know that cos(φ(1,2)) are diagonal in the qubit basis (see equation (2.19)), hence

cos(φ(1,2)) = αz(1,2)σ
z
(1,2) + β(1,2)1. Following the above argument that φ is very small,

we neglect terms proportional to EJ1φ ≈ 0 and also leave out constant terms, resulting

in

Hz =
1

2
ε1σ

z
1 +

1

2
ε2σ

z
2 + ~ω+a

†
+a+ + ~ω−a†−a−

+ (g1+σ
z
1 + g2+σ

z
2)(a†+ + a+) + (g1−σ

z
1 − g2−σ

z
2)(a†− + a−), (3.39)

with g(1,2)± = EJα
z
(1,2) sin(

φ(1,2)0

2 ) 1√
2
( EC
ξ±EL

)
1
4 .

For the next step, take the displacement operators D±(d) = eda
†
±−d†a± , for any

operator d with [d, a±] = [d, a†±] = [d, d†] = 0. With the Baker–Campbell–Hausdorff

formula and its related Hadamard lemma one can check that the displacement operators

are unitary and it holds that D†±(d)a±D±(d) = a± + d and D†±(d)a†±D±(d) = a†± + d†,

as well as D†±(d)a†±a±D±(d) = a†±a± + d†a± + da†± + d†d. We continue by defining the
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unitary operator

U = D+(− 1

~ω+
(g1+σ

z
1 + g2+σ

z
2))D−(− 1

~ω−
(g1−σ

z
1 − g2−σ

z
2)) (3.40)

and by again neglecting constant terms the Hamiltonian transforms to

U†HzU =
1

2
ε1σ

z
1 +

1

2
ε2σ

z
2 + ~ω+a

†
+a+ + ~ω−a†−a− + gzσ

z
1σ

z
2 , (3.41)

with gz = −2( g1+g2+~ω+
− g1−g2−

~ω− ). Because of the small inductance of the transmons,

the energy ~ω± is very big compared to the qubit energies such that the oscillators’

excitation can be ignored again; they are just needed to mediate an effective interaction

between the qubits.

Let us further analyze the coupling energy gz. We start by pulling the dependence

on ξ± out of the coefficients by introducing g(1,2) = EJα
z
(1,2) sin(

φ(1,2)0

2 ) 1√
2
(ECEL )

1
4 and

ω = 1
~
√
ECEL, such that g(1,2)± = ( 1

ξ±
)

1
4 g(1,2) and ω± =

√
ξ±ω. This gives

gz = −2(
1

ξ+
− 1

ξ−
)
g1g2

~ω
= −2kM

g1g2

~ω
, (3.42)

where we used the convenient identity ( 1
ξ+
− 1

ξ−
) = kM . Using the equations (2.16)

and (2.19) we have

ε(1,2) =

√
2ECEJ cos(

φ(1,2)0

2
), and αz(1,2) = −1

4

√
2EC

EJ cos(
φ(1,2)0

2 )
(3.43)

and one can check that for our effective Hamiltonian

Hz
eff =

1

2
ε1σ

z
1 +

1

2
ε2σ

z
2 + gzσ

z
1σ

z
2 , (3.44)

it holds that

gz = −kM
16

tan(
φ10

2
) tan(

φ20

2
)
ε1ε2
EL

. (3.45)

This is a beautiful result regarding the linear dependence on the coupling parameter

kM ∈ (0, 1) of the mutual inductance; respectively it is linear in the mutual inductance,

i. e., gz ∝ M since 1
EL
∝ L and M = kML. Furthermore, the coupling strength gz

is comfortably tunable through the external fields applied in the transmons. Also its

sign can be changed by inverting one of the fluxes, which would give the possibility

to emulate a Fermi-Hubbard model with repulsive or attractive on-site energies. One

remaining issue is still that EL is big compared to the qubit energies. This causes

the coupling to be very small in comparison to the qubit energies; and therefore the

consequences need to be investigated, which will be done in the following sections 3.3.2

and 3.3.3.

Another issue which we will quickly address at this point is if and how our unitary
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Figure 3.5: The transmon energy ε (normalized by its maximum value) over the phase φ0 of the
external tuning flux. Variations in the phase difference φ− across the loop inductance of a transmon
cause the qubit energy to vary as well. This effect is stronger for larger absolute values of φ0 due to a
steeper slope.

transformation (3.41) changes our observables. We can however immediately see, that

U†σz(1,2)U = σz(1,2), so the measurements of σz(1,2)—and therefore the measurements

whether our emulated fermions are excited or not—are not affected. With our emulator

in mind we also need to assume our qubits to be coupled via σx(1,2) to additional qubits.

Using the Baker–Campbell–Hausdorff formula, respectively its related Hadamard lemma

and the commutation relations of the Pauli operators, we can easily check that it holds

that eθσ
z

σxe−θσ
z

= cos(θ)σx + sin(θ)σy = e−iθσ+ + eiθσ−. With this, one can see that

U†σx(1,2)U = e−iθ(1,2)σ+
(1,2)+eiθ(1,2)σ−(1,2), where θ(1,2) = − g(1,2)~ω+

(a†+−a+)− g(1,2)
~ω− (a†−−a−).

So one the one hand, θ(1,2) will be very small since the fraction
g(1,2)
~ω± is small itself

and the expectation value of a†± − a± is also small if the oscillators are unlikely to be

excited; which means the transformation barely changes the operator. On the other

hand it would be in any case irrelevant: Interactions would in our case transform like

σx1σ
x
2 ∼ σ+

1 σ
−
2 + σ+

2 σ
−
1 7→ ei(θ2−θ1)σ+

1 σ
−
2 + h. c., so the transformation only contributes

a phase factor of no physical relevance.

We have found that we can couple transmons by their σz operators by coupling

the inductances of their loops containing the Josephson junctions to form a mutual

inductance. This creates a coupling of the degrees of freedom associated with the phase

differences across the inductances. These degrees of freedom have since been ignored due

to the high energy that is needed to excite them (see section 2.3). Because these degrees

of freedom couple to the cosine potential of the low energy degree of freedom of the

transmon that gives the qubit states, we were able to show that the previously ignored

degrees of freedom therefore mediate an effective interaction between the σz operators

of the transmons. Figure 3.5 helps explaining this with a picture: We plotted the qubit

energy ε over the phase φ0 of the external tuning flux. Variations in the phase difference

φ− across the loop inductance vary the qubit energy. Because of the steeper slope for

large absolute values of φ0, variations in φ− have a larger impact, which explains the

dependence of the coupling energy of the σz coupling on φ0 in equation (3.45).

Having clarified this issue, we can continue with the full circuit for our emulator

and study the tunability as well as the range of validity of it, especially concerning the

indicated problem of very small coupling strengths for our σz-type coupling.
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Figure 3.6: (a) The sketch of figure 2.4 in section 2.4.2. It shows the fundamental design for an
emulator of the Fermi-Hubbard model in one dimension. The system of 2n qubits coupled by their σz

and σx operators in the pictured fashion has a Hamiltonian that is equivalent to the Fermi-Hubbard
Hamiltonian. (b) The circuit diagram for a realization of a qubit system in accordance with the upper
sketch based on tunable transmon qubits. The coupling through capacitances Cg provides the σx-
type interactions, coupling the inductances of the transmons to form a mutual inductances M leads to
interactions via σz .

3.3 The Full Circuit of the Emulator

This section will summarize our findings up to this point, as we are now able to give the

full circuit diagram of a superconducting circuit based on transmon qubits, that works as

an emulator for the Fermi-Hubbard model in one dimension. This means the circuit has

an equivalent Hamiltonian to this model and we can give the quantities corresponding

to the parameters U and t of the Fermi-Hubbard Hamiltonian (2.27) based on the values

of the electrical elements and applied external magnetic fields in the circuit.

There will also be a brief comment on the tunability of the circuit through the

external fields and on the experimental realization; how the circuit elements could look

like implemented on a chip. We check that the emulator can actually be realized in the

regime of parameters which is experimentally acquirable, and that our findings are not

purely academic.
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3.3.1 Summary of the Findings and Circuit Diagram

Let us first condense what has been achieved so far in the last two chapters, since we

can now draw the full circuit for our emulator, which is a major result of this thesis.

Figure 3.6 gives a good overview for this:

In figure 3.6 (a), we remind ourselves about the findings of chapter 2, and mainly

section 2.4.2: A system of two chains of n qubits coupled by their σx operators, with

the chains lined up next to each other such that opposite qubits are coupled by σz, gives

a qubit system with the Hamiltonian

HE =

n∑

j=1

∑

s=↑,↓

1

2
εσzj,s + gz

n∑

j=1

σzj,↑σ
z
j,↓ + gx

n−1∑

j=1

∑

s=↑,↓
σxj,sσ

x
j+1,s, (3.46)

from equation (2.32) that is equivalent to the one-dimensional Fermi-Hubbard Hamil-

tonian

HFH = U

n∑

j=1

c†j,↑cj,↑c
†
j,↓cj,↓ − t

n−1∑

j=1

∑

s=↑,↓
(c†j,scj+1,s + c†j+1,scj,s), (3.47)

from equation (2.27).

Figure 3.6 (b) then encapsulates the outcomes of the calculations of this chapter.

We have found methods to realize the two different kinds of couplings needed for the

emulator, and are therefore able to give the full circuit diagram of a superconducting

circuit based on transmons, that forms an emulator for the Fermi-Hubbard model. Two

chains of transmons are coupled by capacitances to give—as section 3.1.2 shows—the

σx-type interacting of the sketch in figure 3.6 (a). Section 3.2.2 derived, that the coupling

of two opposite transmons by a mutual inductance, formed by the inductances of their

loops, gives the coupling via σz.

The preceding sections also gave formulas for the coupling energies depending on the

electrical elements in the circuit in figure 3.6. We combine the equations (2.33), (3.45)

and (3.25), such that we can determine the parameters for the emulated Fermi-Hubbard

model to be

U = 4gz = ±1

4
tan2(

φ0

2
)
ε2

EM
(3.48)

and

t = −gx = −1

4

Cg
C
ε, (3.49)

with the energy splitting ε of all qubits and the energy EM = (~
e )2 1

M associated with the

mutual inductance M . We set the external fluxes to the values Φj↑ = ~
2eφ0 and Φj↓ =

∓Φj↑, where a sign change here causes the sign change in the upper equation (3.48).

We have now established the circuit and quantities of our emulator; let us continue

by exploring it in more detail.
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Figure 3.7: Plot of the fraction U
t

of the parameters of the Fermi-Hubbard model the emulator is
equivalent to over the phase φ0 associated with the external tuning flux. The plot shows the tunability
of the properties of the emulated system by external quantities. Because of noise effects, the range for
φ0 is experimentally limited. The approximate range for φ0 that is reasonable is shaded in light green.
We can therefore see that we are able to tune U

t
by quite a large factor.

3.3.2 Tunability

An important feature of the circuit in figure 3.6 (b) is tunability: If one is interested

in the properties of the Fermi-Hubbard model, one would certainly care to investigate

the effect of different parameter regimes of on-site energy U and transfer energy t. It

would then be unfavorable to be forced to manufacture a specific chip for each set of

parameters one would like to observe. Being able to tune the parameters of the emulator

through external signals, using just one single chip is therefore a great advantage. Many

measurements could then be performed on this single chip, which has the benefit of not

having to cool down the system below 20 mK after switching chips; this greatly speeds

up the process of multiple measurements for different parameters. Moreover, producing

a single ship is faster and less expensive than producing multiple chips.

As we can determine from equations (3.48) and (3.49), in our case the fraction U
t is

indeed tunable via the external phase φ0 related to the external magnetic fluxes through

the tunable transmons. We find our ratio to be

∣∣∣∣
U

t

∣∣∣∣ = γ

√
cos(

φ0

2
) tan2(

φ0

2
), (3.50)

with the constant scale factor γ = C
Cg

ε̂
EM

, where we separated the dependence of the

qubit energies ε (see equation (2.16)) on the external phase, such that ε = ε̂
√

cos(φ0/2),

with the constant ε̂. In figure 3.7, |Ut | is plotted against φ0 to give an insight into our

options of tunability. Within a reasonable range of φ0 up to around π
4 , we can observe

quite a large factor between the lower and upper limit for the ratio of the parameters.

The lower limit is due to the fact that for too small absolute values of U , it will be of

the order of the energy scale related to noise; we would not get meaningful emulation

results in this regime. The upper limit is also related to this, as larger external phases

also increase the transmons susceptibility to noise. This problem will be analyzed in

more detail in the following section 3.3.3.

Another feature is available through external tuning: If we use different phases for

– 40 –



3.3. The Full Circuit of the Emulator

Figure 3.8: Sketch of two tunable transmons being placed side by side. This leads to a capacitance
between the qubits that is small compared to the shunt capacities, yet causes a weak but perceivable
σx-type coupling between the transmons.

the external fluxes through each of the two chains, denoting them φ0↑ and φ0↓, we can

write the on-site energy (see equations (3.45)) as

U = γ̃

√
cos(

φ0↑
2

) cos(
φ0↓
2

) tan(
φ0↑
2

) tan(
φ0↓
2

), (3.51)

with the constant γ̃ = − 1
4
ε̂2

EM
. Therefore the sign of U can be switched, depending on

the external fluxes going in the same or in the opposite direction. This means we can,

on the same ship, emulate the Fermi-Hubbard model with repulsive or attractive on-site

interaction.

The precise range of parameter regimes that may be emulated has to be determined,

if one is at the point of having a concrete circuit layout in an experiment. The question

that will be addressed next is whether or not an emulator, that gives meaningful results,

could be build at the current state of technology.

3.3.3 Remarks on an Experimental Realization

The discussion in section 3.1.3 already mentioned how one could realize the σx interac-

tion via coupling capacitances on a chip: The coupling energy scales with the capacitance

between the qubits (see equation (3.49)). One can simply place the transmons close to

each other as sketched in figure 3.8. This method can provide a coupling that is small

enough such that the approximations in sections 2.4.2 and 3.1.2 are valid, yet is still

well above noise level. This method for capacitative coupling is also commonly used for

the initialization process which involves capacitative coupling of qubits to a transmission

line resonator, which will be described in section 4.1.2, and has also been already demon-

strated for coupling between qubits. In principle, virtually every coupling energy can be

acquired: Starting from very small energies by placing the transmons further apart, up

to strong coupling energies by adding extra finger capacitors between the transmons.

Unfortunately, the realization of the σz interaction of transmons is much more dif-

ficult. The problem lies in the coupling energy of the interaction: Resorting to sec-

tion 3.2.2, the interaction between the qubits is mediated through additional degrees of

freedom. The result is that the coupling energy is relatively small. To be precise on the

matter what relatively small means, let us assume the transmons to have a moderate

decoherence time of T ∗2 = 1 µs. Associated with this energy scale is therefore an energy

scale with the corresponding frequency of 1 MHz. We have to compare the coupling
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Figure 3.9: Sketch of two tunable transmons with increased loop inductance through a zigzag form
of the wire to lengthen it. The opposite qubits match each others pattern, such that the inductances
couple closely forming an as large as possible mutual inductance for the desired σz-type interaction
between the transmons. An also emerging coupling via σx due to a capacitance among the qubits can
be suppressed by tuning them to different energies, such that transitions through this interaction would
violate energy conservation.

strength with this energy scale, where the coupling should be at least of the order of

10 MHz. Otherwise, the emulator does not to have time to let the dynamic of the sys-

tem evolve, until decoherence destroys the quantum state in the emulator and therefore

averts a meaningful result for the emulation.

Let us estimate roughly if this regime is accessible. For the dynamic of the emulator,

U is the crucial quantity to look at. Referring to equation (3.48), we can express the

magnitude of the on-site energy as |U | = 1
4 tan2(φ0

2 ) ε2

EM
. We check the range for the

external phase φ0 first. Naively one could think |U | can be arbitrarily large, since it

diverges for φ0 → π. However φ0 is limited for mainly two reasons: Because the qubit

energy ε =
√

2ECEJ cos(φ0/2) is increasingly sensitive to fluctuations of φ0 for larger

values of φ0 (see the slope of ε in figure 3.5), increasing φ0 will cause the energy splitting

to fluctuate stronger, which results in stronger noise. Also if one assumes noise sources

that capacitively couple to the transmon, one can derive analogously to equations (3.25)

and (4.25), that the coupling strength scales with
√
ε; relative to the qubit energy it

therefore scales with 1√
ε
. Increasing φ0 and consequently decreasing ε would hence

effectively increase the influence of such noise sources. The typical range for ε is 5 GHz

to 10 GHz regarding the corresponding frequency. It cannot be much higher, as ε is

limited because EJ cannot exceed the gap energy of the superconductor. In the case of

transmons it is aluminium with a gap energy corresponding to about 80 GHz [21].

We set a reasonable limit for φ0 such that tan2(φ0

2 ) ≈ 1
2 , and set ε to about 10 GHz.

Now let us get back to |U | = 1
4 tan2(φ0

2 ) ε2

EM
, where EM = (~

e )2 1
M with the mutual

inductance M = kML between the qubits inductances L. We assume close coupling

of the inductances by kM ≈ 1. Using these values one can estimate, that for |U | to

reach the threshold of 10 MHz discussed above, the energy of the transmons inductances

EL = (~
e )2 1

L has to be at least about 100 MHz. Estimating a circular loop as inductance

analogously to section 3.1.3, one finds that the radius r of such a loop would be r ≈
60 µm. This is admittedly on the large side for transmons (their total size is of the
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order of 100 µm), but definitely practicable. Also, figure 3.9 shows an example for a

method to reduce the size of the loop drastically: Since the inductance depends strongly

on the length of the wire piece, a zigzag structure can produce a large inductance on

a relatively small scale. Note that the matching of the zigzag structure from the two

coupled qubits also causes the coupling coefficient kM to be close to one, as we assumed

above. Also note that this causes a capacitance between the qubits to emerge, leading

to an unwanted σx interaction. This exchange interaction of excitations between the

qubits can however be suppressed by tuning the transmons to different energies ε↑ and

ε↓, as an exchange of an interaction is then violating energy conservation. One can

check that tuning the two chains in the emulator to different energies does not change

the equivalence to the Fermi-Hubbard model, or any other result. The only aspect to

account for is that the two chains then need separate coupling capacities, as the hopping

term depends on the qubit energy (see equation (3.49)).

One should also mention that the inductance cannot be made too large, because EL

always has to stay large compared to EJ for the tunable transmon to function properly.

The derivation in section 2.3 (and every other section performing circuit calculations

with transmons involved) explicitly operated within this limit; otherwise the decoupling

of the two intrinsic degrees of freedom would not work, as they are no longer energetically

far apart. On the other hand we assumed moderate coherence times of T ∗2 = 1 µs to

get the threshold of 10 MHz for the parameter |U |. Better coherence times between

10 µs and 100 µs would give up to two additional orders of magnitude more room for the

threshold.

In any case we showed how the realization of our emulator design is certainly an

experimental challenge, yet possible with the current state of technology. More precise

computer simulations for concrete circuit geometries have to follow now, to further

analyze potential realizations of an emulator of the Fermi-Hubbard model.

For this theoretical thesis, the next question is how we want to initiate states in the

emulator and how we intent to perform measurements.
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Chapter 4

Initialization and Readout of

the Emulator

As we have successfully derived a circuit for an emulator of the Fermi-Hubbard model

in chapter 3, we will now address the questions how to initialize quantum states in it,

as well as how we intend to obtain the emulation results by a readout procedure.

4.1 Initialization of a Transmon

Naturally, we start with the initialization of states in a transmon. Before we approach

this process for the full emulator, we will explain it for a single transmon. It involves

transmission line resonators coupled to a transmon. The transmission lines can be driven

with microwave signals from the exterior.

This is a well-known procedure [11], but we will carefully derive how it functions,

in order to obtain a proper understanding of it. We are then able to give analytic

expressions of the crucial quantities concerning initialization, based on the quantities of

the circuit and the microwave signals.

4.1.1 A Transmission Line

In superconducting circuits, a transmission line is realized by a long segment of super-

conducting metal with length l, which is also relatively broad. The circuit diagram

is known from classical electrodynamics and shown in figure 4.1: The structure of a

lossless transmission line contains a certain inductance per length L0 and capacitance

per length C0 (towards ground); a resistance is neglected due to superconductivity, and

we are anyhow not interested in dissipative effects regarding the transmission line. For

the calculation we then assume it is made of n capacitors with capacitance l
nC0 with a

phase difference φj across these capacitors. They are then connected by n inductances

with value l
nL0, where we use continuous boundary conditions and introduce the phase

φn+1 = φ1. This way, we can write down the Lagrangian using our familiar method
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l
nC0

l
nC0

l
nC0

l
nL0

l
nL0

l
nL0

l
nL0

φj φj+1φj−1

Figure 4.1: The circuit diagram of a transmission line of length l: With its given inductance per
length L0 and capacitance per length C0 it is described by n capacitors with capacitance l

n
C0 connected

through inductances l
n
L0. The phase difference across the jth capacitor is denoted φj .

(using figure 2.2 from section 2.2.1) to be

LTL =
( ~

2e

)2 n∑

j=1

(
1

2

l

n
C0φ̇

2
j −

1

2 l
nL0

(φj − φj+1)2

)
, (4.1)

which, with Nj = 1
~
∂LTL

∂φ̇j
, trivially transforms to the Hamiltonian

HTL =
n

l

n∑

j=1

(
1

2
EC0N

2
j +

1

2
EL0(φj − φj+1)2

)
. (4.2)

Here we have introduced the quantities EC0
= e2

C0
and EL0

= (~
e )2 1

L0
, which are therefore

not energies, but have the dimensions energy times length.

To solve this problem of coupled harmonic oscillators, we define the set

Kn =
{2π

l
j | j ∈ {1, . . . , n}

}
, (4.3)

and, for every k ∈ Kn, define the operators

Pk =
1√
n

n∑

j=1

ei lnkjNj , and Qk =
1√
n

n∑

j=1

ei lnkjφj . (4.4)

This is of course a discrete Fourier transform and we know the inverse expressions

Nj =
1√
n

∑

k∈Kn
e−i lnkjPj , and φj =

1√
n

∑

k∈Kn
e−i lnkjQk. (4.5)

We utilize these expressions to study our Hamiltonian, where we first derive

n∑

j=1

N2
j =

∑

k,k′∈Kn

n∑

j=1

1

n
e−i ln j(k+k′)

︸ ︷︷ ︸
=δk,−k′

PkP
′
k =

∑

k∈Kn
PkP−k (4.6)
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and furthermore calculate

n∑

j=1

(φj − φj+1)2 =
∑

k,k′∈Kn

n∑

j=1

1

n
e−i ln jk(1− e−i lnk)Qk · e−i ln jk

′
(1− e−i lnk

′
)Q′k

=
∑

k,k′∈Kn
(1− e−i lnk)(1− ei lnk)QkQ−k

=
∑

k,k′∈Kn
2(1− cos(

l

n
k))QkQ−k. (4.7)

This result leads us to the definition of

Ωk =
√
EC0

EL0

√
2(1− cos(

l

n
k)) = 2

√
EC0

EL0

∣∣∣ sin(
l

2n
k)
∣∣∣, (4.8)

where we used the addition theorem 1 − cos( lnk) = 2 sin2( l
2nk). We also introduce

m = 1
EC0

, which has not the dimension of mass, but is labelled like this for convenient

notation, because we can now express our Hamiltonian as

HTL =
n

l

∑

k∈Kn

(
1

2m
PkP−k +

mΩ2
k

2
QkQ−k

)
. (4.9)

In this form we recognize the structure of the harmonic oscillator and therefore define

ak =

√
mΩk

2
(Qk + i

1

mΩk
Pk). (4.10)

Note that Qk and Pk are not Hermitian, since Q†k = Q−k and P †k = P−k, which can

easily be seen in equation (4.4), if one regards that φj and Nj are Hermitian. By using

Ω−k = Ωk, this leads to

Qk =

√
1

2mΩk
(a†−k + ak), and Pk = i

√
mΩk

2
(a†−k − ak). (4.11)

However, we obtain our usual commutation relations because

[Qk, Pk′ ] =

n∑

j,j′=1

1

n
ei ln (kj+k′j′) [φj , Nj ]︸ ︷︷ ︸

=iδj,j′

= iδk,−k′ (4.12)

and, regarding Ω−k = Ωk and [Qk, Qk′ ] = [Pk, Pk′ ] = 0, one can check that this gives

[ak, a
†
k′ ] = δk,k′ . (4.13)

Using this relation after inserting the equations (4.11) in the Hamiltonian (4.9), one can
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quickly check that the Hamiltonian can be written as

HTL =
n

l

∑

k∈Kn

1

2
Ωk(a†−ka−k + a†kak + 1) (4.14)

and finally because Ω−k = Ωk and ak = 1√
n

∑n
j=1 ei lnkj mΩk

2 (φj+i 1
mΩk

Nj), which results

from combining the equations (4.10) and (4.4), we can see by symmetry that changing

−k → k in the sum over k ∈ Kn does not alter the result, therefore we get

HTL =
n

l

∑

k∈Kn
Ωk(a†kak +

1

2
). (4.15)

A transmission line is therefore a sum of harmonic oscillators with wavenumber k and

energies n
l Ωk. These are the different modes that can be excited in the transmission

line.

The value of the number n which tells us how many segments we need to assume for

the transmission line is given by the fraction l
n , which is a characteristic length scale

that stems from the microscopic properties of the material. The fraction is therefore

very small. The transmission lines in superconducting circuits are very long compared

to this length scale (their size is in the centimeter range), hence we can look at the

continuum limit n → ∞ and still get a valid description. Because of n
l sin( l

2nk) → k
2

for n → ∞, we will now get a linear mode spectrum and performing this limit on our

Hamiltonian leads to

HTL →
∑

k∈K∞
~ωk(a†kak +

1

2
), (4.16)

where we introduced K∞ = { 2π
l j | j ∈ N} and ~ωk = k

√
EC0EL0 . So we find, since

we used continuous boundary conditions, an analogue to the classical case of standing

waves in a circular structure: We find eigenmodes for any wavelength λ which is a

fraction of the length of the structure (since 2π
l j = k = 2π

λ ⇒ λ = l
j , with j ∈ N), where

the eigenenergies of these modes increase linearly. The length of transmission lines

is usually such, that the frequency of the energetically lowest mode is at the typical

transmon energy of 5 GHz, which corresponds to a few centimeters.

4.1.2 A Transmon Coupled to a Transmission Line

We will now weakly couple a tunable transmon qubit to a transmission line by placing it

into its proximity leading to a coupling through a capacitance Cg. The circuit diagram

for this is given in figure 4.2. The transmon is denoted in the usual fashion with Joseph-

son junctions J , shunt capacitances C, and loop inductance L, tuned by the external flux

Φ0 = ~
2eφ0. Equal to section 4.1.1, the transmission line of length l is represented by n

capacitances l
nC0 linked through inductances l

nL0, with the capacitance per length C0

and the inductance per length L0 of the transmission line. The capacitances Cg couple
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l
nC0

l
nC0

l
nC0

l
nL0

l
nL0

l
nL0

l
nL0

φj0 φj0+1φj0−1

⊗
Φ0

L

JJ CC

φlφr

Cg Cg

φr − φj0 φl − φj0

Figure 4.2: Circuit diagram of a transmon (as in figure 2.3 (b)) coupled to a transmission line (see
figure 4.1) via coupling capacitances Cg , with parts of the qubit and the transmission line being grounded
as a reference point. The phase differences across certain elements are denoted in orange. This setup
leads to a coupling of the qubit via σx to the electrical field of the modes in the transmission line.

the transmon to the transmission line at the position of the jth
0 capacitor. One part of

the transmon is grounded; we explained in section 3.1.1 that this is a valid description.

The lower part of the transmission line is also grounded, as the capacitance per length

of the transmission line on the chip is in fact the capacitance per length towards ground.

With the help of the circuit diagram in figure 4.2 and the denoted phases, using our

usual method (see figure 2.2) we find the Lagrangian to be

LIn =
( ~

2e

)2 1

2
C(φ̇2

l + φ̇2
r ) +

~
2e
Ic(cos(φl) + cos(φr))−

( ~
2e

)2 1

2L
(φl − φr − φ0)2

+
( ~

2e

)2 n∑

j=1

(
1

2

l

n
C0φ̇

2
j −

1

2 l
nL0

(φj − φj+1)2

)

+
( ~

2e

)2 1

2
Cg
(
(φ̇j0 − φ̇l)

2 + (φ̇j0 − φ̇r)
2
)
, (4.17)

where we used continuous boundary conditions via φn+1 = φ1, as in the previous sec-

tion 4.1.1.

We continue as usual by introducing φ = 1
2 (φl + φr) and φ− = 1

2 (φl − φr − φ0),

and already fix the degree of freedom associated to φ− to zero, hence φ−, φ̇− ≈ 0, with

the justification for this explained in section 2.3. The external phase is also constant,
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meaning φ̇0 = 0. The Lagrangian can then be written as

LIn =
( ~

2e

)2

Cφ̇2 +
~
e
Ic cos(

φ0

2
) cos(φ) +

( ~
2e

)2 n∑

j=1

(
1

2

l

n
C0φ̇

2
j −

1

2 l
nL0

(φj − φj+1)2

)

+
( ~

2e

)2

Cg(φj0 − φ)2

=
1

2

( ~
2e

)2

φTAφ+
~
e
Ic cos(

φ0

2
) cos(φ)

+

n∑

j=1
j 6=j0

( ~
2e

)2 1

2

l

n
C0φ̇

2
j −

n∑

j=1

( ~
2e

)2 1

2 l
nL0

(φj − φj+1)2, (4.18)

where we introduced the vector φ = (φ, φj0) and the matrix

A =

(
2(C + Cg) 2Cg

2Cg
l
nC0 + 2Cg

)
. (4.19)

The matrix is A is invertible with

A−1 =
1

2(C + Cg)(
l
nC0 + 2Cg)− 4Cg

(
l
nC0 + 2Cg 2Cg

2Cg 2(C + Cg)

)
, (4.20)

so in the limit of weak coupling, and therefore Cg � C, lnC0, we find

A−1 ≈
(

1
2C

n
l
Cg
CC0

n
l
Cg
CC0

n
l

1
C0

)
. (4.21)

With the help of equation (4.21), we can easily transform the Lagrangian (4.18) to

the Hamiltonian

HIn = ECN
2 − EJ cos(

φ0

2
) cos(φ) +

n

l

n∑

j=1

(
1

2
EC0

N2
j +

1

2
EL0

(φj − φj+1)2

)

+
1

4

Cg
l
nC0

ECNNj0 , (4.22)

with N(j) = 1
~
∂LIn

∂φ̇(j)
, as well as EC(0)

= e2

C(0)
, EJ = ~

e Ic and EL0 = (~
e )2 1

L0
. Using our

findings of the sections 2.3 and 4.1.1, especially equations (2.15), (2.18) and (4.15) and

the insertion of equation (4.11) in (4.5) (keep in mind that in the sum over Kn one can

replace −k → k), we can rewrite this as

HIn =
1

2
εσz +

n

l

∑

k∈Kn
Ωk(a†kak +

1

2
)

+ i
1

8

Cg
lC0

(EL0

EC0

) 1
4
√
ECεσ

x
∑

k∈Kn

√
n sin(

l

2n
k)(ei lnkj0a†k − e−i lnkj0ak). (4.23)

As a last step we perform the continuum limit n→∞, as in the previous section 4.1.1.
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In this limit we find n sin( l
2nk)→ 1

2 lk. A bit more subtle is the treatment of the phase

factor e±i lnkj0 : The position x0 between zero and l, where the qubit is placed next to

the transmission line is fixed, the number j0 of the capacitor the transmon couples to

adjusts depending on n, such that the fraction l
nj0 is fixed with regard to n and we

have to replace e±i lnkj0 → e±ikx0 . If we also use equation (4.16), we see that in the limit

n→∞ we find

HIn →
1

2
εσz +

∑

k∈K∞
~ωka†kak + igInσ

x
∑

k∈K∞
lk(eikx0a†k − e−ikx0ak), (4.24)

with the coupling energy

gIn =
1

16

Cg
CTL

(ELTL

ECTL

) 1
4
√
ECε, (4.25)

where we introduced the total capacitance CTL = lC0 and total inductance LTL = lL0

of the transmission line, and the usual corresponding energies ECTL
= e2

CTL
as well as

ELTL
= (~

e )2 1
LTL

. The phase factor in the sum can classically be interpreted as the

phase of the electric field of a standing wave with wavenumber k in the transmission

line depending on the position x0, which varies of course with the position. Note that

the factor lk in the sum of the coupling term causes the coupling energy of each mode

to be constant relative to the frequency ωk, which also increases linearly in k (see the

definition following equation (4.16)).

As a remark: One aspect one should be careful about in the continuum limit is that

one would not couple to a single capacitor in the transmission line anymore. Instead,

one would need to introduce also a coupling capacity per length in the circuit diagram

in figure 4.2 and couple to multiple capacitors in the transmission line next to the

transmon. In this more detailed analysis one would end up with an interaction with an

average over the phase factor e±ikx with x going from one end of the transmon to the

other. We are however only interested in the excitations of the transmission line with

wavelengths in the centimeter range, as they correspond to the qubit energy scale. This

is however very large compared to the qubit size, therefore the phase factor would only

change little and the above description is sufficient.

One should also mention that inductive coupling leading to an additional σz inter-

action of the transmon with the transmission line can be neglected here, as it is much

weaker than the capacitive coupling.

With the necessary tools in hand, we can now continue with the initialization process.

4.1.3 Initialization through Rabi Oscillation

By now, we have established how a transmission line works and how we can couple it to a

qubit. This section continues by explaining how this setup can be used to initiate a qubit

from its ground state |0〉 to its excited state |1〉. We will do this through the process

of Rabi oscillation. To understand this procedure, we start by deriving the relevant
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Hamiltonian: Our qubit with energy splitting ε is coupled via σx to the modes of a

transmission line with coupling energy gR. We select one distinct mode with frequency

ω, and denote the creation and annihilation operators of this mode a† and a. The

Hamiltonian can be written as

HR =
1

2
εσz + ~ωa†a+ gRσ

x(a† + a), (4.26)

where we simplified the coupling term a bit notation wise; one can check that this is

still equivalent to equation (4.24).

To start further studying, we will treat the resonator part separately in a semiclassical

approach. Assume just the simple Hamiltonian H = ~ωa†a of a resonator. Switching

to the Heisenberg picture, one finds the time dependent operators a† 7→ a†eiωt and

a 7→ ae−iωt. Also assume that we externally drive this mode of the transmission line.

This situation of classical driving can be described by the creation of a coherent state

|α〉 (with α ∈ C) in the resonator, where |α〉 = D(α)|0〉 with the vacuum ground state

|0〉 and the displacement operator D(α) = eαa
†−α∗a. We introduced that operator in

section 3.2.2 following equation (3.39). With the relations for the displacement operator

mentioned in that section, we can easily see that 〈α|a†|α〉 = α∗ and 〈α|a|α〉 = α. Finally,

writing α = |α|eiϕ with ϕ ∈ R, we can semiclassically replace a† + a 7→ 〈α|(a†eiωt +

ae−iωt)|α〉 = 2|α| cos(ωt− ϕ) in the Hamiltonian HR giving

HR =
1

2
εσz + 2gRf cos(ωt)σx, (4.27)

where we ignored the qualitatively irrelevant phase ϕ and introduced f = |α| for a more

convenient notation. We also dropped the resonator energy, since 〈α|a†a|α〉 = |α|2 = f2

is a constant now. Note too, that f2 gives the mean number of photons in the resonator,

which means that f is proportional to the amplitude of the electrical field in the resonator

and therefore a measure for the strength of our driving.

We continue by transforming the Hamiltonian into a rotating frame with the unitary

transformation U = e−i 12ωσ
zt. Because this transformation is time dependent, the time

evolution in this frame is given by the Hamiltonian

H̃R = i~U̇†U + U†HU. (4.28)

Since [σz, σ±] = ±2σ±, one can derive U†σ±U = σ±e±iωt, using Baker-Campbell-

Hausdorff identities. With σx = σ+ + σ− and after applying a rotating wave approxi-

mation, where fast oscillating terms e±i2ωt are averaged out to zero (the frequency is in

the gigahertz range), one finds that

H̃R =
1

2
(ε− ~ω)σz + gRfσ

x. (4.29)

We now look at the time evolution of a state |ψ(t)〉 that is in the ground state of

the qubit in the beginning, hence |ψ(0)〉 = |0〉. For this we assume our system to be
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Figure 4.3: Rabi oscillation of a qubit state |ψ(t)〉, starting in the ground state |0〉. The qubit is
coupled via σx to the electric field in a transmission line, with coupling strength gR. The electric field
is driven with a frequency ω and f is a dimensionless measure for the amplitude of the field, as f2 is
the mean number of photons in the resonator. The qubit energy ε is such that it fulfills the resonance
condition ε = ~ω. This causes the pictured Rabi oscillation between ground state |0〉 and excited state
|1〉. Applying a microwave pulse of the right length and strength and frequency can therefore flip a
qubit in its excited state.

tuned such that the qubit energy is in resonance with the mode in the transmission line,

which means ε = ~ω. This simplifies the Hamiltonian to H̃R = gRfσ
x, and if we use

the representation e−i
gRf

~ σxt = cos( gRf~ t)1− i sin( gRf~ t)σx (which can be easily derived

by using the exponential series and (σx)2 = 1), the time evolution becomes

|ψ(t)〉 = e−
i
~ H̃Rt = cos(

gRf

~
t)|0〉 − i sin(

gRf

~
t)|1〉 for ε = ~ω. (4.30)

This means the qubit performs a Rabi oscillation between its ground state |0〉 and its

excited state |1〉 as illustrated in figure 4.3. We can immediately see now, how we can

initiate a qubit in the state |1〉: The system is in its ground state in the beginning (which

it will be eventually if one just waits long enough). Tuning the qubit in resonance with

the mode it is coupled to, and applying a driving field for a time t such that gRf
~ t = π

2 (or

any other odd multiple of π
2 ) will flip the qubit into the excited state |1〉. After turning

off the field, the qubit stays in that state, at least until decoherence or dephasing will

destroy the state. This is how it is typically done in experiments, where the qubit is on

resonance with a mode in a coupled transmission line and a distinct microwave pulse is

applied in the transmission line, such that the qubit is flipped.

Alternatively one could leave the microwave driving on constantly and tune and

detune the resonance between qubit and mode. This is possible since the detuning is

also suppressing the transition from ground to excited state because the transition is in

this case not energy conserving, which can be seen in the Hamiltonian in equation (4.29)

for ε− ~ω 6= 0. This is however not how it is done in practice, as the microwave pulses

are much easier to control.

Now that the initiation process is understood, we can advance to the readout mea-

surement of transmons.
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⊗
Φ0

M

L

JJ CC

φlφr

LOut

COut

φOut

Figure 4.4: Circuit diagram of a transmon (as in figure 2.3 (b)) coupled to an LC circuit that represents
a resonator, with inductance LOut and capacitance COut. The inductance L of the transmon and the
inductance LOut of the resonator form a mutual inductance M = kM

√
LLOut with kM ∈ (0, 1). The

mutual inductance causes a coupling of the operator σz of the qubit to the electrical field of the
resonator.

4.2 Readout of a Transmon

We would like to obtain information about the excitations in the fermionic system

we emulate. This corresponds to measurements of the σz operators of the emulator

(remember equation (2.26)). To perform this task, we suggest an analogous coupling

mechanism to section 3.2.2, since we saw in this section, that coupling to the inductance

of a transmon results in coupling to its σz operator. We suggest to couple a readout

resonator to the transmon by a mutual inductance as pictured in figure 4.4: Instead of

modeling the resonator by a transmission line like we did for the initialization process

in section 4.1, we use only one distinct mode and model the resonator by an LC circuit.

The eigenfrequency of this LC circuit should be large compared to the qubit energy,

because in this case we can neglect capacitive coupling between resonator and qubit that

would result in a σx-type coupling (see section 4.1.2), because such a term contributes an

exchange interaction of excitations which would then not be energy conserving. This is a

valid representation for a small resonator, with the lowest mode being energetically high

due to a small wavelength (see the mode spectrum of a transmission line in section 4.1.1).

Let us study the circuit in figure 4.4: We have the usual transmon with Josephson

junctions J and shunt capacities C, and loop inductance L. The phase differences across

the junctions are denoted φl and φr, the transmon is tuned through an external flux

Φ0 = ~
2eφ0. The LC circuit consists of an inductance LOut and a capacitance COut,

with a phase difference φOut across these elements. An external magnetic flux through

the LC circuit is ignored. The two inductances in the circuit form a mutual inductance

M = kM
√
LLOut with kM ∈ (0, 1). We can derive the Lagrangian of this system using
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figure 2.2 and the treatment of a mutual inductance in equation (3.32):

LOut =
( ~

2e

)2 1

2
C(φ̇2

l + φ̇2
r ) +

( ~
2e

)2 1

2
COutφ̇

2
Out +

~
2e
Ic(cos(φl) + cos(φr))

−
( ~

2e

)2 1

1− k2
M

( 1

2L
(φl − φr − φ0)2 +

1

2LOut
φ2

Out

)

+
( ~

2e

)2 kM
1− k2

M

1√
LLOut

(φl − φr − φ0)φOut. (4.31)

We continue with the transformation of variables already used in section 2.3, and

introduce φ = 1
2 (φl + φr) as well as φ− = 1

2 (φl − φr − φ0), which—using φ̇0 = 0 and the

addition theorems for the cosine—gives

LOut =
( ~

2e

)2

C(φ̇2 + φ̇2
−) +

( ~
2e

)2 1

2
COutφ̇

2
Out +

~
e
Ic cos(φ− +

φ0

2
) + cos(φ)

−
( ~

2e

)2 1

1− k2
M

( 1

2L
φ2
− +

1

2LOut
φ2

Out

)
+
( ~

2e

)2 kM
1− k2

M

1√
LLOut

φ−φOut,

(4.32)

and we can now transform to the Hamiltonian

HOut = EC(N2 +N2
−) +

1

2
ECOut

N2
Out − EJ cos(φ− +

φ0

2
) cos(φ)

+
1

2
ELξφ

2
− +

1

8
ELOut

φ2
Out + g̃φ−φOut, (4.33)

with the usual canonical momentums N(·) = 1
~
∂LOut

∂φ̇(·)
and energies EC(Out)

= e2

C(Out)
,

EJ = ~
e Ic as well as EL(Out)

= (~
e )2 1

L(Out)
. We also introduced ξ = 1

1−k2M
and the

coupling energy g̃ = − 1
2 (~

e )2 1√
LLOut

kMξ.

Following the same argument as in section 3.2.2, we consider that—in a transmon—

EL is large compared to EJ , which justifies expanding EJ cos(φ− + φ0

2 ) for small φ−,

since terms of the form EJφ
2
− are negligible towards terms of the form ELφ

2
−. This leads

us to

HOut = EC(N2 +N2
−) +

1

2
ECOut

N2
Out − EJ cos(

φ0

2
) cos(φ) + EJ sin(

φ0

2
) cos(φ)φ−

+
1

2
ELξφ

2
− +

1

8
ELOutφ

2
Out + g̃φ−φOut. (4.34)

We identify the usual qubit energy terms ECN
2 − EJ cos(φ0

2 ) cos(φ) = 1
2εσ

z from

equation (2.15), harmonic oscillators ECN
2
−+ 1

2ELξφ
2
− = ~ω−a†−a− and 1

2ECOut
N2

Out +
1
8ELOut

ξφ2
Out = ~ωa†a, with ~ω− =

√
2ECELξ and ~ω = 1

2

√
ECOut

ELOut
ξ. We there-

fore obtain φ− = 1√
2
( 2EC
ξEL

)
1
4 (a†− + a−) as well as φOut = 1√

2
(

4ECOut

ξELOut
)

1
4 (a† + a). We

also use equation (2.19) to write cos(φ) = αzσz + β1 with αz = − 1
4 ( 2EC
EJ cos(φ0/2) )

1
2 .

Neglecting constant contributions, the Hamiltonian can now be rewritten as

HOut =
1

2
εσz + ~ωa†a+ ~ω−a†−a− + g−σ

z(a†− + a−) + g(a† + a)(a†− + a−), (4.35)
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with g− = 1√
2

sin(φ0

2 )αz( 2EC
ξEL

)
1
4EJ and g = − 1

4kMξ(
8ECECOut

ξ2ELELOut
)

1
4 (~
e )2 1√

ELELOut

.

We are now in a similar situation to equation (3.39) in section 3.2.2. We therefore

proceed similarly and use the displacement operator D(d) = eda
†
−−d†a− to define the

unitary transformation

U = D(− 1

~ω−
g−σ

z), (4.36)

and by applying the identities for the displacement operator following equation (3.39),

we find

U†HOutU =
1

2
εσz + ~ωa†a+ ~ω−a†−a− + g(a† + a)(a†− + a−) + gOutσ

z(a† + a),

(4.37)

with gOut = − 2gg−
~ω− . We again neglect the high energy degree of freedom of the transmon

by fixing a†−a−, a
†
− + a− ≈ 0 and arrive at the effective Hamiltonian

HOut,eff =
1

2
εσz + ~ωa†a+ gOutσ

z(a† + a), (4.38)

with the coupling energy

gOut = −2gg−
~ω−

= −1

8
kM (1− k2

M )
1
4 tan(

φ0

2
)
ε

EL

(ECOut

ELOut

) 1
4
(~
e

)2 1√
LLOut

. (4.39)

We found an effective interaction between the σz operator of the qubit and the

electric field a† + a in the resonator. This gives the possibility to measure the state in

which the qubit is in and subsequently the corresponding fermionic excitations in the

Fermi-Hubbard model.

Alternatively, one could use the standard approach for qubit readout [11]. It would

involve coupling the qubit capacitively to a readout resonator. For a large detuning of the

resonator frequency and the qubit energy one obtains an effective shift of the resonator

frequency depending on the qubit state, which allows for projective measurements of

the qubit state trough spectroscopy. This will however not be presented here in detail.

Since we have established how we can readout the state of an individual qubit with

the help of readout resonators, and discussed the initialization of individual qubits in

the preceding section 4.1, we can continue by discussing a full initialization and readout

scheme for the emulator consisting of multiple coupled qubits.

4.3 Treating Multiple Transmons

One aspect to consider in the emulator in contrast to the initialization and readout

procedures for individual qubits, is that the qubits in the emulator are coupled to each

other by their σz and σx operators. First of all, we state that in fact—for small coupling

energies—the readout is not influenced by this.
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We investigate the initialization process in more detail. For this we use the Hamil-

tonian (4.26) of a qubit coupled to the electrical field of a resonator, and add a second

qubit which is coupled to the first one. Let us start with an additional σz interaction.

This gives a Hamiltonian of the form

Hz
R =

1

2
εσz1 +

1

2
εσz2 + ~ωa†a+ gzσz1σ

z
2 + gRσ

x
1 (a† + a). (4.40)

During the initialization, we can consider the second qubit to either still be in the ground

state, or already be flipped up and in its excited state. This allows to use 〈σz2〉 = ±1

and we can effectively write

Hz
R =

1

2
(ε± 2gz)σz1 + ~ωa†a+ gRσ

x
1 (a† + a). (4.41)

The initialization process for qubit number one is therefore identical, except for the

resonance condition ~ω = ε from section 4.1.3 being shifted to ~ω = ε± 2gz.

The situation of the two qubits being coupled by σx is more difficult. The Hamilto-

nian of this setup reads

Hx
R =

1

2
εσz1 +

1

2
εσz2 + ~ωa†a+ gxσx1σ

x
2 + gRσ

x
1 (a† + a). (4.42)

Since the initialization takes time (see figure 4.3), while exciting one qubit, it starts

exciting the neighboring qubit as well by exchanging its excitation through the σx-type

coupling. This leads to an oscillation that interferes with the Rabi oscillation of exciting

qubit one through the resonator. If we would like to excite qubit number one and keep

qubit number two in its ground state, we have to find a time to match these interfering

oscillations accordingly. This potentially takes much longer than the excitation of a

single qubit. Moreover, it becomes especially difficult, when we consider a chain of

many coupled qubits. One could operate in the limit of strong driving, thus lowering

the time scale of the initialization through the electric field such that it is much faster

than the exchange of energy between the qubits. While this would work in theory, it

has distinct disadvantages such as increasing the temperature in the system and—more

importantly—it increases the likelihood of exciting a qubit in excited states above the

first excited state; this can be derived from the upcoming discussion in section 5.2, where

we will treat such problematic excitations.

We suggest an easy solution to this problem: If we pairwise detune the qubits from

resonance to different energies, their σx interaction is effectively suppressed, since the

resulting transitions are in this case not energy conserving. This gives individual control

over the qubits, and an arbitrary combination of excitations can be initialized in the

emulator. The emulation would also be frozen during the initialization process and

would not start until the qubits are brought back to degeneracy.

Figure 4.5 presents a possible scheme for initialization and readout: Two transmis-

sion lines are coupled to the left part of the emulator. For example an applicable field
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readout resonators

transmission lines

Φ

x

applicable
field gradient

...

Figure 4.5: Initialization and readout scheme for our emulator of the Fermi-Hubbard model from
figure 3.6. A part on the left of the emulator is coupled to transmission lines for initialization, where an
applicable field gradient in that part is used to pairwise detune the qubits, such that the σx coupling
between neighboring qubits is suppressed. They can then be excited individually to initialize a certain
quantum state in the emulator. Turning off the field gradient brings the transmons back to degeneracy
and starts the emulation, since the coupling is then restored. Readout resonators coupled to single
qubits at distinct locations are used to obtain information about the quantum state in the emulator
after the system has evolved.

gradient could detune the transmons. The qubits in this part of the emulator could

then be initialized individually. Deactivating the field gradient would then start the

emulation. Readout resonators coupled to qubits at distinct locations could deliver

information about the emulation after the system has evolved over a certain time.
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Chapter 5

Discussion of Errors

We have established the full circuit of an emulator for the Fermi-Hubbard model as

well as how we intend to initialize a quantum state in it and read out emulation results

afterwards. Naturally, the next step is a discussion of errors in the emulator and its

results of emulation. We do not have quantum error correction available in the emulator,

so this is not merely an obligatory task. In our context of quantum emulation, an

error discussion is closely linked to the four criteria from section 2.1, which a quantum

emulator should satisfy. Particularly the third criterion of reliability is directly connected

to errors in the emulator: The results an emulator produces should correspond faithfully

to a quantity of the ideal model one seeks to emulate. This is obviously not the case

if the emulation contains large errors. Moreover, this is especially difficult to quantify,

since an emulator should produce results, which are otherwise not available through

analytic calculation or numerical simulation; so they cannot be trivially compared to

any reference value.

This chapter addresses this problem by briefly investigating certain error sources.

We discuss possible solutions to deal with the difficulty of quantifying the errors on the

emulation results.

5.1 Temperature and Disorder of the Emulator

In this section we address two sources of error in a quantum emulator, that are present

in any design for an emulator.

Let us start with the impact of temperature on the system. The transmons are op-

erated at a temperature of T = 20 mK, which corresponds to a frequency of 400 MHz.

The qubit energy ε on the other hand is above 5 GHz, hence an order of magnitude

larger. This leads us to our postulate that effects related to temperature are suppressed

through the very small prefactor e
− ε
kBT ≈ e−10 from the Boltzmann distribution (with

the Boltzmann constant kB of course). For example, 400 MHz is larger than typical cou-

pling energies of superconducting qubits to resonators for initialization or readout, yet

these processes are working fine in experiments. Moreover, the energy scale correspond-
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ing to coherence times higher than 1 µs are lower than 1 MHz. We see this as evidence

supporting our postulate that our emulator using superconducting devices effectively

operates at zero temperature. This would be an example of a great advantage towards

similar emulators using cold gases, where the temperature of the system, which can in

reality never be brought down to zero, ends up to be an effective temperature of the

emulated system as well. Naturally, more rigorous study of this issue needs to follow to

reinforce our claim.

Another obvious source of error is disorder in the system, which means certain deriva-

tions in the quantities of the Hamiltonian. We focus on the strongest source of disorder

in our superconducting circuit: Because our circuits are macroscopic in size, purely geo-

metric quantities like capacitances or inductances are fairly exact to manufacture. The

precision of the printing process of chips is far more accurate than the size of the printed

structures. This does not apply to the manufacturing of the Josephson junctions, since

their behavior is determined by the constitution of the weak link between the two sides

of the junction. In aluminium junctions, this link is constructed by printing one lead,

letting it build up a thin layer of oxide and then print the second lead on top. The

precise structure of the oxide layer is however very hard to control, and on its micro-

scopic scale, tiny variations in the oxidation process have relatively large effects on the

properties of the junction [9].

We therefore focus on disorder in the energy EJ associated with the Josephson

junctions. We do this by introducing derivations from the mean value by EJ → EJ+δEJ .

The parameters U and t of the Fermi-Hubbard model (2.27) we intend to emulate show,

according to equations (3.48) and (3.49), the proportionalities U ∝ ε2 and t ∝ ε. Since

it holds that ε ∝ √EJ for the transmon energies (see equation (2.16)), we can quantify

the effect of disorder in EJ via U → U + δU , t→ t+ δt, by

δU =
δEJ
EJ

U, and δt =
1

2

δEJ
EJ

t. (5.1)

We now know to which extent the parameters in our emulator vary. This gives rise

to a very difficult question: How can we quantify to which extent this affects the results

of emulation compared to an ideal system? We intend to emulate problems that are not

accessible through other approaches like analytic calculations or numeric simulations on

a classical computer. If we do not know a solution to the ideal system, it is apparent

that a calculation of deviations towards a non-ideal system is a highly nontrivial task.

Theoretical groundwork to address this issue needs to be established; especially since

this affects quantum emulation without error correction in general.

5.2 The Third Energy Level of a Transmon

A specific possible source of error in our emulator design is that a transmon is not a

strict two level system: Section 2.3 explained that in fact the transmon is an anharmonic

oscillator. Obviously, excitations of the second excited state would have no correspon-
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E

|0〉

|1〉

|2〉

ε

ε ε−χ

Figure 5.1: Energy spectrum of the first three levels of a transmon. The energy difference between
the ground state |0〉 and the first excited state |1〉 is ε. Since the transmon is an anharmonic oscillator,
above these levels is a third level |2〉, with an energy difference ε − χ towards the state |1〉, with the
anharmonicity χ. Common values for χ are approximately ε

10
.

dence in the fermionic system we wish to emulate. Therefore we have to check, if such

excitations are sufficiently unlikely.

To investigate this problem, instead of projecting the operators a†a and a†+a (with

the creation and annihilation operators a† and a of the oscillator) onto the subspace of

the ground state and the first excitation with basis {|0〉, |1〉} via a†a = 1
2 (σz + 1) and

a† + a = σx (with the usual 2 × 2 Pauli matrices), we will now include the third state

|3〉 in the basis and project

a†a = τz, and a† + a = τx, (5.2)

with the matrices

τz =




0 0 0

0 1 0

0 0 2− χr


 , and τx =




0 1 0

1 0
√

2

0
√

2 0


 (5.3)

in the basis {|0〉, |1〉, |2〉}. We introduced χr ∈ (0, 1) to account for the anharmonicity:

We showed through perturbation theory in equation (2.21) that if the energy difference

between ground and first excited state is ε, then the energy difference between first and

second excited state is slightly smaller and can be expressed by (1− χr)ε = ε− χ with

the anharmonicity χ = χrε; this is pictured in figure 5.1.

Let us study a system of two transmons. The Hamiltonian just containing the

energies of the transmons reads

Hτ
0 = ετz1 + ετz2 . (5.4)

The state |11〉 has a higher energy E11 than the states |20〉 or |02〉 with energy E20.

For this reason we have to check that this is not an issue, i. e., that this does not

allow for unwanted transitions if we include perturbations to this Hamiltonian. Our

often encountered σx-type interaction would—in its generalized form with the new τx

operators—play the role of such a perturbation. With the coupling energy gx, we intro-

– 60 –



5.2. The Third Energy Level of a Transmon
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Figure 5.2: A system of two degenerate transmons generalized to three level systems, where the
energy splitting of the first two levels is labeled ε. The transmons are coupled by the τx operators with
coupling energy gx. This is described by the Hamiltonian in equation (5.7). Plotted is the expectation
value for a state |ψ(t)〉 having a transmon in its second excited state over time, with the initial state

|ψ(0)〉 = |11〉. In (a) the fraction of coupling energy over anharmonicity is gx

χ
= 1

10
and in (b) it

is gx

χ
= 1

100
. We can see how the estimated value of 8( g

x

χ
)2 for the expectation value resulting from

perturbation theory is in good agreement with the maximum values in the plots.

duce the interaction Hamiltonian

Hτ
1 = gxτx1 τ

x
2 . (5.5)

In first order perturbation theory, the corrections to the state |11〉 would be of the order

〈20|Hτ
1 |11〉

E11 − E20
=
√

2
gx

χ
. (5.6)

We can therefore see, that the anharmonicity χ = χrε protects from unwanted transi-

tions, as long as it is large compared to the coupling energy.

Let us study this further through numerical simulation. We take the full Hamiltonian

Hτ
2 = ετz1 + ετz2 + gxτx1 τ

x
2 (5.7)

and look at the time evolution of a state |ψ(t)〉, where we start in the initial state

|ψ(0)〉 = |11〉. We introduce the projector P2, which is the sum of the projectors on

every state with roughly the same energy as |11〉, and with one transmon being in its

third level:

P2 = |20〉〈20|+ |02〉〈02|. (5.8)

We then simulate how the expectation value 〈ψ(t)|P2|ψ(t)〉 evolves over time. From

equation (5.6), since we have two contributions of this form, we can estimate that the

expectation value of the projector should be of order (2 ·
√

2 g
x

χ )2 = 8( g
x

χ )2. The results

of the simulation in figure 5.2 show very good agreement to this estimate. Typical values

for the anharmonicity are χ ≈ ε
10 , such that we can operate within a limit, where the

coupling energy is much smaller than the anharmonicity; we want the coupling in our
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emulator to be very small anyhow, as sections 2.4.2 and 3.1.2 demand this limit.

Unfortunately, the problem becomes worse if we generalize further by increasing the

number of transmons to n > 2. We now obtain the Hamiltonian

Hτ
n =

n∑

j=1

ετzj + gx
n−1∑

j=1

τxj τ
x
j+1, (5.9)

and define the states

|i〉 = |111 . . .〉, and |f〉 =
1√

2(n− 1)
(|201 . . .〉+ |021 . . .〉+ |120 . . .〉+ |102 . . .〉+ . . . ).

(5.10)

This leads to the matrix element

〈f |Hτ
n |i〉 = 2

√
n− 1gx, (5.11)

which means that the coupling strength gets effectively enhanced by a factor
√

2(n− 1).

Hence, for increasing n, the effective coupling energy will ultimately exceed the anhar-

monicity and the anharmonicity will not protect from transitions anymore. This would

eventually limit our options regarding the scaling of an emulator to a large number of

transmons. But we need to check first, whether or not there are additional effects, that

avoid this problem.

For this, we study the presence of noise on the third level, because in reality, the third

level is more susceptible to noise than the first two levels. We do this by introducing

the operator

X =




0 0 0

0 0 0

0 0 1


 , (5.12)

and then include dephasing terms in the Von Neumann equation for the density matrix ρ,

leading to the Lindblad master equation

ρ̇ =
1

i~
[Hτ

n , ρ] + Γ
(
XρX† − 1

2
(ρX†X +X†Xρ)

)
, (5.13)

with the dephasing rate Γ of the third energy level. Restricting ourselves to the subspace

with basis {|i〉, |f〉}, we find the matrix element

〈f |ρ̇|i〉 =
1

i~
2gx
√
n− 1(〈i|ρ|i〉 − 〈f |ρ|f〉)− 1

i~
χ

2
〈f |ρ|i〉 − Γ

2
〈f |ρ|i〉. (5.14)

We can now read from this equation, that the term −Γ
2 〈f |ρ|i〉 suppresses excitations of

a third level by lowering the transition rate of the problematic transition from |i〉 to |f〉.
We can however also see that it lacks a scaling factor

√
n− 1 and stays constant for an

increasing system size. Hence, this mechanism gives additional protection to the one
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from the anharmonicity and enables us to emulate larger systems, yet it still does not

give the opportunity to scale the emulator up infinitely.

Unfortunately, further approaches of including noise on the third level gave similar

results. We have to conduct more intense studying of this issue to completely answer the

question how far our emulator design can be scaled up in principle. The investigation of

additional effects to protect from undesired transitions will follow, possibly supported

by numerical simulations to quickly obtain impressions how certain approaches impact

our system.

5.3 Gaining Confidence trough Measurement

We suggest an additional approach to purely theoretical methods to understand how

large the errors in an emulator are: By measuring local operators, one could examine

properties of the emulated system which were known beforehand.

To explain this in more detail, let us refer to our emulator of the one-dimensional

Fermi-Hubbard model. Section 4.2 showed that we can in principle measure the occu-

pation of any of the fermionic states. If we resort to the Hamiltonian

HFH = U

n∑

j=1

c†j,↑cj,↑c
†
j,↓cj,↓ − t

n−1∑

j=1

∑

s=↑,↓
(c†j,scj+1,s + c†j+1,scj,s) (5.15)

of the Fermi-Hubbard model (from equation (2.27)), we can identify a variety of differ-

ent properties of this system: For example it is symmetrical regarding the interchanging

of spin-up and spin-down states. In the emulator we should therefore measure equiv-

alent results on either of the qubit chains that represent the spin-up or the spin-down

states. Also the number of total excitations of both spin-up and spin down-states are

preserved, hence the total excitations in each of the transmon chains should be pre-

served as well. For a sufficiently large number of sites n, neglecting boundary effects,

we find a translational symmetry along the sites which should equally be present in the

emulator. If one would initialize excitations in only one qubit chain, the σz interactions

to the other chain would only apply a constant shift to the qubit energies. This means

that one would effectively obtain a Heisenberg XX-chain of qubits with equal excitation

energy coupled by their σx operators; this model has an analytic solution that could be

compared to the emulation results. Another option would be to emulate system sizes

that are accessible through numerical simulation, such that emulation results could be

compared to the simulation.

We explained how we could perform measurements on an emulator, which could then

be compared to known quantities. Consequently, we might be able to gain confidence

in the results the emulator produces, or to reveal possible limitations of the emulation.

This procedure could be seen as a calibration scheme and could in general also be

performed on other emulators apart from one for the Fermi-Hubbard model. It could

furthermore play an important role to support the theoretical approaches on quantifying
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errors, as it could supply data for comparison to these theoretical approaches; eventually

helping to understand under which circumstances the results of a quantum emulation

could be trusted.

With this insight, we close this chapter on error discussion. We have revealed inter-

esting questions, but these will be addressed in future work; it is now a suitable moment

to conclude this thesis.
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Chapter 6

Summary and Outlook

After the introduction, chapter 2 started by establishing the elementary concepts this

thesis dealt with. Section 2.1 explained the concept of quantum emulation and the

motivation behind it. It also stated four criteria that a quantum emulator needs to

satisfy. These criteria will be addressed explicitly in a moment. Section 2.2 presented the

technology of superconducting circuits, which was used to conceptualize the quantum

emulator in this thesis. It started by giving an overview how quantum circuits are

treated to obtain their quantum mechanics in 2.2.1 and continued by explaining the

tunable transmon qubit in 2.3 as the fundamental element in our emulator. This was

followed by section 2.4, where the Jordan-Wigner transformation was used to show the

equivalence of the one-dimensional Fermi-Hubbard model to a qubit system where each

qubit as a two level system represents a distinct fermionic state that can be occupied or

non-occupied. We obtained how the on-site interaction energy in the fermionic model

is equivalent to a σz coupling of the qubits, and showed that σx-type interaction in the

qubit system gives the hopping term of the Fermi-Hubbard model; hence, we obtained

an emulator for this fermionic model.

We then showed how to construct this emulator in chapter 3. We derived in sec-

tion 3.1, that—using transmons as qubits—we can achieve the σx-type interaction ei-

ther through coupling via inductances (see section 3.1.1) or via capacitances (see sec-

tion 3.1.2), where we also gave expressions for the coupling energies depending on the

circuit elements. This was concluded by stating why the capacitative coupling is fa-

vorable in experiment. We continued in 3.2 by deriving the more subtle method of

coupling two transmons by a mutual inductance formed by their intrinsic inductances,

which results in a σz-type interaction between the transmons. We first showed how to

treat a mutual inductance in the context of superconducting circuits in 3.2.1, and then

continued with the derivation of the coupling of two transmons by a mutual inductance

in 3.2.2, and again obtained an expression for the coupling strength depending on the

circuit elements. Lastly, section 3.3 summarized the findings up to that point and pro-

vided the full circuit for the emulator of the Fermi-Hubbard model in section 3.3.1 as

a major achievement of this thesis. We further discussed the tunability of the circuit
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in 3.3.2 and finished in 3.3.3 with a brief discussion regarding the realization—possibly

in the near future—of the presented circuits in experiment.

Chapter 4 continued with the initialization and readout process for the emulator.

Naturally, we started by explaining in detail in section 4.1, how the standard approach

to initialize a qubit from its ground into its excited state functions. We then presented a

circuit for a potential readout scheme based on the mechanics of coupling the transmon

by a mutual inductance from section 3.2.2 as an additional method to the standard

readout procedure. An investigation how to treat multiple transmons coupled among

themselves followed in 4.3, in order to give a complete scheme, how we intend to perform

the initialization and readout in our emulator.

Finally, chapter 5 gave a brief discussion on errors regarding the general error sources

of temperature and disorder in section 5.1 and the possible excitations of the second

excited state in a transmon in section 5.2, which is a specific problem for our emulator

design. This was followed by a method to gain confidence in the emulation results by

measuring quantities that are known beforehand in 5.3.

To finish this summary, let us examine whether or not our proposed quantum em-

ulator for the one-dimensional Fermi-Hubbard model matches the four criteria for a

quantum emulator from section 2.1.

The first criterion of relevance is matched, since the Fermi-Hubbard model is of course

an interesting model worth studying. Section 3.3.2 showed that we have the possibility of

tuning the parameters of the emulator and chapter 4 showed the options for initialization

and readout; therefore we fulfill the second requirement of controllability. The forth

criterion of efficiency is also satisfied, as there are properties of the Fermi-Hubbard

model that cannot be attained through analytic calculation or numerical simulation on

a classical computer yet.

The question whether we can trust the results of the emulator is however difficult

to answer at this point, therefore the third criterion of reliability is a delicate matter.

Chapter 5 showed that further studying needs to be done, regarding the excitations of the

third level of transmons (see section 5.2), the effects of temperature in the system, and

the more general question how to predict the errors on the emulation results depending

on the deviations of the emulator from the ideal system (see section 5.1). On the other

hand section 5.3 showed that the realization of an emulator could supply data to support

these theoretical questions, such that it is certainly worth the effort to try to build an

emulator in experiment.

In the end, these experimental and theoretical challenges posed by this thesis could

be a guidance for interesting work to follow in near future.
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