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1. Introduction

Although the first laser had been considered as “a solution looking for a problem” [1], lasers
nowadays serve as the standard source of coherent light with a wide range of applications [2].
The term “laser” was originally coined as an abbreviation for its operation principle, “Light
Amplification by Stimulated Emission of Radiation”. The basic components of a laser are a
resonator that stores photons and selects particular modes, an optically active medium
that emits photons coherently into the resonator by stimulated emission, and a pumping
process that establishes population inversion in the medium [3]. A large variety of systems
can serve as optically active medium. This includes natural atoms [4] or semiconductor
devices [5], but also superconducting circuits [6] or quantum dot systems [7]. The latter
ones are often called “artificial atoms” because they provide a simple energy level structure
similar to that of natural atoms, but they are artificially created structures.

In 2007, Astafiev et al. demonstrated the creation of coherent laser radiation with a
superconducting single-electron transistor coupled to a coplanar waveguide microwave
resonator [6]. This setup should in principle be called a “maser” because it emitted
microwave radiation instead of optical light. Since that time, several experiments followed
which demonstrated lasing with other types of superconducting circuits and quantum dot
systems [7, 8, 9].

So far all single or few-artificial-atom lasing experiments produce radiation at a rather low
intensity. A way to reach a higher output power is to couple more artificial atoms to a
common resonator. Such multi-atom setups are named “quantum metamaterials” for the
following reasons [10]: First, the size of an artificial atom is of the order of micrometers or
below, i.e., it is much smaller than the wavelength of the emitted radiation, which is of
the order of centimeters. Second, the properties and couplings of the artificial atoms can
be tailored in order to obtain new functionality by the interaction of these atoms with a
radiation field.

A possible application of quantum metamaterials is the construction of a microwave laser.
Coherent microwave radiation is necessary to control superconducting quantum bits (qubits).
Currently, microwave generators are used as a source of coherent microwave radiation, but
they have to be connected from outside to the superconducting qubits in the cryostat.
This limits the number of independently controllable qubits and introduces undesirable
heat bridges. Approaches to build on-chip microwave sources have been studied, including
voltage-biased Josephson junctions or nonlinear resonators close to the quantum regime
[11, 12, 13]. However, these devices emit incoherent radiation unless driven by a coherent
microwave source. The usage of quantum metamaterials as active lasing medium offers
another way to build on-chip microwave radiation sources for low-temperature experiments.
As a proof of principle the coupling of 20 superconducting flux qubits to a microwave
resonator has already been demonstrated experimentally by Macha et al. in 2014 [14].
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Disorder

A challenge in the usage of artificial instead of natural atoms for lasing is the presence of
fluctuations in the parameters of the individual atoms, e.g., in the level-splitting energy,
the coupling strength to a resonator, or the local driving. There are several reasons for this
behavior. First, superconducting circuits are typically created using thin-film deposition
techniques, e.g., shadow evaporation, or optical or electron-beam lithography [15]. In
this fabrication process the actually obtained device geometry deviates from the intended
dimensions, which causes fluctuations of the setup parameters, for instance, the capacitances
and critical currents [16]. A second source of fluctuations is noise due to the environment of
the artificial atoms, e.g., fluctuations of the control voltages or the control magnetic fields,
inhomogeneities of applied fields, flux trapping, or charge noise [15, 16]. In the following
we denote these fluctuations of atomic parameters in a multi-atom lasing setup as disorder.

Disorder may obstruct multi-atom lasing because artificial atoms with a weak coupling
strength to the resonator or a far-detuned level-splitting energy are expected not to
participate in the lasing process. For example, in the flux-qubit metamaterial only 8 out of
20 artificial atoms interacted resonantly with the microwave cavity at a time [14].

In this thesis the influence of disorder on multi-atom lasing setups is investigated, with a
focus on static sample-to-sample fluctuations and quasistatic fluctuations on long timescales
of up to hours. We show that multi-atom lasing setups are surprisingly robust against
disorder as the range of parameters that allow for lasing is widened because of collective
effects arising for a large number of atoms in the metamaterial. Choosing a large number
of artificial atoms in the metamaterial is actually a way to compensate for disorder.

Longitudinal couplings

An interesting property of the usage of artificial atoms as active lasing medium is the
presence of longitudinal couplings to the radiation field. In the radiation gauge, the
interaction between an atom and an electric field E is well described by a dipole interaction
Hint = −er ·E, where −er is the dipole moment of the atom [17]. Natural atoms have
an inversion-symmetric Coulomb potential, i.e., the wave function of each state is either
symmetric or antisymmetric with respect to inversion, which corresponds to a parity of ±1,
respectively. The dipole-moment operator has parity −1, hence, all of its matrix elements
which are taken between atomic states with the same parity vanish. Therefore, the coupling
of a two-level atom with an inversion-symmetric atomic potential has only a transversal
contribution,

Hint = ~gσx
(
a+ a†

)
, (1.1)

where σx is the first Pauli matrix. The annihilation and creation operators of the electro-
magnetic field are denoted by a and a†, respectively, and g is the coupling strength of the
atom to the electric field.

However, for superconducting circuits and quantum dot systems an additional longitudinal
contribution arises: For superconducting qubits there are two basic circuit designs, a
so-called Cooper pair box and a rf SQUID [18]. The Cooper pair box allows for the
construction of charge and transmon qubits, depending on the chosen parameters. The rf
SQUID is used to construct flux and phase qubits. In practice, more sophisticated circuit
designs are used in order to achieve tunable qubit parameters or the reduction of noise and
undesired interactions with the environment. For charge and flux qubits there is a bias
point where the level structure shows a large anharmonicity, i.e., the two lowest energy
levels are nearly degenerate and all other levels have a much higher energy. Then, the
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system can be restricted to these two lowest energy eigenstates and is effectively described
by a two-level system [18],

HTLS = δ

2τz −
t

2τx . (1.2)

For a charge qubit the level-splitting energy δ is proportional to the control charge on
the superconducting island and t is given by the Josephson energy of the junction. For
a flux qubit the asymmetry δ of the effective double-well potential depends on the flux
bias through the SQUID loop and t is the tunneling rate through the central barrier. Both
circuit designs couple to the electromagnetic field of a resonator by a τz interaction [19],

Hint = ~gτz
(
a+ a†

)
. (1.3)

Quantum computation and lasing processes are performed in the eigenbasis of the Hamilto-
nian (1.2), which is obtained by a rotation of the state space by an angle θ = tan−1(−t/δ).
This yields the diagonalized Hamiltonian Hdiag

TLS = 1
2
√
δ2 + t2σz. The diagonalization modi-

fies the interaction term (1.3) as well, which takes the following form in the eigenbasis of
the qubit Hamiltonian (1.2):

Hdiag
int = ~g

(
cos(θ)σz + sin(θ)σx

) (
a+ a†

)
. (1.4)

In contrast to the pure σx interaction (1.1) of conventional atoms an additional σz interaction
arises for superconducting circuits. The relative strength of the σx and σz interactions is
adjusted via the angle θ originating from the diagonalization of the qubit Hamiltonian.
The interaction term (1.4) applies also to quantum-dot systems [20].
For conventional atoms a longitudinal σz-type interaction is forbidden by the inversion
symmetry of the atomic Coulomb potential. Therefore, systems with an interaction of
the form of Eq. (1.4) can be considered as artificial atoms with an atomic potential with
broken inversion symmetry. In the second part of this thesis we show that such longitudinal
couplings allow for the creation of photon-number squeezed light characterized by a Fano
factor F � 1.

Squeezed light
Interferometric measurements are sensitive to the phase difference of light that has traveled
along different optical paths. Lasers are used as light sources for these experiments because
they provide coherent light with large coherence lengths and times at high intensity and,
therefore, allow for long optical pathways. Because of the quantized nature of light, the
amplitude and phase of a monochromatic electromagnetic wave obey an uncertainty relation
and cannot be instantaneously determined to arbitrary precision. Therefore, even an ideal
laser shows shot noise fluctuations of its intensity and phase [21]. This ultimately limits
the precision of interferometric measurements.
The usage of squeezed light has been proposed as way to overcome this quantum shot-
noise limit [22]. For squeezed light the uncertainty of one quantum-mechanical observable
is reduced at the cost of an increased uncertainty of its conjugate quantity. So-called
quadrature-squeezed light is successfully applied to increase the phase-measurement sensi-
tivity of gravitational wave detectors [23, 24]. Also spectroscopic measurements [25] and
qubit read-out [26] benefit from the usage of squeezed light. Besides quadrature squeezing,
intensity fluctuations can be decreased as well. A way to obtain such sub-Poissonian or
photon-number squeezed radiation is presented in this thesis. Scully and Agarwal showed
that in Ramsey-type interferometers the signal-to-noise ratio is proportional to the Fano
factor F of the radiation used to excite the atoms and, therefore, the usage of photon-
number squeezed light in Ramsey interferometry enhances the measurement sensitivity
[27].
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Contents

This thesis is organized as follows: In Chap. 2 the quantum-mechanical treatment of a
laser based on a density-matrix description is introduced. We derive the Bloch-Redfield
master equation which describes the coherent interaction of the atom with the radiation
field as well as pumping, relaxation, and dephasing processes. Different approaches to
solve this quantum master equation are presented. The semiclassical approach is reviewed
briefly, because it provides estimates on the lasing threshold that are used in the following
chapters.

In Chap. 3 the basic types of squeezed light are introduced and the Fano factor is defined,
which is a measure for the photon-number squeezedness of radiation.

The influence of disorder on multi-atom lasing setups is investigated in Chap. 4. We use
a semiquantum approach to calculate the photon-number expectation value 〈n〉 out of
the Bloch-Redfield master equation. Disorder in the setup is modeled by a probability
distribution that describes the spread of the lasing parameters around their intended mean
values. A method to relate the mean photon-number expectation value to the standard
deviation of this distribution is developed and applied to disorder in the detuning, the
coupling strength, and the pumping strength. The mean photon-number expectation value
is found to be surprisingly robust against disorder. The origin of this is a widening of the
range of parameters that allow for lasing: In a multi-atom lasing setup the lasing resonance
curve as a function of the detuning is broadened, the minimal required coupling strength to
the resonator is lowered, and the lasing-threshold pumping strength is decreased compared
to a single-atom laser. The origin of this effect is enhanced stimulated emission, which is
shown by reformulating the multi-atom lasing equation as a set of coupled single-atom
lasing equations that have to be solved self-consistently.

In the near future, experimental realizations of metamaterials are expected to consist of a
not too large number of artificial atoms, e.g., of the order of 100 or below. Then, significant
sample-to-sample specific deviations from the mean photon-number expectation value are
likely. Similar deviations may also be caused by quasistatic fluctuations of the atomic
parameters in a setup that is operated for a longer time. Therefore, in a last step we
investigate these fluctuations numerically.

In Chap. 5 the influence of an additional longitudinal coupling to the resonator is examined.
We study lasing in the presence of an interaction term given by Eq. (1.4). This generalized
lasing Hamiltonian is mapped onto a Jaynes-Cummings-like Hamiltonian by a polaron
transformation. In the interaction term of this polaron-transformed Hamiltonian the
annihilation and creation operators are replaced by more complicated operators acting on
the radiation field of the resonator. In particular, the effective coupling strength between
atom and resonator vanishes for certain numbers of photons in the resonator. This opens
a way to create photon-number squeezed light if the photon-number expectation value
〈n〉 is chosen close to such a root of the coupling. The master equation is solved for the
polaron-transformed Hamiltonian following the approach of Scully and Lamb [17]. In a
first step we calculate the photon statistics and the Fano factor of a single-atom laser and
we discuss the implementation of a pumping process. Roots of the coupling exist for any
mixing angle θ that allows for a nonzero σz and σx interaction. We discuss the dependence
of squeezing on the mixing angle θ and it turns out that the creation of squeezed light is
possible if there is a strong σz interaction between the atoms and the radiation field.

In a second step our results are generalized to a multi-atom lasing setup, which is treated in
a mean-field theory. The photon-number expectation value scales linearly with the number
of atoms, M , which opens a way to increase the output power of the laser. However, we
find that the Fano factor F contains terms that scale proportional to M2 and may spoil
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squeezing. For a large number of atoms of the order of 100 or above, this restricts the
range of lasing parameters that allow for the creation of photon-number squeezed light.

Finally, we investigate the influence of fluctuations in the mixing angle θ and the detuning
on the multi-atom lasing setup. Such fluctuations are caused by charge or flux noise.
We find that disorder decreases the photon-number expectation value and increases the
Fano factor. However, even for large disorder a photon-number squeezed state can still be
realized.





2. Quantum theory of the laser

A laser consists of three basic components [3]: First, a resonator is needed to store photons
and to select particular modes of the radiation field. Second, an optically active medium
is necessary which provides several energy levels. At least one transition energy between
two levels should match the resonator frequency, such that photons are emitted into or
absorbed out of the resonator by atomic transitions between these levels. This transition
is also called the lasing transition. An atom interacting resonantly with a radiation field
emits photons either by spontaneous or by stimulated emission. Stimulated emission is
a coherent emission process triggered by an already excited radiation field. Spontaneous
emission is independent of the excitation state of the radiation field and, in general, photons
are incoherently emitted by spontaneous emission. In a laser, stimulated emission must
dominate over spontaneous emission. Therefore, third, a pumping mechanism is needed
that creates population inversion, i.e., contrary to a thermal population the upper state of
the lasing transition has a higher occupation than the lower one. If population inversion is
established, stimulated emission dominates over spontaneous emission and the interaction
of the atom with the radiation field yields a highly coherent multi-photon state in the
resonator.

In this chapter we discuss how to model these three components in a quantum theory of
the laser. We start in Sec. 2.1 with an effective Hamiltonian which describes the coherent
interaction of the atomic lasing transition with a radiation field. Pumping, relaxation, and
dephasing processes are accounted for by Lindblad terms in a quantum master equation,
which is derived in Sec. 2.2. In Sec. 2.4 we discuss different approaches to solve this
quantum master equation and, finally, in Sec. 2.5 the semiclassical approach is reviewed
because it provides expressions for the lasing threshold that are used in the following.

2.1. Effective lasing Hamiltonian

The interaction of a single atom with a single mode of the radiation field is modeled by the
following Jaynes-Cummings Hamiltonian [17]:

HJC = ~ωa†a+ 1
2εσz + ~g

(
σ+a+ σ−a

†
)
. (2.1)

The radiation field of the resonator is described by a harmonic oscillator with bosonic
annihilation and creation operators a and a†, respectively. Only the lasing transition of the
atom is considered, which is modeled as a two-level system with level-splitting energy ε.
We denote the Pauli matrices by σx,y,z. The matrices σ± = 1

2 (σx ± iσy) describe atomic
transitions between the two lasing states. The interaction has a coupling strength g.

In this thesis multi-atom lasing setups are studied. Therefore, the Jaynes-Cummings
Hamiltonian (2.1) needs to be generalized to M two-level atoms coupled to a common

7



8 Chapter 2. Quantum theory of the laser

resonator. If direct atomic interactions are neglected, the setup is described by the Tavis-
Cummings Hamiltonian

HTC = ~ωa†a+
M∑
j=1

1
2εjσ

j
z +

M∑
j=1

~gj
(
σj+a+ σj−a

†
)
. (2.2)

The M individual atoms are labeled by the index j, j ∈ {1, . . . ,M}. Each atom may
have an individual level splitting energy εj and an individual coupling strength gj to the
resonator. The superscript j at the Pauli and transition matrices σjx,y,z,± denotes the index
of the atom they act on.

2.2. Quantum master equation in Bloch-Redfield form

The Hamiltonians (2.1) and (2.2) describe only the coherent interaction of a resonator field
with a two-level system representing the lasing transition. In order to obtain a complete
description of a laser, incoherent processes have to be accounted for as well: First, the
pumping process is modeled as an incoherent excitation process of the two-level atom with
an excitation or pumping rate Γ↑. Second, light is coupled out of the resonator in order
to be used in experiments, which is essentially a photon loss process of the resonator. A
method to account for both coherent and dissipative processes is to use a quantum master
equation for the density matrix ρ of the system, which is derived in this section.

Coherent processes are described by a Liouville term that involves the coherent Hamilto-
nian Hcoh,

∂

∂t
ρ

∣∣∣∣
coh

= − i
~

[Hcoh, ρ] .

In our case, Hcoh is the Jaynes-Cummings or the Tavis-Cummings Hamiltonian. Incoherent
processes are modeled by Lindblad superoperators Linc,

∂

∂t
ρ

∣∣∣∣
inc

= Lincρ .

If the master equation is considered as a set of coupled linear first-order differential equations
for the matrix elements of the density matrix ρ, the Lindblad superoperators introduce
terms describing a decay of the matrix elements. As a starting point for the derivation
of particular Lindblad superoperators we derive the Bloch-Redfield form of the master
equation. We follow the path described in Refs. [28] and [29].

A way to obtain an effective description of incoherent processes is to assume that the
system under consideration, described by the Hamiltonian HS, interacts with external
baths, described by HR, via an interaction HC. Thus, the full Hamiltonian reads

H = HS +HR +HC .

The external baths represent a large environment whose macroscopic state is not perturbed
by the interaction with the much smaller system. Later, the bath degrees of freedom are
traced out to obtain an effective equation of motion for the system only, which then includes
dissipative processes. HC describes the interaction of the system with the baths, therefore
we have the following commutation relations:

[HS, HR] = 0 ,
[HS, HC] 6= 0 ,
[HR, HC] 6= 0 .
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The equation of motion of the full density matrix χ for the system and the external baths
is given by the Liouville equation with the full Hamiltonian H,

d
dtχ = − i

~
[H,χ] .

In the interaction picture with respect to HS +HR we obtain

d
dtχI = − i

~
[HC,I, χI] , (2.3)

χI(t) = ei(HS+HR)(t−t0)/~χ(t)e−i(HS+HR)(t−t0)/~ ,
HC,I(t) = ei(HS+HR)(t−t0)/~HCe

−i(HS+HR)(t−t0)/~ .

In the interaction picture HC,I is explicitly time-dependent. Equation (2.3) can be cast
into a corresponding integro-differential equation,

d
dtχI(t) = − i

~
[HC,I(t), χI(t0)] +

(
− i
~

)2 ∫ t

t0
dt′
[
HC,I(t),

[
HC,I(t′), χI(t′)

]]
. (2.4)

Now, several assumptions are made: First, we assume that at the time t0 the full density
matrix χ factorizes into a product of a density matrix ρ(t0), describing the state of the
system, and a density matrix R(t0), describing the state of the reservoir,

χI(t0) = χ(t0) = ρ(t0)⊗R(t0) .

The reference time t0 may be far in the past, t0 → −∞. In order to eliminate the first
term on the right-hand side of Eq. (2.4), we assume that the reservoir coupling operators
have zero expectation value with respect to R(t0),

TrR (HC,IR(t0)) = 0 .

This condition can always be fulfilled by including a nonzero expectation value into the
system Hamiltonian.

Second, a Born approximation is performed. Since the bath is assumed to be much larger
than the system, its initial state R(t0) should not be changed significantly by the interaction
with the system, i.e.,

χ(t) ≈ ρ(t)⊗R(t0) .

Third, the system is assumed to be Markovian, i.e., the time evolution of ρ(t) only depends
on its present state. This is equivalent to the assumption that the bath correlation time is
much shorter than the timescale on which the system changes.

Using these assumptions we can trace out the bath degrees of freedom and obtain an
equation of motion for the reduced density matrix of the system,

d
dtρI(t) = − 1

~2

∫ t

t0
dt′TrR

([
HC,I(t),

[
HC,I(t′), ρI(t)⊗R(t0)

]])
. (2.5)

As a fourth assumption, we specify the interaction term HC to be a linear interaction
between time-independent Schrödinger operators,

HC = ~XO ,
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whereX is a bath operator andO is a system operator, thus [X,O] = [HS, X] = [HR, O] = 0.
In the interaction picture we have

HC,I(t) = ~eiHS(t−t0)/~Oe−iHS(t−t0)/~eiHR(t−t0)/~Xe−iHR(t−t0)/~ = ~OI(t)XI(t) .

Then, Eq. (2.5) is given by

d
dtρI(t) = −

∫ t

t0
dt′
( [

OI(t)OI(t′)ρI(t)−OI(t′)ρI(t)OI(t)
] 〈
XI(t)XI(t′)

〉
R

+
[
ρI(t)OI(t′)OI(t)−OI(t)ρI(t)OI(t′)

] 〈
XI(t′)XI(t)

〉
R

)
,

where the abbreviation 〈AB〉R = TrR (R(t0)AB) was introduced. If A and B are time-
independent Schrödinger operators, the correlator 〈A(t)B(t′)〉R is invariant under a trans-
lation in time, i.e., it depends only on the time difference t′ − t. Transforming back to the
Schrödinger picture and introducing τ = t′ − t we obtain the Bloch-Redfield form of the
master equation,

d
dtρ(t) = − i

~
[HS, ρ(t)] +

[
Õ+ρ(t)O +Oρ(t)Õ− −OÕ+ρ(t)− ρ(t)Õ−O

]
, (2.6a)

Õ+ =
∫ 0

−∞
dτ eiHSτ/~Oe−iHSτ/~ 〈XI(0)XI(τ)〉R , (2.6b)

Õ− =
∫ 0

−∞
dτ eiHSτ/~Oe−iHSτ/~ 〈XI(0)XI(−τ)〉R . (2.6c)

The properties of the bath enter via the correlators 〈XI(0)XI(±τ)〉R. Their Fourier trans-
form is the spectral density of the bath,

S(ε) =
∫ ∞
−∞

dτ 〈XI(0)XI(τ)〉R e
−iετ .

For later we also introduce the half-sided Fourier-transformed quantities

1
2S+(ε) =

∫ 0

−∞
dτ 〈XI(0)XI(τ)〉R e

−iετ = 1
2S(ε) + iP

∫ ∞
0

dω
2π

S(ω)
ε− ω

, (2.7a)

1
2S−(ε) =

∫ ∞
0

dτ 〈XI(0)XI(τ)〉R e
−iετ = 1

2S(ε)− iP
∫ ∞

0

dω
2π

S(ω)
ε− ω

, (2.7b)

where P
∫
denotes the Cauchy principle value integral. It holds S(ε) = 1

2S+(ε) + 1
2S−(ε).

2.3. Lindblad superoperators of dissipative atomic and resonator pro-
cesses

In order to derive a Lindblad superoperator describing relaxation effects of a resonator,
Eq. (2.6) is evaluated for a coupling operator Ores = a† + a. An explicit derivation of this
superoperator is given in Sec. 5.8, where we also account for effects arising from a polaron
transformation of the Hamiltonian. One obtains the following Lindblad superoperator
[28]:

LRρ = κ

2 (Nth + 1)
(
2aρa† − a†aρ− ρa†a

)
+ κ

2Nth
(
2a†ρa− aa†ρ− ρaa†

)
, (2.8)

where κ is the damping rate of the resonator and Nth is the thermal photon number in the
resonator. Equation (2.8) is a specialization of the results obtained in Sec. 5.8 in the limit
p0 → 0.
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Atomic pure dephasing is derived using the coupling operator Opd = σz. Relaxation and
pumping processes are obtained using Opr = σx. Dephasing, relaxation, and pumping can
be included into a single Lindblad superoperator

LQρ = Γ↓
2 (2σ−ρσ+ − ρσ+σ− − σ+σ−ρ) + Γ↑

2 (2σ+ρσ− − ρσ−σ+ − σ−σ+ρ) (2.9)

+
Γ∗ϕ
2 (σzρσz − ρ) ,

where Γ↑ is the pumping rate, Γ↓ is the relaxation rate, and Γ∗ϕ is the pure dephasing rate.
Again, a derivation of this superoperator is given in Sec. 5.8, where additional effects due
to the polaron transformation of the system are also taken into account.

2.4. Approaches to solve the quantum master equation

The dynamics of a laser consisting of M atoms coupled to a common resonator is modeled
by the following quantum master equation:

d
dtρ = − i

~
[HTC, ρ] + LRρ+

M∑
j=1

LQ,jρ . (2.10)

Here HTC is the Tavis-Cummings Hamiltonian given by Eq. (2.2). The Lindblad superop-
erators LR and LQ,j are defined in Eqs. (2.8) and (2.9). The subscript j denotes that LQ,j
acts only on atom j.

There are several ways to solve Eq. (2.10). If only the photon-number expectation value
〈n〉 is of interest, a semiclassical or semiquantum approach can be used, which amounts
to derive a closed set of equations for the photon-number expectation value 〈n〉. In order
to obtain such a closed set of equations, certain expectation values have to be factorized,
which is equivalent to neglecting the corresponding quantum-mechanical fluctuations.

Using the master equation (2.10) and the cyclic property of the trace we obtain the following
equation of motion for the expectation value of any time-independent operator X:

d
dt 〈X〉 = Tr (ρ̇X) = i

~
Tr ([H,X] ρ) + Tr ((LRρ)X) +

M∑
j=1

Tr ((LQ,jρ)X) . (2.11)

In the semiclassical model all correlations between atomic and resonator states are neglected,
for instance,

〈
σjza

〉
≈
〈
σjz
〉
〈a〉. This is equivalent to assuming a factorization ansatz for

the density matrix, ρ = ρatom ⊗ ρres [30, 31]. It turns out that this description neglects
spontaneous emission, but yields a good description of the lasing threshold [32]. In the
semiquantum model only products of radiation field operators with diagonal atomic operators
are factorized, e.g.,

〈
σjza
†a
〉
≈
〈
σjz
〉 〈
a†a

〉
. This approach accounts for spontaneous emission

and the photon-number expectation value 〈n〉 calculated in the semiquantum model coincides
well with a direct solution of the master equation (2.10) [33].

Alternatively, the master equation (2.10) can be solved directly. Using this approach one
can calculate not only the photon-number expectation value 〈n〉, but also the photon
statistics of the laser.

2.5. Semiclassical approach

In this thesis, an analytical solution of the master equation is calculated in Chap. 5 in
order to analyze the influence of longitudinal couplings. The semiquantum approach is
used in Chap. 4 to investigate the influence of disorder in the lasing setup.
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The semiquantum model predicts a smooth lasing crossover where the system switches
from a low, close to thermal average photon number 〈n〉 to a high photon number. In the
limit of large numbers of atoms, this crossover becomes a sharp, kink-like transition, which
coincides with the position of the lasing transition predicted by the semiclassical model.
Semiclassical and semiquantum model yield the same results in the limit of large photon
numbers or large numbers of atoms. However, it has been shown that the position of the
lasing transition in the semiclassical approach also provides a good estimate for the position
of the lasing crossover in the semiquantum model, even for small numbers of atoms [32].
Therefore, in this section the semiclassical approach for multi-atom lasing setups is briefly
discussed and the semiclassical expression for the lasing threshold is derived, following
Ref. [34].

Within the semiclassical approach, equations of motion for the expectation values 〈a〉,
〈
σjz
〉
,

and
〈
σj−

〉
are calculated. Using Eq. (2.11) and the Tavis-Cummings Hamiltonian (2.2) the

following equations of motion are found:

d
dt 〈a〉 = −

(
iω + κ

2

)
〈a〉 −

M∑
j=1

igj
〈
σj−

〉
,

d
dt
〈
σjz

〉
= 2igj

(〈
σj−a

†
〉
−
〈
σj+a

〉)
− Γ1,j

〈
σjz

〉
+ Γ1,jD0,j ,

d
dt
〈
σj−

〉
= − (Γϕ,j + iεj)

〈
σj−

〉
+ igj

〈
σjza

〉
.

All correlations between atomic and resonator operators are neglected, i.e.,
〈
σjνa

〉
≈
〈
σjν
〉
〈a〉

for ν ∈ {+,−, z}. Decomposing the expectation values into a slowly-varying classical
amplitude and a high-frequent oscillation,

〈a〉 = α(t)e−iωt ,〈
σj±

〉
= sj±(t)e±iωt ,〈

σjz

〉
= sjz(t) ,

we obtain the following equations of motion for the classical amplitudes:

d
dtα = −κ2α−

M∑
j=1

igjs
j
− , (2.12a)

d
dts

j
z = 2igj

(
sj−α

∗ − sj+α
)
− Γ1,js

j
z + Γ1,jD0,j , (2.12b)

d
dts

j
− = −Γϕ,jsj− − i∆js

j
− + igjs

j
zα , (2.12c)

where ∆j = εj/~− ω is the detuning of atom j. The classical field amplitude α(t) decays
on a timescale of the order of κ−1, whereas sjz(t) and sj±(t) decay on a timescale of Γ−1

1,j and
Γ−1
ϕ,j , respectively. For typical lasing setups it holds κ� Γ1,Γϕ and, therefore, atomic and

resonator dynamics can be decoupled using an adiabatic approximation: We assume that
sjz and sj± adapt to changes in α quasi-instantaneously with respect to the timescale on
which α evolves. Using the stationary solution of Eqs. (2.12b) and (2.12c), sj− is eliminated
in Eq. (2.12a), yielding

d
dtα = −κ2α+

M∑
j=1

g2
j

Γϕ,j + i∆j

D0

1 + |α|2
ñsc

0,j

α .
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Here ñsc
0,j is the photon saturation number in the semiclassical theory,

ñsc
0,j = Γ1,j

4g2
j

Γ2
ϕ,j + ∆2

j

Γϕ,j
. (2.13)

The photon-number expectation value in the resonator is given by |α|2. Its stationary value
〈n〉 = |α|2st is defined byκ− M∑

j=1
2g2
j

Γϕ,j
Γ2
ϕ,j + ∆2

j

D0

1 + 〈n〉
ñsc

0,j

 〈n〉 = 0 .

For systems consisting of M identical atoms, this equation can be solved explicitly for 〈n〉.
By replacing ∆j = ∆, gj = g, Γ1,j = Γ1, Γϕj = Γϕ, ñsc

0,j = ñsc
0 for all atoms j, the following

quadratic equation for the photon-number expectation value is obtained:

〈n〉2 + 〈n〉
(
ñsc

0 −M
Γ1D0

2κ

)
= 0 .

There is a positive stationary photon-number expectation value if the following condition
holds:

ñsc
0 < M

D0Γ1
2κ . (2.14)

The laser operates above its lasing threshold, i.e., at a nonzero photon-number expectation
value 〈n〉 > 0, if the condition (2.14) is fulfilled. If all but one lasing parameters are fixed,
Eq. (2.14) defines a lasing threshold value for the remaining free parameter. For instance, if
all lasing parameters except of the detuning ∆ are fixed, the laser operates above threshold
if the detuning does not exceed a maximum value ∆max,

|∆| < ∆max = Γϕ

√
2g2M

D0
κΓϕ

− 1 . (2.15)

Likewise, if all parameters except of the coupling strength g are fixed, the laser operates
above threshold if the coupling strength is larger than a minimal value gmin,

g > gmin =
√

κ

2MD0

Γ2
ϕ + ∆2

Γϕ
. (2.16)

Finally, the corresponding condition for the pumping strength D0 is

D0 > D0,min = κ

2g2
Γ2
ϕ + ∆2

Γϕ
1
M

. (2.17)

These expressions provide a good estimate for the position of the lasing crossover in the
semiquantum model and are used in Chap. 4.





3. Squeezed Light

In this chapter the basic concepts of squeezed light are introduced, which are needed later.
We derive the amplitude and phase fluctuations of a quantized electromagnetic field and
introduce quadrature and photon-number squeezing. The Fano factor is introduced as
a measure of the squeezedness of a photon-number squeezed state. Our argumentation
follows Refs. [21] and [35].

3.1. Canonical quantization of the electromagnetic field

The vector potential A of the free electromagnetic field canonically quantized in the
radiation gauge, ∇ ·A = 0 and Φ = 0, is given by [36]

A(x, t) =
∑
k

∑
λ

√
~

2ωkε0V
εk,λ

(
ak,λe

ikx−iωkt + a†k,λe
−ikx+iωkt

)
.

The scalar potential Φ is chosen to be zero for a free field. The wave vector of the field
modes is denoted by k, λ ∈ {1, 2} are the polarization degrees of freedom, and ωk = c |k| is
the dispersion relation of the field. The normalized polarization vectors εk,λ are orthogonal
to each other and to the wave vector k. The quantization volume is denoted by V and ε0
is the electric constant. The bosonic creation and annihilation operators for a photon with
wave vector k and polarization λ are denoted by ak,λ and a†k,λ, respectively. They obey
the following commutation relation:[

ak,λ, a
†
k′,λ′

]
= δ(k − k′)δλ,λ′ .

All other commutators are zero. The electric field strength is defined as E = −∂tA−∇Φ
and reads

E(x, t) =
∑
k

∑
λ

iεk,λ

√
~ωk
2ε0V

(
ak,λe

ikx−iωkt − a†k,λe
−ikx+iωkt

)
.

The Hamiltonian of the electromagnetic field is the sum of harmonic oscillators with angular
frequency ωk,λ that represent the single modes,

H =
∑
k

∑
λ

~ωk,λ
(
a†k,λak,λ + 1

2

)
.

The term 1/2 is a constant vacuum energy and is usually neglected.

3.2. Quantum-mechanical fluctuations of a monochromatic electromag-
netic field

We now focus on a linearly polarized single mode of the electromagnetic field in a one-
dimensional cavity along the z-axis. Then, the electromagnetic field takes the following

15
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X

P

δ

(a)

〈X〉

〈P 〉

δ

|α|2

(b)

〈X〉

〈P 〉

δ

|α|2

(c)

〈X〉

〈P 〉

δ

|α|2

(d)

Figure 3.1.: Quadrature plot of (a) classical and (b) – (d) quantum-mechanical elec-
tromagnetic fields. The quantum-mechanical fields represent a coherent, a quadrature-
squeezed, and a photon-number squeezed state, respectively. The gray area indicates the
fluctuations due to the uncertainty relation

〈
(∆X)2〉 〈(∆P )2〉 ≥ 1/16. Figures based on

Ref. [21].

form [37]:

E(z, t) = E0(z)
2

(
ae−iωt + a†eiωt

)
.

The indices k and λ have been dropped because only one mode is considered. The prefactor
E0(z) describes the spatial variation of the field and the wave vector k must satisfy the
boundary conditions of the cavity. By introducing the quadrature operators

X = 1
2
(
a+ a†

)
and P = 1

2i
(
a− a†

)
the electric field can be rewritten as

E(z, t) = E0(z) (X cos(ωt) + P sin(ωt)) . (3.1)

Such a monochromatic electromagnetic field is the output of an ideal single-mode laser.

For a classical electromagnetic field, X and P are real numbers which define its amplitude√
X2 + P 2 and its phase δ uniquely. In a quadrature plot, the state of a classical monochro-

matic electromagnetic field is represented by a constant phase vector (X,P ), which is also
called a phasor (Fig. 3.1a). In order to obtain the time-dependence of the electric field, the
phasor is rotated around the origin at an angular frequency ω and its projection on the X
axis is taken, according to Eq. (3.1).

The quantum-mechanical state with the same properties for the expectation value of the
electric field operator, 〈E〉, is a coherent state |α〉. Coherent states are eigenstates of
the annihilation operator, a |α〉 = α |α〉. They have the following decomposition into
photon-number Fock states,

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 =

∞∑
n=0

ρ(n) |n〉 .

From this equation it can be read off that a coherent state has a Poissonian photon statis-
tics ρ(n). The expectation values of the quadrature operators for a coherent state are 〈X〉 =
|α| cos δ and 〈P 〉 = |α| sin δ, and the field amplitude is

〈
a†a

〉
= |α|2 =

√
〈X〉2 + 〈P 〉2.

However, contrary to the classical case X and P are non-commuting operators, [X,P ] = i/2,
and, therefore, an uncertainty relation holds for any quantum mechanical state describing
an electromagnetic field, 〈

(∆X)2
〉〈

(∆P )2
〉
≥ 1

16 ,
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where we introduced the fluctuation ∆O of an operator O around its expectation value,
∆O = O − 〈O〉. The equality holds for so-called minimum uncertainty states, for instance,
coherent states and the vacuum state. Hence, amplitude and phase of a quantum-mechanical
monochromatic electromagnetic wave cannot be specified at arbitrary precision, but they
must satisfy an uncertainty relation. Therefore, as a consequence of the fundamentals of
quantum mechanics frequency-independent shot-noise in the amplitude and phase of an
electromagnetic field arises. In the quadrature plot the classical phasor is replaced by an
uncertainty region which is centered at the point (〈X〉 , 〈P 〉) and whose area is proportional
to
〈
(∆X)2〉 〈(∆P )2〉, shown in Fig. 3.1b.

3.3. Types of squeezed light

For coherent states and the vacuum state, the uncertainty region is a circle. However,
it is possible to decrease the uncertainty along one direction in the quadrature plot at
the cost of an increase of the uncertainty along another direction. This process is called
squeezing. There are two different types of squeezed states, quadrature-squeezed states
and photon-number squeezed states.

For quadrature-squeezed states the uncertainty circle is deformed into an ellipse, i.e.,
fluctuations along a given direction in the quadrature plot are reduced and they are
increased along the perpendicular direction (Fig. 3.1c). Using quadrature-squeezed light,
the sensitivity of interferometric experiments can be enhanced [22]. This is used, for
instance, in gravitational wave detectors [23].

For photon-number squeezed states the uncertainty of the amplitude 〈n〉 is reduced at
the cost of an increased phase uncertainty. Hence, the deformation of the uncertainty
area is performed in a polar instead of a cartesian geometry (Fig. 3.1d). Photon-number
squeezed light opens a way to improve the signal-to-noise ratio of Ramsey interferometry
[27, 38]. In Chap. 5 we discuss a way to create photon-number squeezed light using quantum
metamaterials as active lasing medium.

3.4. Fano factor

A measure for the squeezedness of a photon-number squeezed state is the Fano factor F ,
which is defined as the expectation value of the variance

〈
(∆n)2〉 normalized to the field

amplitude 〈n〉,

F =
〈
n2〉− 〈n〉2
〈n〉

≥ 0 . (3.2)

For a thermal state, the Fano factor takes the value F = 〈n〉+ 1. A Poissonian or coherent
state corresponds to a Fano factor F = 1 and a photon-number squeezed state has F < 1.
Photon-number squeezed states are also called sub-Poissonian. The Fano factor is used in
Chap. 5 to quantify the squeezedness of the calculated photon statistics of the laser.





4. Disordered active lasing materials

In this chapter the influence of disorder in the atomic parameters on the photon-number
expectation value of a laser is examined. In Sec. 4.1 we use the semiquantum approach
introduced in Sec. 2.4 to derive a fixed point equation for the photon-number expectation
value 〈n〉M of a M -atom lasing setup. In this setup each atom may have individual values
for its lasing parameters. Disorder is modeled by a probability distribution that describes
the spread of the lasing parameters around their intended mean values. In Sec. 4.2 we
develop a method to calculate the mean photon-number expectation value 〈n〉M for a given
disorder probability distribution out of this fixed point equation. This method is exact in
the limit of large numbers of atoms. We apply it for disorder in the atomic detuning ∆, the
coupling strength g, and the pumping strength D0 and we find that collective effects modify
the lasing contribution of a single-atom and widen the range of parameters for which the
system is in a lasing state. Therefore, multi-atom lasing setups acquire robustness against
disorder.

In Sec. 4.3 the physical origin of this collective effect is analyzed. In a first step we show
that in ordered M -atom lasing setups the minimal coupling strength required for lasing
is lowered by a factor of

√
M
−1 and the maximum allowed detuning is enhanced by a

factor of
√
M compared to a single-atom laser. Likewise, the threshold pumping strength

is lowered by a factor of M−1. In order to describe disordered setups the fixed point
equation is decomposed into a set of coupled single-atomic contributions 〈ni〉 to the total
photon-number expectation value 〈n〉 =

∑M
i=1 〈ni〉, which have to be solved self-consistently.

Using this decomposition we show that the widening of the range of lasing parameters is
caused by an enhanced stimulated emission of each individual atom in a multi-atom lasing
setup and that it is also present in disordered setups.

In the near future, quantum metamaterials are expected to have a rather small number of
artificial atoms M . 100. Hence, the approximations made in Sec. 4.2 describe the mean
photon number 〈n〉M correctly, but significant sample-specific or quasistatic fluctuations
of the actual photon number 〈n〉M around 〈n〉M are expected. These fluctuations are
examined numerically in Sec. 4.4.

4.1. Semiquantum approach

Within the semiquantum approach equations of motion for the expectation values of the
photon number 〈n〉 ≡

〈
a†a

〉
, the atomic polarization

〈
σjz
〉
, and the quantity

〈
σj+a

〉
are

considered. Using the M -atom Tavis-Cummings Hamiltonian (2.2) and Eq. (2.11) we
obtain

d
dt
〈
a†a

〉
=

M∑
j=1

igj
(〈
σj+a

〉
−
〈
σj−a

†
〉)
− κ

(〈
a†a

〉
−Nth

)
, (4.1a)

d
dt
〈
σjz

〉
= 2igj

(〈
σj−a

†
〉
−
〈
σj+a

〉)
− Γ1,j

〈
σjz

〉
+ Γ1,jD0,j , (4.1b)
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d
dt
〈
σj+a

〉
= − (Γκ,j − i∆j)

〈
σj+a

〉
− igj

〈
σjza
†a
〉
− igj2

(
1 +

〈
σjz

〉)
(4.1c)

−
M∑
k=1

igk
〈
σj+σ

k
−

〉
(1− δk,j) .

Some approximations are performed in order to get a closed system of differential equations.
First, direct atomic interactions are neglected, i.e.,

〈
σj+σ

k
−

〉
= 0 for j 6= k. Second,

correlations of the diagonal atomic operator σjz and the photon-number operator a†a are
neglected,

〈
σjza
†a
〉
≈
〈
σjz
〉 〈
a†a

〉
. Contrary to the semiclassical approach discussed in

Sec. 2.5 the expectation value
〈
σj+a

〉
is not factorized, hence, correlations of σ± and a(†)

are now accounted for in the calculation. Third, like for the semiclassical model an adiabatic
approximation holds because for typical lasing parameters the resonator decay rate κ is
much smaller than the atomic pumping, relaxation, and dephasing rates Γ↑, Γ↓, and Γ∗ϕ.
Therefore, atomic and resonator processes are decoupled by inserting the stationary solution
of Eq. (4.1c) into Eqs. (4.1a) and (4.1b). We obtain the following rate equations for the
photon number 〈n〉 ≡

〈
a†a

〉
and the atomic polarization:

d
dt 〈n〉 =

M∑
j=1

2g2
j

Γκ,j
Γ2
κ,j + ∆2

j

(〈
σjz

〉
〈n〉+ 1

2
(
1 +

〈
σjz

〉))
− κ 〈n〉+ κNth , (4.2a)

d
dt 〈σz〉 = −4g2

j

Γκ,j
Γ2
κ,j + ∆2

j

(〈
σjz

〉
〈n〉+ 1

2
(
1 +

〈
σjz

〉))
− Γ1,j

〈
σjz

〉
+ Γ1,jD0,j . (4.2b)

In contrast to the semiclassical model the semiquantum approach accounts for a thermal
photon number Nth in the resonator and for spontaneous emission, which is described by
the terms proportional to (1 +

〈
σjz
〉
)/2 in Eq. (4.2). The terms proportional to

〈
σjz
〉
〈n〉

describe the stimulated emission of photons by atom j.

Using the adiabatic approximation a second time the stationary solution of Eq. (4.2b)
is plugged into Eq. (4.2a), yielding a fixed point equation that implicitly defines the
photon-number expectation value 〈n〉,

〈n〉 = Nth +
M∑
j=1

βj
D0,j

(
〈n〉+ 1

2

)
+ 1

2

Γ2
κ,j + ∆2

j + αj
(
〈n〉+ 1

2

) , (4.3)

where the factors αj and βj are defined to be

αj = 4g2
j

Γκ,j
Γ1,j

and βj = 2g2
j

Γκ,j
κ

.

The photon-number expectation value 〈n〉 appears on the right-hand side of the fixed
point equation because of the terms that describe stimulated emission in Eq. (4.2). In
the following, the solution of Eq. (4.3) is denoted by 〈n〉M , where M is the number of
atoms in the setup. Within this thesis, numerical solutions of fixed point equations are
obtained using the FindRoot function implemented in Wolfram Mathematica,
version 9.0.1.0.

Considering the limit 〈n〉 → ∞ on the right-hand side of Eq. (4.3) we obtain the maximum
photon number that can be reached for given pumping and decay rates,

〈n〉max
M = Nth +

M∑
j=1

Γ↑,j − Γ↓,j
2κ . (4.4)
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Figure 4.1.: Photon-number expectation value 〈n〉1 (∆, g,D0) for a single-atom laser.
(a): 〈n〉1 (∆, g,D0) as function of the detuning ∆ for a coupling strength g = 0.001ω and
a pumping strength D0 = 0.5. (b): 〈n〉1 (∆, g,D0) as function of the coupling strength
g for a detuning ∆ = 0.01ω and a pumping strength D0 = 0.5. (c): 〈n〉1 (∆, g,D0) as
function of the pumping strength D0 for a detuning ∆ = 0.01ω and a coupling strength
g = 0.001ω. Solid blue lines are the results obtained out of the semiclassical theory, dashed
red and dash-dotted green lines represent the results obtained out of the semiquantum
theory for a thermal photon number Nth = 0 and Nth = 10, respectively. Plot parameters
are Γ1 = 0.008ω, Γ∗ϕ = 0.001ω, and κ = 1× 10−5 ω.

For a single-atom laser Eq. (4.3) is solved by the following single-atom lasing curve:

〈n〉1 = X +

√
X2 +Nthñ0 + Nth

2 + Γ1
4κ(D0 + 1) , (4.5)

X = −1
4 + Nth

2 + D0Γ1
4κ − ñ0

2 ,

ñ0 = Γ1
4g2

Γ2
κ + ∆2

Γκ
. (4.6)

The subscript j at the rates and the coupling strength has been dropped as only one atom is
considered. By ñ0 we denote the photon saturation number derived from the semiquantum
theory. Compared to the semiclassical photon saturation number ñsc

0 , defined in Eq. (2.13),
Γϕ = Γ1/2 + Γ∗ϕ has been extended to Γκ = Γϕ + κ/2. Typical lasing parameters satisfy
κ� Γ↑,Γ↓,Γ∗ϕ, hence the difference is negligible and we have ñsc

0 ≈ ñ0.

In Fig. 4.1 the single-atom lasing curves 〈n〉1 obtained out of the semiclassical and the
semiquantum theory are compared. The semiclassical theory (solid blue curves) predicts
a sharp, kink-like transition from a state with zero photons in the resonator to a lasing
state. In the semiquantum theory (dashed red curves) this is replaced by a smeared-out
crossover. However, the lasing threshold of the semiclassical theory, derived in Sec. 2.5,
provides a good estimate for the position of this crossover. Semiclassical and semiquantum
theory yield identical results for large photon numbers if thermal photons in the resonator
are neglected, Nth = 0. A nonzero thermal photon number in the resonator increases the
semiquantum photon expectation value by Nth and slightly broadens the lasing crossover
region (dash-dotted green curves).

4.2. Mean photon-number expectation value for large systems

In order to study disorder in the lasing system we introduce a probability distribution
p(∆, g, . . . ) that models the spread of the different lasing parameters around their intended
mean values. There are several ways to relate the photon-number expectation value 〈n〉M
to the parameters of the probability distribution p:
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• For a small system size,M ≤ 3, the fixed point equation (4.3) can be solved analytically
and the result can be averaged over p. This approach is not suitable to study large
quantum metamaterials.

• For any system size M a set of lasing parameters {∆j}, {gj}, . . . can be chosen
randomly according to the probability distribution p. This represents a realization of
a particular M -atom lasing system and Eq. (4.3) can be solved numerically for this
particular set of parameters. Statistical information is acquired by averaging over a
large ensemble of randomly chosen lasing systems. This approach is used in Sec. 4.4
to study fluctuations of 〈n〉M around its mean value 〈n〉M that arise because of a
finite system size M .

• Information on the mean value 〈n〉M can be acquired on a numerically less demanding
way: If the system size M is large enough, the sum in Eq. (4.3) can be rewritten
as an integral over the probability distribution p. A modified fixed point equation
is obtained which depends on the parameters of p and is solved numerically. This
approach is justified and used in the following.

An alternative approach is to reformulate Eq. (4.3) as a set of modified single-atom lasing
equations that have to be solved self-consistently. This reformulation gives further insight
into the physics of the problem and is discussed in Sec. 4.3.2.

We now pursue the third way and derive a fixed point equation for the mean photon-number
expectation value 〈n〉M . For large numbers of atoms, M � 1, the sum over individual
atoms can be replaced by an integral: As the labeling of the individual atoms is arbitrary,
they can be resorted by their lasing parameters, for instance, by increasing detuning and
coupling strength. For a sufficiently large system size M , the number of atoms within a
certain range of lasing parameters, e.g., [∆0,∆0 + δ∆]× [g0, g0 + δg], is approximately given
by Mp(∆0, g0)δ∆δg, where p(∆, g) is the underlying probability distribution of the lasing
parameters of a single atom. Therefore, we perform the following replacement in Eq. (4.3):

M∑
j=1
· · · = M

∫∫
d∆ dg . . . p(∆, g, . . . ) . . . . (4.7)

The system size M required to sample p sufficiently well depends on the width of p. If M
is chosen too small, large sample-to-sample fluctuations of 〈n〉M arise. Such fluctuations
are studied in Sec. 4.4.

Having rewritten the sum we obtain the following form of Eq. (4.3):

〈n〉 = Nth +M

∫∫
d∆ dg . . . p(∆, g, . . . )β

D0
(
〈n〉+ 1

2

)
+ 1

2

Γ2
κ + ∆2 + α

(
〈n〉+ 1

2

) . (4.8)

The integration yields a modified fixed point equation for 〈n〉M , which is solved numerically.

In the following, disorder in only one lasing parameter at a time is considered. A Gaussian
and a box distribution are used, which allow to solve the integrals analytically,

pG(x) = 1√
2πσ

exp
(
−(x− µ)2

σ2

)
,

pB(x) = 1
b

[
Θ
(
x− µ+ b

2

)
−Θ

(
x− µ− b

2

)]
.

Here x is the variable to be averaged over, µ is its mean value and σ is its standard deviation.
The width of the box distribution is b, which is related to its standard deviation via

b =
√

12σ .
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By Θ(x) we denote the Heaviside step function, which is equal to unity for x ≥ 0 and zero
otherwise.

Typically, there are restrictions in the allowed range of values of the lasing parameters.
For instance, the coupling strength gj and the level-splitting energy εj should be positive
and, therefore, the detuning should suffice ∆j ≥ −ω. These conditions put constraints
on the allowed values of the disorder standard deviation σ. If a Gaussian distribution
pG(x) is used, the standard deviation σ must be chosen such that the area of the tail of the
distribution below a minimal value xmin does not exceed a certain ratio ε of the total area
of the distribution. The area of this tail is given by the cumulative distribution function

PG(x) =
∫ x

−∞
pG(t)dt = 1

2 erfc
(
µ− x√

2σ

)
,

where erfc denotes the complementary error function. Now we can reformulate the condition
P (xmin) ≤ ε as a threshold for the disorder standard deviation σ:

σ ≤ µ− xmin√
2 erfc−1(2ε)

. (4.9)

If x is bound by an upper value xmax, the corresponding threshold for σ is given by

σ ≤ xmax − µ√
2 erfc−1(2ε)

.

For the box distribution the width b can be increased up to xmin − µ + b/2 = 0 or
xmax − µ− b/2 = 0. These conditions yield

σ ≤ µ− xmin√
3

or σ ≤ xmax − µ√
3

, (4.10)

respectively.

In the following subsections we use Eq. (4.8) to calculate the mean photon-number expec-
tation value 〈n〉M for disorder in the detuning, the coupling strength, and the pumping.

4.2.1. Disorder in the detuning

In this section disorder in the atomic detuning ∆ is investigated. The mean detuning
be ∆ = 0, i.e., the atoms ideally be on resonance. Having performed the integration in
Eq. (4.8) we obtain the following fixed point equation for the photon-number expectation
value 〈n〉:

〈n〉 = Nth +Mβ

[
D0

(
〈n〉+ 1

2

)
+ 1

2

]
I
(
ζ〈n〉

)
, (4.11)

ζ〈n〉 =
√

Γ2
κ + α

(
〈n〉+ 1

2

)
.

The integrals I(ζ) for the two types of distributions are given by

IG(ζ) =
√
π

2
1
ζσ∆

exp
(
ζ2

2σ2
∆

)
erfc

(
ζ√
2σ∆

)
,

IB(ζ) = 1√
3ζσ∆

arctan
(√

3σ∆
ζ

)
.

Again, erfc denotes the complementary error function.
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Figure 4.2.: Photon-number expectation value 〈n〉100(σ∆) for a lasing setup with M =
100 atoms and disorder in the atomic detuning ∆. Thick solid lines are calculated for a
Gaussian disorder distribution with mean detuning ∆ = 0 and standard deviation σ∆,
thick dashed lines represent a box distribution with the same parameters. In oder to
avoid unphysical values of the detuning the results for the Gaussian distribution are
plotted only for σ∆ ≤ 0.43ω. Inset: Single-atom lasing curves 〈n〉1 (∆). The remarkably
slow decrease of 〈n〉100(σ∆) cannot be explained by averaging the single-atomic resonance
curves over the same probability distributions, which yields 〈n〉

bare
M represented by the

curves plotted with thin lines in the main plot. The thin dash-dotted and dotted lines
correspond to a Gaussian and a box distribution, respectively. Plot parameters are
Γ↑ = 0.006ω, Γ↓ = 0.002ω, Γ∗ϕ = 0.001ω, κ = 1 × 10−5 ω, and Nth = 0. Blue curves
g = 0.004ω, red curves g = 0.002ω, and green curves g = 0.00075ω.

In Fig. 4.2 numerical results for the mean photon-number expectation value 〈n〉M are shown
for a M = 100 atom lasing setup and the two types of distribution pG/B(∆) (thick solid and
dashed lines, respectively). Three different coupling strengths to the resonator are used,
corresponding to the different colors. The level splitting energy εj of each atom should
be positive and, therefore, the atomic detuning must fulfill ∆j ≥ −ω. Equations (4.9)
and (4.10) yield the following constraints on the standard deviation σ∆:

σ∆ . 0.430ω for the Gaussian distribution and ε = 0.01,
σ∆ . 0.577ω for the box distribution.

The results for 〈n〉M for the two types of distribution are plotted up to these different
maximum values of the disorder standard deviation in Fig. 4.2.

Remarkably, the mean photon-number expectation value 〈n〉100 in Fig. 4.2 decreases only
weakly with increasing disorder standard deviation σ∆. The magnitude of the decrease
depends on the coupling strength g. Up to σ∆ = 0.2ω the setup is still operating at at
least 40% of the maximal photon number obtained for an ordered setup, which is given by
the limit σ∆ → 0. This reveals that the lasing activity of an atom changes significantly
compared to the single-atom lasing curve 〈n〉1 if the atom is part of a multi-atom lasing
setup. The bare single-atom lasing curves 〈n〉1 are given by Eq. (4.5) and are shown in the
inset of Fig. 4.2. In order to compare the expected lasing behavior based on these bare
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single-atom lasing curves 〈n〉1 with the numerical results for 〈n〉M , we average 〈n〉1 over
the same disorder distribution,

〈n〉bare
M (σ∆) = M

∫
d∆ p(∆) 〈n〉1(∆) .

The thin lines in Fig. 4.2 represent the results for 〈n〉bare
M (σ∆). They decrease much faster

than 〈n〉M (σ∆) because the fraction of atoms at a detuning larger than the single-atom
lasing threshold, ∆j > ∆max(1), grows with increasing disorder standard deviation. These
atoms are expected not to contribute to the lasing process any more and the photon-
number expectation value 〈n〉bare

M decreases accordingly. The observed slow decrease of
〈n〉M indicates that the atoms in a multi-atom lasing setup tolerate a much larger detuning
than a single-atom, while they are still participating in the lasing process.

As a second observation, the mean photon expectation values 〈n〉100 and 〈n〉bare
100 differ

for a weak coupling strength g = 0.00075ω in the limit σ∆ → 0. According to the green
single-atom lasing curve 〈n〉1 (∆) in the inset we expect a maximum contribution to the
overall photon number of 〈n〉1 (∆ = 0) ≈ 183 photons by a weakly coupled resonant single
atom. But we actually observe a larger contribution per atom of 〈n〉100(σ∆ → 0)/100 ≈ 200
photons in the multi-atom lasing setup.

Finally, the results obtained for a Gaussian and a box distribution coincide for small disorder
standard deviations σ∆ . 0.1ω. For sufficiently narrow distributions the actual shape of
the distribution does not matter any more. This effect is discussed in the Appendix A.

In conclusion, the observed slow decrease of 〈n〉M implies that atoms in a multi-atom lasing
setup are described by an effective lasing curve which differs from the bare single-atom
lasing curve 〈n〉1, given by Eq. (4.5), in the following aspects:

1. The lasing curve as a function of the detuning is broadened, i.e., the range of tolerable
atomic detuning is increased in the multi-atom lasing setup.

2. The lasing activity of resonant atoms at a weak coupling strength is enhanced, i.e.,
resonant atoms in a multi-atom lasing setup emit more photons into the resonator
than predicted by the bare single-atom lasing curve 〈n〉1 (∆ = 0).

The reason for this behavior is discussed in Sec. 4.3.2.

4.2.2. Disorder in the coupling strength

Disorder in the coupling strength g between the atoms and the resonator is examined
similarly to the previous subsection. Having performed the integration over the coupling
strength g in Eq. (4.8) the fixed point equation takes the following form:

〈n〉 = Nth + MΓ1
2κ

(
D0 + 1

2 〈n〉+ 1

)
I
(
c〈n〉

)
, (4.12)

c〈n〉 =
√

Γ1(Γ2
κ + ∆2)

4(〈n〉+ 1/2)Γκ
,

where the integrals are given by

IG(c) = 1− πcV (g, σg, c) ,

IB(c) = 1− c√
12σg

[
arctan

(
g +
√

3σg
c

)
− arctan

(
g −
√

3σg
c

)]
.
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(a) Mean coupling strength g = 0.001ω close to the single-atom lasing threshold
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(b) Mean coupling strength g = 0.005ω above the single-atom lasing threshold

Figure 4.3.: Photon-number expectation value 〈n〉100(σg) for a lasing setup withM = 100
atoms and disorder in the coupling strength g. Thick solid lines are calculated for a
Gaussian disorder distribution with mean coupling strength g and standard deviation σg,
thick dashed lines represent a box distribution with the same parameters. In order to
avoid unphysical values of the coupling strength, the results for the Gaussian distribution
are only plotted up to a maximum disorder standard deviation σg = 4.3 × 10−4 ω
and σg = 2.15 × 10−3 ω, respectively. Inset: Single-atom lasing curves 〈n〉1 (g). The
remarkably slow decrease of 〈n〉100(σg) cannot be explained by an average of the single-
atomic lasing curves 〈n〉1 (g) over the same probability distributions, which yields 〈n〉

bare
M

represented by the thin curves. The thin dash-dotted an dotted curves correspond to a
Gaussian and a box disorder distribution, respectively. Plot parameters are Γ↑ = 0.006ω,
Γ↓ = 0.002ω, Γ∗ϕ = 0.001ω, κ = 1 × 10−5 ω, and Nth = 0. Red curves ∆ = 0ω, blue
curves ∆ = 0.1ω, and green curves ∆ = 0.2ω.
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V is the Voigt function

V (g, σg, x) =
√
π

2
1

2πσg
exp

(x− ig√
2σg

)2
 erfc

(
x− ig√

2σg

)
+ c.c. .

In Fig. 4.3 numerical results for the mean photon-number expectation value 〈n〉M are
shown for a setup consisting of M = 100 atoms and the two types of distribution pG/B(g)
(thick solid and dashed lines, respectively). Figure 4.3a corresponds to a mean coupling
strength g = 0.001ω close to the single-atom lasing transition, Fig. 4.3b to a mean coupling
strength g = 0.005ω above the single-atom lasing transition. The value of g is indicated by
a black circle at the single-atom lasing curves 〈n〉1 in the insets. Three different values for
the atomic detuning are used, corresponding to the different colors.

Again, the range of physically reasonable values of the disorder standard deviation σg is
restricted. The coupling strength g ≥ 0 be positive, which imposes via Eqs. (4.9) and (4.10)
the following constraints on σg for g = 0.001ω:

σg . 4.30× 10−4 ω for the Gaussian distribution and ε = 0.01,
σg . 5.77× 10−4 ω for the box distribution.

Likewise, for g = 0.005ω we obtain

σg . 2.15× 10−3 ω for the Gaussian distribution and ε = 0.01,
σg . 2.89× 10−3 ω for the box distribution.

In Fig. 4.3 the results for 〈n〉M are plotted up to these different maximum values of the
disorder standard deviation.

Like for disorder in the detuning, 〈n〉100(σg) is remarkably independent of the disorder
standard deviation σg over a quite large range of values. The results cannot be explained
by the properties of the bare single-atom lasing curves 〈n〉1, given by Eq. (4.5) and shown
in the insets of Fig. 4.3. For comparison we average these bare single-atom lasing curves
〈n〉1 over the same disorder distribution and obtain

〈n〉bare
M (σg) = M

∫
dg p(g) 〈n〉1(g) ,

which corresponds to the thin lines in Fig. 4.3.

In a first step we compare the photon-number expectation value 〈n〉M (σg) to the average
〈n〉bare

M (σg) for resonant atoms at a mean coupling strength g close to the single-atom lasing
transition (red curves in Fig. 4.3a). The average over the bare single-atom lasing curves
predicts a smaller photon-number expectation value, 〈n〉bare

M < 〈n〉M , because some atoms
have a very small coupling strength g < g and, therefore, do not contribute significantly to
the lasing process. However, we observe that the contribution of each atom to the photon
number is actually 〈n〉100/100 ≈ 200 photons, i.e., all atoms emit the maximum possible
photon number irrespective of the individual coupling strength g. This is a hint that the
collective lasing threshold coupling strength gmin in the multi-atom setup is actually much
lower than the corresponding value in a single-atom lasing setup.

The lowering of the threshold coupling strength and, therefore, an enhancement of the
lasing activity per atom in the multi-atom lasing setup is even more obvious for the blue
and green curves in Fig. 4.3a, corresponding to a detuning ∆ = 0.1ω and ∆ = 0.15ω,
respectively. For these values of the detuning the single-atom lasing resonance curves
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predict no lasing at all, whereas the multi-atom setup is still operating at approximately
80% and 20% of its maximum photon number, respectively. Even an increase of the average
photon-number expectation value 〈n〉M as a function of the disorder standard deviation σg
is observed for ∆ = 0.15ω.

In a typical lasing experiment the laser is operated far above the lasing threshold of a
single resonant atom. The results corresponding to this parameter regime are shown in
Fig. 4.3b. For resonant atoms far above the lasing threshold, 〈n〉bare

M and 〈n〉M coincide
for almost all values of the disorder standard deviation σg. However, for detuned atoms,
|∆| > 0, the bare single-atom lasing curves predict a small or even close to zero photon
number whereas the actual mean photon-number expectation value 〈n〉M is still close to
the maximum photon number of approximately 20000 photons and depends surprisingly
weakly on the detuning ∆.

In conclusion, also for disorder in the coupling strength the effective contribution of each
atom in a multi-atom lasing setup to the overall photon number differs from the bare
single-atom lasing curve 〈n〉1:

1. The lasing-threshold coupling strength gmin in a multi-atom setup is lowered compared
to its value in a single-atom setup.

2. The lasing activity of detuned atoms is enhanced, i.e., detuned atoms in a multi-
atom lasing setup emit more photons into the resonator than expected from the
single-atomic lasing curve 〈n〉1.

An explanation for this observations is given in Sec. 4.3.2.

4.2.3. Disorder in the pumping strength

Finally, disorder in the pumping strength is considered. A measure for the pumping strength
is the stationary atomic polarization

D0 = Γ↑ − Γ↓
Γ↑ + Γ↓

.

It is a function of the pumping and relaxation rates Γ↑ and Γ↓. These rates appear in
Eq. (4.8) via the expression D0, but also via the total relaxation rate Γ1 = Γ↑ + Γ↓.
Therefore, in principle disorder in D0 has to be modeled by disorder in the pumping and
relaxation rates, which instantaneously implies disorder in Γ1, too. However, in this section
we concentrate on disorder in D0 only, while Γ1 is assumed to be constant.

Experimental motivation for considering only disorder in D0

A motivation for this step is provided by experiments, for instance, the laser constructed
out of a superconducting single-electron transistor (SSET) presented in Ref. [6]. A sketch
of the circuit is shown in Fig. 4.4. The SSET consists of a charge qubit whose island (I)
is connected by an additional Josephson junction to a drain electrode (D). The electric
potential of this additional electrode can be adjusted by the voltage source VD in order to
allow for single-electron tunneling from the island to the drain electrode. This establishes
a pumping process. Furthermore, the island of the qubit is capacitively coupled to a
coplanar-waveguide resonator, which acts as a laser cavity. The system is described by the
following Hamiltonian:

HSSET = EC(N −NG)2 − EJ cos(φL)− eVDNR + g(N − 1)(a+ a†) + ωa†a .

Here EC is the charge energy of the island, N is the number of electrons on the island, NR
is the number of electrons that tunneled from the island to the drain electrode, and NG is
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Figure 4.4.: Circuit of a superconducting single-electron transistor (SSET). The SSET
is a charge qubit (dashed box) where the superconducting island (I) is connected to an
additional drain electrode (D) by a second Josephson junction. For a suitable drain
voltage VD single electrons tunnel from the island to the drain. Figure based on Ref. [6].

the number of control charges on the island, which is adjusted by the external voltages VG
and VD. The superconducting phase difference across the left Josephson junction separating
the island from ground is denoted by φL. It is the conjugated variable to N . As usual, ω
is the frequency of the resonator and a (a†) are the annihilation (creation) operators of
the radiation field. By choosing EJ appropriately one can restrict the system to the three
eigenstates with lowest energy. Diagonalization of this restricted Hamiltonian yields

H = 1
2δEσz + EC(1−NG)2 |1〉 〈1|+ const ,

with δE =
√

16(NG − 1)2E2
C + E2

J . The eigenstates are given by

|↑〉 = cos θ2 |0〉 − sin θ2 |2〉 ,

|↑〉 = sin θ2 |0〉+ cos θ2 |2〉 ,

|1〉 ,

where |N〉 is the state with N electrons on the island and the mixing angle θ is defined by
tan θ = −EJ/(4(NG − 1)EC). Charge noise in the SSET causes quasistatic fluctuations of
the angle θ on a timescale of hours, which translates into a change of the eigenstates. The
pumping process is described by the following quasiparticle tunneling Hamiltonian:

Hqp =
∑
i,k

Ti,kγi,Iγ
†
k,De

−iφR/2 + h.c. ,

where Ti,k are the tunneling coefficients and γj (γ†j ) are the quasiparticle annihilation
(creation) operators for the mode i on the island (I) and the drain (D), respectively. Using
Fermi’s golden rule the following dependence of the transition rates on the mixing angle is
found:

Γ↑→1 ∝ sin2 θ

2 , Γ1→↓ ∝ sin2 θ

2 ,

Γ↓→1 ∝ cos2 θ

2 , Γ1→↑ ∝ cos2 θ

2 .
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Assuming that the population of the intermediate pumping state |1〉 is constant, ρ̇1,1 = 0,
we obtain effective pumping rates between the states |↓〉 and |↑〉,

Γ↑ = Γ↓→1Γ1→↑
Γ↓→1 + Γ1→↑

∝ cos4 θ

2 ,

Γ↓ = Γ↑→1Γ1→↓
Γ↑→1 + Γ1→↓

∝ sin4 θ

2 .

Therefore, a quasistatic change of the mixing angle θ translates into a fluctuation of D0
and Γ1 according to

D0 ∝
2 cos θ

1 + cos2 θ
,

Γ1 ∝
1
2
(
1 + cos2 θ

)
.

Typically, the mixing angle fulfills θ . π/2, hence D0 fluctuates proportional to θ − π/2
whereas Γ1 is approximately constant. Therefore, we focus in this section on disorder only
in the pumping strength D0.

Analysis of disorder in D0

Having performed the integration over the pumping strength D0 in Eq. (4.8) we obtain the
following fixed point equation:

〈n〉 = Nth +Mβ
D0

(
〈n〉+ 1

2

)
+ 1

2

Γ2
κ + ∆2 + α(〈n〉+ 1

2)
.

Its solution is given by

〈n〉M = X +

√
X2 +Nthñ0 + Nth

2 +M
Γ1
4κ(D0 + 1) , (4.13)

X = −1
4 + Nth

2 +M
D0Γ1

4κ − ñ0
2 .

An obvious difference between the case of disorder in the pumping strength and the
previously analyzed cases of disorder in the detuning or the coupling strength is that the
averaged fixed point equation depends only on the mean pumping strength D0. There is
no dependence of the disorder standard deviation σg and any probability distribution p
with mean D0 yields the same averaged fixed point equation irrespective of its shape.

Again we compare three different scenarios: First, a mean pumping strength D0 = 0.6 far
above the lasing threshold at zero detuning is examined (left subplot of Fig. 4.5). Second,
we choose a nonzero detuning ∆ = 0.015ω, but we keep the mean pumping strength
D0 = 0.6 fixed (central subplot). Third, we examine a mean pumping strength D0 = 0.15
close to the lasing threshold at zero detuning (right subplot of Fig. 4.5). The pumping
strength D0 must take values in the range [−1, 1]. Therefore, Eq. (4.9) restricts the allowed
values for the disorder standard deviation to σD0 . 0.17ω for a Gaussian distribution in
the first and the second scenario, and to σD0 . 0.36ω in the third scenario.

For the first scenario, D0 = 0.6 and ∆ = 0ω, we find that the mean photon-number
expectation value 〈n〉M is well approximated by an average over the individual lasing
resonance curves 〈n〉1 (D0). For typical lasing parameters above the threshold Eq. (2.14)
and the following relations hold:

Γ1D0 � κ , (4.14a)

M
D0Γ1

2κ � Nth . (4.14b)
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Figure 4.5.: Photon-number expectation value 〈n〉100(σD0) for a lasing setup with
M = 100 atoms and disorder in the pumping strength D0. The results for 〈n〉100 (thick
lines) are identical for a Gaussian and a box distribution. Inset: Single-atom lasing
curves 〈n〉1 (D0). The thin dash-dotted and dotted lines in the main plot represent an
average over the single-atom lasing contributions for a Gaussian and a box distribution,
respectively. Both curves coincide in the left and the central subplot. Plot parameters
are g = 0.001ω, Γ1 = 0.0052ω, Γ∗ϕ = 0.001ω, κ = 1× 10−5 ω, and Nth = 0. Blue curves
∆ = 0ω, D0 = 0.6. Red curves ∆ = 0.015ω, D0 = 0.6. Green curves ∆ = 0ω, D0 = 0.15.
These values are indicated in the inset by colored circles.

Then, for zero detuning the mean photon number 〈n〉M reduces to

〈n〉M ≈ Nth +M
Γ1D0

2κ − ñ0(0) .

Analogously, the same linear dependence on D0 is obtained for the single-atom lasing
curve (4.5),

〈n〉1 ≈ Nth + Γ1D0
2κ − ñ0(0) ,

with a photon saturation number ñ0(0) of the order of unity. Therefore, for atoms on
resonance and a sufficiently narrow disorder distribution, such that all values of D0 are
large enough that the assumption (4.14a) holds, the mean photon-number expectation
value 〈n〉M is expected to be equivalent to the average over the bare single-atom lasing
curves 〈n〉1,

〈n〉bare
M = M

∫
dD0 p(D0) 〈n〉1(D0) .

The thick blue curve in the left subplot of Fig. 4.5 represents 〈n〉M and the coinciding thin
dashed and dash-dotted curves represent 〈n〉bare

M for a Gaussian and a box distribution,
respectively. The average over single-atom lasing curves 〈n〉bare

M describes the mean photon-
number expectation value 〈n〉M of the multi-atom lasing setup quite well, but we still
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observe a small enhancement of the lasing activity in the multi-atom setup for the chosen
parameters.

However, for a nonzero detuning 〈n〉bare
M deviates significantly from the photon-number

expectation value 〈n〉M of the multi-atom lasing setup (central subplot in Fig. 4.5). The
behavior of 〈n〉bare

M can be understood as follows: The bare single-atom lasing curves
〈n〉1 (D0) in the inset show a crossover from a very low photon number at pumping
strengths below the lasing threshold to a nonzero photon number that depends linearly
on the pumping strength above the lasing threshold. This threshold pumping strength
increases for nonzero detuning, but the slope of the lasing curve above the threshold is still
the same, i.e., the single-atom lasing curve 〈n〉1 is effectively shifted along the D0 axis for
a nonzero detuning. Therefore, the single-atom photon-number expectation value 〈n〉1 at
a fixed pumping strength D0 decreases for a nonzero detuning. Surprisingly, comparing
the thick red and blue curves in Fig. 4.5 we find that the actual mean photon-number
expectation value 〈n〉M is quite independent of the detuning. This implies that the effective
lasing-threshold pumping strength for detuned atoms in a multi-atom lasing setup is
significantly lowered and is actually close to zero.

Also for the third scenario, resonant atoms at a mean pumping strength D0 close to the
lasing transition, 〈n〉M and 〈n〉bare

M differ significantly (right subplot of Fig. 4.5). For a
small disorder standard deviation σD0 the average 〈n〉bare

M is almost constant, which is
the expected behavior if an average over the linear part 〈n〉1 ∝ D0 of the single-atom
lasing curve is taken: The increase of the photon number for atoms at a pumping strength
D0 > D0 is compensated by a decrease of the photon number for atoms at D0 < D0.
However, for σD0 & 0.1ω the average 〈n〉bare

M starts to increase with σD0 . In this regime the
probability distribution is sufficiently broad such that some atoms have a pumping strength
D0 . 0 and, therefore, do not contribute to the lasing process any more. Hence, they cannot
compensate for the increase of the photon number for atoms at D0 > D0 and the overall
average photon number 〈n〉bare

M increases. However, the actual multi-atom photon-number
expectation value 〈n〉M is found to be independent of the disorder standard deviation σD0 .
This implies that the single-atom lasing curve 〈n〉1 is modified in a multi-atom lasing setup
and has a linear dependence on the pumping strength D0, even for a pumping strength
close to zero.

In conclusion, for disorder in the pumping strength the mean photon-number expectation
value 〈n〉M is only a function of D0 and, in particular, independent of the disorder standard
deviation σD0 . For resonant atoms above the pumping threshold, ∆ = 0 and D0 > 0, the
observed collective behavior is explained quite well by an average over single-atom lasing
curves 〈n〉1. However, the observed behavior of 〈n〉M for non-resonant atoms or a mean
pumping strength close to the single-atom lasing-threshold pumping strength implies that
the single-atom lasing curve 〈n〉1 is modified in a multi-atom lasing setup as follows:

1. The lasing-threshold pumping strength of detuned atoms in a multi-atom lasing setup
is decreased compared to its value in a single-atom lasing setup, and

2. the effective lasing curve of atoms in a multi-atom lasing setup shows a linear
dependence on the pumping strength D0, even for a pumping strength close to zero.

An explanation for these observations is given in Sec. 4.3.2.

4.3. Collective effects caused by stimulated emission

The results of the previous section show that a multi-atom lasing setup is rather robust
against disorder in the atomic detuning, the coupling strength, and the pumping strength.
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The observed dependence of the mean photon-number expectation value 〈n〉M on the
disorder standard deviation suggests, that

1. the range of tolerable atomic detuning increases with the system size M ,

2. the minimal coupling strength to the resonator required for lasing decreases with the
system size M , and

3. the lasing-threshold pumping strength in a multi-atom lasing setup is close to zero,
even for detuned atoms, and the single-atom lasing curve has a linear dependence on
the pumping strength D0, even for a pumping strength close to zero.

In this section this collective effect is examined in more detail. First, we discuss ordered
multi-atom systems. There we already observe a widening of the range of parameters that
allow for lasing in multi-atom systems. In a second step, Eq. (4.3) is reformulated as a set
of M coupled equations, each describing the lasing activity of a single atom, which have to
be solved self-consistently. Using this approach we discuss disordered setups and show that
the observed collective effect is caused by enhanced stimulated emission.

4.3.1. Widening of the range of lasing parameters in ordered systems

Before dealing with disorder in the atomic parameters, the properties of ordered systems are
studied. For ordered systems Eq. (4.3) can be solved analytically. Having replaced ∆j = ∆,
gj = g, Γ1,j = Γ1, Γκ,j = Γκ, D0,j = D0 for all atoms j ∈ {1, . . . ,M}, an evaluation of the
the sum yields

〈n〉 = Nth +Mβ
D0
(
〈n〉+ 1

2

)
+ 1

2

Γ2
κ + ∆2 + α

(
〈n〉+ 1

2

) .

The stationary photon-number expectation value of an ordered system is

〈n〉0M = X +

√
X2 +Nthñ0 + Nth

2 +M
Γ1
4κ(D0 + 1) , (4.15)

X = −1
4 + Nth

2 +M
D0Γ1

4κ − ñ0
2 ,

where the superscript 0 denotes the ordered system. For a single atom, M = 1, 〈n〉0M is
identical to the single-atom lasing curve 〈n〉1 given by Eq. (4.5). The following scaling
relation for the photon-number expectation value per atom, 〈n〉0M /M , holds [32]:

1
M
〈n〉0M

(
g√
M
,∆,MNth

)
≈ 〈n〉01 (g,∆, Nth) .

In Fig. 4.6, the consequences of this scaling relation are illustrated:

• Provided that the coupling strength in the multi-atom system is rescaled by a factor
of
√
M
−1, the qualitative dependence of 〈n〉0M /M on the detuning ∆ or the coupling

strength g is the same for different numbers of atoms, M , and the total photon
number 〈n〉0M grows linearly with the number of atoms.

• For M →∞ the smeared-out crossover from a non-lasing state to a lasing state is
replaced by a sharp, kink-like lasing transition. The position of this kink coincides
with the lasing threshold obtained out of the semiclassical theory. Thus, semiclassical
and semiquantum theory yield identical results in the limit M →∞.
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Figure 4.6.: Properties of the photon-number expectation value per atom, 〈n〉0M (∆, g)/M ,
in an ordered M -atom lasing setup. (a): Plots as a function of the atomic detuning ∆
for a coupling strength g = 0.002ω. (b): Plots as a function of the coupling strength
g for atoms on resonance, ∆ = 0ω. Solid red curves represent 〈n〉01 (g,∆), dashed blue
curves 〈n〉0M (g/

√
M,∆)/M , and dash-dotted green curves 〈n〉0M (g,∆)/M . For a fixed

coupling strength g an increase of the system size M increases the maximum tolerable
detuning. For a fixed detuning it lowers the minimal coupling strength required for lasing.
In the limit M →∞ the semiquantum theory predicts a sharp, kink-like lasing transition
that coincides with the one predicted by the semiclassical theory. Plot parameters are
Γ↑ = 0.006ω, Γ↓ = 0.002ω, Γ∗ϕ = 0.001ω, κ = 1× 10−5 ω, Nth = 0, and M = 100.

• If the coupling strength is not rescaled by a factor of
√
M
−1, the width of 〈n〉M /M

as a function of the detuning increases and the minimum coupling strength decreases
with the number of atoms. From Eqs. (2.15) and (2.16) we obtain the following
scaling behavior:

∆max ∝
√
M ,

gmin ∝
1√
M

.

These relations imply that for a fixed coupling strength a many-atom lasing system tolerates
a larger detuning than a single-atom laser, while still being in a lasing state. Furthermore,
the coupling strength of the individual atoms to the resonator can be lowered compared to
that of a single-atom laser, while the system is still in a lasing state. From Eq. (2.17) we
read off that the required minimal pumping strength is also lowered in a multi-atom lasing
setup,

D0,min ∝
1
M

.

In conclusion, for ordered multi-atom systems the range of atomic parameters for which
the system is in a lasing state is actually widened compared to the corresponding range
of parameters for a single-atom laser. There is a collective broadening of the tolerable
range of atomic detuning and a lowering of the minimal coupling and pumping strength,
consistent with the observations made in Sec. 4.2.

4.3.2. Self-consistent superposition of single-atomic resonance curves

In order to discuss these collective effects for disordered setups, Eq. (4.3) is reformulated as
a set of M equations for the single-atomic photon contribution 〈nj〉 to the overall photon-
number expectation value 〈n〉M . The set of equations has to be solved self-consistently.
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This reformulation of the problem allows to demonstrate the widening of the range of lasing
parameters also for disordered systems and reveals that it is caused by stimulated emission.

The total photon number 〈n〉 is split into contributions of the individual atoms, 〈nj〉, by
rewriting

〈n〉 =
M∑
j=1
〈nj〉 = 〈ni〉+

〈
niadd

〉
, (4.16a)

〈
niadd

〉
=

M∑
j 6=i
j=1

〈nj〉 , (4.16b)

where i ∈ {1, . . . ,M} is the index of an arbitrarily chosen atom. The quantity
〈
niadd

〉
is

the number of photons that are emitted into the resonator by all atoms except of atom i,
including the corresponding fraction of the thermal photon number. It forms a background
of additional photons in the resonator that does not originate from the lasing activity of
atom i. By inserting Eq. (4.16a) into the stationary limit of Eq. (4.1a) the photon-number
expectation value (4.1a) is separated into M equations describing the individual atomic
contributions 〈ni〉 to the overall photon number. Using Eqs. (4.1b) and (4.1c) we obtain

〈ni〉 = Nth
M

+ βi
D0,i

(
〈ni〉+

〈
niadd

〉
+ 1

2

)
+ 1

2

Γ2
κ,i + ∆2

i + αi
(
〈ni〉+

〈
niadd

〉
+ 1

2

) . (4.17)

For a single-atom laser, i.e., i = 1, M = 1, 〈n1〉 = 〈n〉, and
〈
n1

add
〉

= 0, this equation
reduces to the single-atom case of Eq. (4.3). A summation over all M atoms yields the
general fixed point equation (4.3).

The fixed point equation (4.17) for the individual atomic contributions 〈ni〉 is solved by

〈ni〉 = X̃ +
√
X̃2 + Nth

M

(
ñ0,i +

〈
niadd

〉
+ 1

2

)
+ Γ1,i

4κ
(
D0,i

(
2
〈
niadd

〉
+ 1

)
+ 1

)
, (4.18)

X̃ = −1
4 −

〈
niadd

〉
2 + Nth

2M + Γ1,iD0,i
4κ − ñ0

2 .

The M equations for 〈ni〉, i ∈ {1, . . . ,M}, and Eq. (4.16) form a set of coupled equations
which have to be solved self-consistently. This is done numerically using the following
iterative algorithm:

1. Initially, the resonator is assumed to have zero photon number, i.e., 〈n〉 = 0 and〈
niadd

〉
= 0 for all atoms i ∈ {1, . . . ,M}.

2. The contribution of each atom to the photon number in the resonator, 〈ni〉, is
calculated.

3. New values for 〈n〉 and
〈
niadd

〉
are calculated using Eq. (4.16).

4. The procedure is continued starting from step 2 until 〈n〉 changes between two
iterations less than a previously chosen threshold.

The calculations of the mean photon-number expectation value 〈n〉M performed in the
previous sections effectively solved this self-consistent set of coupled equations. However,
this reformulation of the problem allows to study the broadening and enhancement effects
observed in Sec. 4.2 also for disordered systems.

On the right-hand side of Eq. (4.18) the photon background
〈
niadd

〉
appears always together

with 〈ni〉, which is the term accounting for the stimulated emission of atom i. Therefore,
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Figure 4.7.: Modification of the single-atom lasing curve 〈ni〉 in the presence of additional
photons in the resonator. (a): 〈ni〉 (∆, g,D0) as a function of the atomic detuning ∆ for
a fixed coupling strength g = 0.001ω and D0 = 0.5. (b): 〈ni〉 (∆, g,D0) as a function of
the coupling strength g for a fixed detuning ∆ = 0.2ω and D0 = 0.5. (c): 〈ni〉 (∆, g,D0)
as a function of the pumping strength D0 for a fixed detuning ∆ = 0.02ω and a fixed
coupling strength g = 0.001ω. Solid red curves represent the bare lasing curve without
additional photons in the resonator, dashed blue curves represent the modified lasing
curve in the presence of

〈
niadd

〉
= 4000 additional photons in the resonator. The presence

of additional photons broadens the resonance curve as a function of the detuning and
decreases the minimal threshold coupling strength required for lasing. The lasing threshold
pumping strength vanishes such that 〈ni〉 (D0) is proportional to D0 for all pumping rates.
Negative pumping decreases the number of photons in the resonator. Plot parameters
are Γ↑ = 0.006ω, Γ↓ = 0.002ω, Γ∗ϕ = 0.001ω, and κ = 1 × 10−5 ω. Subfigure (c) has
Γ1 = 0.0052ω.

the presence of additional photons in the resonator modifies the stimulated emission lasing
activity of the atom. The effect can be illustrated by simply assuming the existence
of additional photons, wherever they actually come from. In Fig. 4.7 the individual
atomic contribution 〈ni〉 is plotted for

〈
niadd

〉
= 0 and

〈
niadd

〉
= 4000 additional photons,

respectively.

In Fig. 4.7a the atomic lasing contribution 〈ni〉 is plotted as a function of the detuning ∆.
The presence of additional photons broadens the curve, i.e., the range of tolerable values of
the atomic detuning is significantly widened, as deducted from the plot of 〈n〉M (σ∆) in
Fig. 4.2. The presence of additional photons in the resonator increases the lasing activity of
detuned atoms and effectively “drags” them into resonance. Furthermore, an enhancement
of the photon-number expectation value 〈ni〉 at zero detuning is observed, which is also
consistent with the observations made in Fig. 4.2.

Similarly, 〈ni〉 (g) is plotted as a function of the coupling strength g in Fig. 4.7b. A
lowering of the minimal coupling strength gmin(M), rigorously derived for ordered setups,
is also shown qualitatively by 〈ni〉 (g) in the presence of additional photons. Hence, also
in disordered setups a collective lowering of the lasing threshold coupling strength takes
place, consistent with the observations made in Fig. 4.3. Simultaneously, for large coupling
strengths g � gmin(1) the presence of additional photons enhances 〈ni〉 (g) up to a maximum
photon number per atom 〈n〉max

M /M , irrespective of the actual detuning of the atom. The
maximum photon number 〈n〉max

M is defined by Eq. (4.4) and depends on the pumping
and decay rates of the system. This enhancement is the reason for the remarkably weak
dependence of 〈n〉100(σg) on the detuning ∆ observed in Fig. 4.3b.

In Fig. 4.3a, we observed that 〈n〉M (σg) increases or decreases as a function of σg, depending
on the detuning ∆. This behavior is connected to the local curvature of the modified atomic
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resonance curves 〈ni〉 (g) at the mean coupling strength g. An expansion of 〈ni〉 around g,

〈ni〉 (g) = a+ b(g − g) + c(g − g)2 +O
(
(g − g)3

)
,

yields ∫ ∞
−∞

dg p(g) 〈ni〉 (g) = a+ cσ2
g .

If 〈ni〉 (g) is dominantly a linear function of the coupling strength at g, i.e., c ≈ 0, the mean
photon-number expectation value 〈n〉M (σg) is a constant. Likewise, if the curvature of
〈ni〉 (g) at g cannot be neglected, i.e., |c| & |b|, its sign determines the behavior of 〈n〉M (σg)
with increasing σg.

Finally, Fig. 4.7c illustrates the changes of the single-atom lasing contribution 〈ni〉 as
a function of the pumping strength D0 in the presence of additional photons. The plot
of 〈ni〉 (D0) shows the expected linear dependence on the pumping strength D0, even
for D0 . 0, which was concluded from the observations made in Fig. 4.5. As a second
observation we note that the pumping threshold is zero even though the atom has a nonzero
detuning. The lasing crossover, where 〈ni〉 changes smoothly from a close to zero photon
number to a linear dependence on D0, does not appear any more. Instead, for a negative
pumping strength the number of photons in the resonator is decreased by the inverse
lasing activity of the atom. The dependence on the pumping strength is linear for negative
pumping if the absolute value of 〈ni〉 is much smaller than the number of externally created
additional photons, |〈ni〉| �

〈
niadd

〉
. The linear dependence on D0 and the absence of a

threshold coupling strength is consistent with the observations made in Fig. 4.5.

Application of the method to ordered systems

For disordered setups we showed that atoms above the lasing threshold, for instance, close to
resonance, “drag” others which appeared to be below the lasing threshold also into a lasing
state. Finally, a self-organized stationary state is established. But in Sec. 4.3.1 a widening
of the range of parameters allowing for lasing was observed also in the case of ordered
systems. In particular, there is a nonzero multi-atom photon-number expectation value
in ordered systems, 〈n〉0M 6= 0, even when all atoms have a detuning ∆ > ∆max(1), which
would be completely off-resonant in a single-atom setup. The reformulation of the fixed
point equation (4.3) as a set of self-consistently added single-atomic lasing contributions
〈ni〉 reproduces this nonzero value of 〈n〉0M as well. In order to understand this we consider
M identical atoms which would all be off-resonant in the single-atom setup, ∆ > ∆max(1).
As seen in Fig. 4.1 the semiquantum model does not exhibit a sharp transition to the lasing
state. Therefore, each of the atoms produces a small but non-vanishing contribution 〈ni〉
to the total photon number 〈n〉0M even at a detuning ∆ > ∆max(1). This possibly very
small contribution is then enhanced by the presence of all other ones, which is sufficient to
drive the system into the lasing state.

4.4. Fluctuations of the photon-number expectation value for finite-size
systems

In the near future, experimental realizations of lasers using quantum metamaterials as
optically active medium will probably be constructed out of a not too large number of
atoms, e.g., M . 100. Therefore, one should expect significant sample-specific deviations
from the average photon number 〈n〉M calculated in the previous sections. Consequently,
statistical fluctuations of 〈n〉M around its mean value 〈n〉M are studied in this section.

In order to study fluctuations of the photon-number expectation value 〈n〉M , an ensemble
of Nens lasing setups is chosen with randomly distributed lasing parameters according to a
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Figure 4.8.: Fluctuations of the photon-number expectation value 〈n〉M around 〈n〉M
for disorder in the detuning ∆ due to a non-perfect sampling of a Gaussian disorder
distribution with mean ∆ = 0 and standard deviation σ∆ = 0.2ω. Histograms are
created for Nens = 10000 setups, randomly chosen according to a Gaussian disorder
distribution, for system sizes of M = 50, 100, 800, and 1600 atoms, respectively. The
mean photon number is given by 〈n〉50 = 7479, 〈n〉100 = 16976, 〈n〉800 = 156184, and
〈n〉1600 = 316100 photons, respectively. Plot parameters are ∆ = 0ω, g = 0.002ω,
Γ↑ = 0.006ω, Γ↓ = 0.002ω, Γ∗ϕ = 0.001ω, κ = 1× 10−5 ω, and Nth = 0.

given probability distribution p. For each of these setups Eq. (4.3) is solved numerically
for the photon number 〈n〉M . This approach can be used to model two types of disorder:

1. Static disorder, e.g., sample-to-sample specific fluctuations of the lasing parameters
caused by the production process, and

2. quasistatic disorder on long timescales of the order of hours which is, for instance,
caused by two-level fluctuators, charge, or flux noise in superconducting qubits.

Fig. 4.8 shows the results for Gaussian disorder in the detuning ∆ with a standard deviation
σ∆ = 0.2ω. With increasing system sizeM the sampling of the ideal disorder distribution p
by the setup becomes better, which decreases the error made by rewriting the sum as an
integral in Eq. (4.8). In the plots in Fig. 4.8 this manifests as a decrease of the fluctuations
around 〈n〉M with increasing system size M . Their standard deviation is given by 386, 352,
181, and 136 photons for M = 50, 100, 800, and 1600 atoms, respectively. However, even
for M = 1600 atoms fluctuations of the order of one percent of 〈n〉M are expected.

Similar effects arise for disorder in the coupling strength g. The corresponding results
are shown in Fig. 4.9. When the mean coupling strength g is chosen close to the lasing
transition of a single-atom setup, the histogram of 〈n〉M shows a main peak around 〈n〉M
and a long tail consisting of a few ensembles with smaller photon number. The main peak
shows the expected narrowing with increasing system size M : If all histogram bins with
less than 10 counts are cut away, the standard deviation of the main peak is given by 0.25,
0.19, 0.17, and 0.15 photons for M = 50, 100, 800, and 1600 atoms, respectively. The
long tail is due to the fact that some atoms have such a weak coupling strength that they
either cannot participate in the lasing process at all or participate only with a reduced
photon number 〈ni〉 < 〈n〉max

1 . Figure 4.7b shows that such a situation is realized for a
coupling strength close to zero, even in the presence of additional photons in the resonator.
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(a) Mean coupling strength g = 0.002ω close to the single-atom lasing threshold
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(b) Mean coupling strength g = 0.005ω above the single-atom lasing threshold

Figure 4.9.: Fluctuations of the photon-number expectation value 〈n〉M around 〈n〉M for
disorder in the coupling strength g due to a non-perfect sampling of a Gaussian disorder
distribution with mean g and standard deviation σg = 0.0004ω and M = 50, 100, 800,
and 1600 atoms, respectively. (a): The mean coupling strength g = 0.002ω is chosen
close to the lasing transition of a single atom on resonance. The distribution has a main
peak at 〈n〉M and a large tail of a small number of systems with 〈n〉M < 〈n〉M , which
is not completely smooth even for Nens = 1000000 randomly chosen setups. The main
peak is situated at 〈n〉50 = 9998, 〈n〉100 = 19998, 〈n〉800 = 159998, and 〈n〉1600 = 319998
photons, respectively. (b): The mean coupling strength g = 0.005ω is chosen far above
the lasing transition of a single atom on resonance. Data is obtained for Nens = 10000
randomly chosen setups. In this regime only the main peak is observed at 〈n〉50 = 10001,
〈n〉100 = 200001, 〈n〉800 = 160001, and 〈n〉1600 = 320001 photons, respectively. The plot
parameters Γ↑ = 0.006ω, Γ↓ = 0.002ω, Γ∗ϕ = 0.001ω, κ = 1× 10−5 ω, and Nth = 0 are
identical for both subfigures.
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These events occur so rarely that a smooth distribution is not even found for a very large
ensemble of Nens = 106 setups.

In a typical lasing experiment the mean coupling strength g is chosen far above the single-
atom lasing threshold. In this regime only the main peak at 〈n〉M is observed, as shown
in Fig. 4.9b. For the chosen parameters the fluctuations in the photon number caused by
disorder in the detuning dominate over the ones originating from disorder in the coupling
strength.

In conclusion, lasing setups with a finite number M of atoms show quasistatic or static
fluctuations of the photon-number expectation value 〈n〉M of the order of a percent of the
mean photon number. Fluctuations decrease when the system size M is increased.

The long-term stability of current microwave generators depends not only on the source itself,
but also on the power amplifier and temperature fluctuations in the laboratory. It is mainly
influenced by fluctuations of the power amplifier bias point and the amplification of parasitic
signals [39]. If these effects are taken into account, the laser discussed here may compete with
current microwave sources for large system sizes M . For measurements on short timescales,
e.g., when the laser is used to control qubit operations in a quantum computer, these
long-term fluctuations do not matter. There, fluctuations on short timescales originating
from the photon statistics of the laser are more relevant. The photon statistics cannot be
derived within the semiquantum approximation. Instead, a direct solution of the master
equation is needed, similar to the calculations in the following chapter.



5. Longitudinal couplings

5.1. Generalized lasing Hamiltonian

In the previous chapter the Tavis-Cummings Hamiltonian defined in Eq. (2.2) was considered
as model of a multi-atom laser. It contains a dipole interaction between the atoms and
the radiation field, Hint ∝ σx(a + a†), which takes the form Hint ∝ σ+a + σ−a

† under
a rotating wave approximation. However, quantum metamaterials can be built out of
artificial atoms that couple to the radiation field differently. As discussed in the introduction
superconducting qubits exhibit not only a transversal σx coupling, but also a longitudinal
σz coupling. For flux qubits, charge qubits, and quantum dot systems Eq. (2.2) needs to
be generalized as follows:

HM = ~ωa†a+
M∑
j=1

1
2εjσ

j
z +

M∑
j=1

~gj
(
cos(θj)σjz + sin(θj)σjx

) (
a† + a

)
. (5.1)

The photon creation and annihilation operators are denoted by a† and a, respectively, and
ω is the frequency of the (single-mode) resonator. By εj we denote the level splitting energy
of the lasing transition of atom j, j ∈ {1, . . . ,M}, and gj is the coupling strength of this
atom to the resonator. The mixing angle θj ∈ [0, π/2] determines the relative strength of
σx and σz interaction. The Pauli matrices acting on the two states of atom j are denoted
by σjx,y,z. Contrary to the Tavis-Cummings Hamiltonian a rotating wave approximation
has not yet been applied.

In this chapter the photon statistics of a laser with both a longitudinal and a transversal
coupling between atoms and radiation field is calculated. We solve the quantum master
equation of the system in several stages: In Secs. 5.2 to 5.4 the photon statistics for a
single-atom laser with both a longitudinal and a transversal coupling is derived. In Sec. 5.5
we discuss how to create photon-number squeezed light in a system described by the
Hamiltonian (5.1). The assumptions made on the suppression of higher-order transitions
and the pumping process are justified in Secs. 5.7 and 5.8. In Sec. 5.10 the results are
generalized to a multi-atom lasing setup with M identical atoms. Finally, in Sec. 5.11
individual mixing angles θj are considered which arise, for instance, because of flux noise
in a multi-atom lasing setup.

5.2. Single-atom lasing: Polaron transformation and quantummaster equa-
tion

The generalized lasing Hamiltonian (5.1) for a single atom, M = 1, is given by

H1 = ~ωa†a+ 1
2εσz + ~g (cos(θ)σz + sin(θ)σx)

(
a† + a

)
. (5.2)

41
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For the sake of a compact notation the following abbreviations are introduced:

x = x0
(
a† + a

)
= ~g sin(θ)

(
a† + a

)
, (5.3a)

p = ip0
(
a† − a

)
= i

g

ω
cos(θ)

(
a† − a

)
. (5.3b)

H1 is transformed into a Jaynes-Cummings-like Hamiltonian using the unitary polaron
transformation

U = exp
[
g

ω
cos(θ)

(
a− a†

)
σz

]
= exp (ipσz) , (5.4)

yielding (cf. Appendix B.1)

H = U †H1U = ~ωa†a+ 1
2εσz + ~g

(
σ+

e−ipxe−ip

~g
+ σ−

eipxeip

~g

)
− ~g2

ω
cos2(θ) . (5.5)

The irrelevant constant shift of energy is neglected in the following. The polaron-transformed
Hamiltonian has the structure of the Jaynes-Cummings Hamiltonian (2.1) with the photon
creation and annihilation operators replaced by the dimensionless operators

A = 1
~g
e−ipxe−ip and (5.6a)

A† = 1
~g
eipxeip , (5.6b)

respectively. The properties of these operators are discussed in Sec. 5.3.

As basis of the Hilbert space in the polaron frame the direct product of the photon states
|n〉, n ∈ N0, and the states |↑ / ↓〉 of the two-level system is chosen,

|↑ / ↓, n〉 ≡ |↑ / ↓〉 ⊗ |n〉 .

The field operators and the Pauli matrices act on these states as usual,

a†a |n〉 = n |n〉 , σz |↑ / ↓〉 = ± |↑ / ↓〉 ,
a† |n〉 =

√
n+ 1 |n+ 1〉 , σx |↑ / ↓〉 = |↓ / ↑〉 ,

a |n〉 =
√
n |n− 1〉 .

Because we have performed a polaron transformation, the state |n〉 does not represent a
Fock state with n photons in the resonator as it was the case in the previous chapters.
In the following a photon-number Fock state with n photons in the resonator cavity is
denoted by |nc〉. The basis state |n〉 in the polaron frame is a superposition of different
Fock states according to

|σ〉 ⊗ |n〉 = U † |σ〉 ⊗ |nc〉 .

This has implications on the calculation of the photon-number expectation value and is
discussed in Sec. 5.5. The expansion of the state |n〉 in the polaron frame into Fock states
|mc〉 in the cavity frame is derived in the Appendix B.2.

The quantum master equation describing the coherent lasing interaction as well as pumping,
relaxation, and dephasing processes in the polaron frame is given by

d
dtρ = − i

~
[H, ρ] + LRρ+ LQρ , (5.7)
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where LR and LQ are the Lindblad superoperators for the resonator and the two level
system as introduced in Eqs. (2.8) and (2.9),

LRρ = κ

2 (Nth + 1)
(
2aρa† − a†aρ− ρa†a

)
+ κ

2Nth
(
2a†ρa− aa†ρ− ρaa†

)
,

LQρ = Γ↓
2 (2σ−ρσ+ − ρσ+σ− − σ+σ−ρ) + Γ↑

2 (2σ+ρσ− − ρσ−σ+ − σ−σ+ρ)

+
Γ∗ϕ
2 (σzρσz − ρ) .

In Sec. 5.8 we show that this common form of the Lindblad superoperators is not changed
by the polaron transformation. The relaxation rate of the resonator is denoted by κ, Γ↑
and Γ↓ are effective pumping and relaxation rates of the atom, respectively, and Γ∗ϕ is the
effective pure dephasing rate of the atom. The master equation (5.7) is solved in Sec. 5.4.

5.3. Matrix elements of the generalized field operators

Before solving the quantum master equation (5.7) we analyze the properties and matrix
elements of the generalized field operators A = e−ipxe−ip/(~g) and A† = eipxeip/(~g).

As a preparation we consider the matrix elements of the operator e±2ip, which are calculated
in the momentum space. We introduce the dimensionless variables ξ = x/x̃0 and η = p/p̃0,
where x̃0 =

√
~/(mω) and p̃0 =

√
~mω are constants with the dimension of a length and a

momentum, respectively. The field operators are related to ξ and η as follows:

a = 1√
2

(ξ + iη) ,

a† = 1√
2

(ξ − iη) .

Now, e±2ip can be rewritten as follows:

e±2ip = exp
[
±2 g

ω
cos(θ)

(
a− a†

)]
= eβη ,

β = ±2
√

2i g
ω

cos(θ) = ±2
√

2ip0 .

The momentum-space representation of the state |n〉 is given by

〈p|n〉 = N0√
n!

(−i√
2

)n
Hn(η)e−η2/2 ,

where N−1
0 = 4

√
π
√
p̃0 is a normalization constant and Hn(η) are the Hermite polynomials

Hn(η) = (−1)neη2 dn

dηn e
−η2 .

In the momentum space we obtain

〈n| eβη |n+m〉 = p0N
2
0√

n!(n+m)!
1
2n
(−i√

2

)m
eβ

2/4
∫ ∞
−∞

dx e−x2
Hn

(
x+ β

2

)
Hn+m

(
x+ β

2

)
.

The integral is simplified by means of the properties of the Hermite polynomials,

Hn(x+ y) =
n∑
k=0

(
n

k

)
Hk(x)(2y)n−k ,∫ ∞

−∞
dx e−x2

Hk(x)Hl(x) = 2kk!
√
πδk,l ,
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and by means of the definition of the generalized Laguerre polynomials,

Lmn (x) =
n∑
j=0

(−1)j
(
n+m

n− j

)
xj

j! .

We obtain the following formula for the matrix elements of e±2ip:

T±n,m = 〈n| e±2ip |n+m〉 (5.8)

=

 (±1)me−2p2
0(2p0)m

√
n!

(n+m)!L
m
n (4p2

0) for n ∈ N0, m ∈ N0,

(∓1)|m|e−2p2
0(2p0)|m|

√
(n−|m|)!

n! L
|m|
n−|m|(4p

2
0) for n ∈ N, m ∈ Z, −n ≤ m < 0.

Now, we proceed to the operators of interest, A and A†. Their matrix elements can be
expressed in terms of T±n,m,

〈n|A |n+m〉 = 〈n| 1
~g
e−ipxe−ip |n+m〉

= sin θ
(√

n+m+ 1T−n,m+1 +
√
n+mT−n,m−1

)
+ 2 g

ω
sin θ cos θT−n,m ,

〈n|A† |n+m〉 = 〈n| 1
~g
eipxeip |n+m〉

= sin θ
(√

n+m+ 1T+
n,m+1 +

√
n+mT+

n,m−1

)
− 2 g

ω
sin θ cos θT+

n,m .

The generalized Laguerre polynomials obey the following relations:

(m+ x)Lmn (x) = xLm+1
n (x) + (n+m)Lm−1

n (x) ,
(m− x)Lmn−m(x) = xLm+1

n−m−1 + (n−m+ 1)Lm−1
n−m+1(x) .

This allows to simplify the matrix elements of A and A† by using

√
n+m+ 1T±n,m+1 +

√
n+mT±n,m−1 = ±

(
m

2p0
+ 2p0

)
T±n,m

for any n ∈ N0 and m ∈ Z, −n ≤ m <∞. Thus, we finally obtain the following compact
form:

〈n|A |n+m〉 = 〈n| 1
~g
e−ipxe−ip |n+m〉 = −m2

sin θ
g
ω cos θT

−
n,m = − 1

~g
m

2
x0
p0
T−n,m , (5.9a)

〈n|A† |n+m〉 = 〈n| 1
~g
e+ipxe+ip |n+m〉 = +m

2
sin θ
g
ω cos θT

+
n,m = + 1

~g
m

2
x0
p0
T+
n,m . (5.9b)

Figure 5.1 shows a plot of the matrix element 〈n|A |n+ 1〉. The operators A and A† have
the following properties:

• All matrix elements 〈n|A(†) |n+m〉 are purely real, which is read off from Eqs. (5.8)
and (5.9).

• For all n ∈ N we have 〈n|A(†) |n〉 = 0.

• For θ = π/2 the polaron transformation is a trivial transformation andA = A† = a†+a.
Hence, the matrix elements show for θ = π/2 the usual behavior of the creation and
annihilation operators, 〈n|A |n+ 1〉 =

√
n+ 1, known from the Jaynes-Cummings

Hamiltonian (solid green line in Fig 5.1).



5.3. Matrix elements of the generalized field operators 45

0

50

100

150

0 10000 20000 30000 40000

〈n
|A
|n

+
1〉

n

Figure 5.1.: Coupling matrix element 〈n|A |n+ 1〉 of the coupling operator A =
e−ipxe−ip/(~g). For θ = π/2 the coupling matrix elements reduce to the conventional
Jaynes-Cummings coupling matrix elements, 〈n|A |n+ 1〉 =

√
n+ 1, represented by the

solid green line. For θ < π/2 the coupling matrix elements have roots at photon numbers
ni0. The position of these roots depends on p0 = g

ω cos θ. The blue curves have identical
values of p0, but different coupling strengths and mixing angles: Dashed line g = 0.02ω
and θ = π/3, dotted line g = 0.012ω and θ = π/5. The red curve represents half the
coupling strength, g = 0.006ω and θ = π/5. Therefore, p0 has half the value of the dotted
blue line and the positions of the roots are shifted towards higher photon numbers.

• For 0 ≤ θ < π/2 the polaron transformation is a nontrivial unitary transformation. At
sufficiently small photon numbers n the matrix element grows proportional to

√
n+ 1.

However, for larger n it deviates from the
√
n-behavior and exhibits oscillations. In

particular, there are photon numbers ni0 where the matrix element changes its sign.
The index i ∈ N labels these photon numbers in an ascending order. In the following,
we refer to them as “roots of the coupling matrix element”. However, it should be
noted that the matrix elements 〈n|A |n+m〉 are defined only for integer values of n
and m. Hence, for arbitrary values of g, ω, and θ the value of the matrix element〈
ni0
∣∣A ∣∣ni0 +m

〉
is in general close to zero, but not exactly zero.

• The matrix elements at a mixing angle θ = π/2 are an upper bound for the matrix
elements at arbitrary mixing angles 0 ≤ θ ≤ π/2:

〈n|A |n+ 1〉 ≤
√
n+ 1 .

• For 0 ≤ θ < π/2 the positions of the roots of the coupling matrix elements depend on
the quantity p0 = g

ω cos(θ). If p0 is increased, the positions ni0 of the roots decrease
(compare the dotted blue and dash-dotted red line in Fig. 5.1). Hence, for a given
resonator frequency ω the positions of the roots can be adjusted either via the coupling
strength g or via the mixing angle θ.

• For a small mixing angle θ, i.e., almost pure σz coupling, the positions ni0 of the roots
converge to constant values, but the amplitude of the coupling matrix elements tends
to zero. The positions of the roots ni0 for a small mixing angle θ are defined by the
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asymptotic value of p0,

lim
θ→0

p0 = g

ω
.

Therefore, the first root of the matrix elements, n1
0, is always at a finite photon

number n1
0 > 0. However, the amplitude of the matrix elements depends on θ, too,

and decays proportional to θ:

〈n|A(†) |n+m〉 = ±m2
ω

g
tan(θ)T±n,m ≈ ±

m

2
ω

g
θT±n,m , (5.10)

where A† takes the upper sign.

5.4. Stationary photon statistics in the polaron frame

5.4.1. Recursion relation of the photon statistics

In this section the quantum master equation (5.7) is solved analytically for the stationary
photon statistics of the laser, following the path described in Ref. [17]. We assume that
only resonant transitions occur in the Hamiltonian H:

〈n|A |n+m〉 = 0 and 〈n+m|A† |n〉 = 0 if m 6= 1 .

This assumption is equivalent to a rotating wave approximation and is justified in Sec. 5.7.

The photon statistics ρ(n) of the laser is given by the diagonal entries of the reduced density
matrix of the resonator, ρres,

ρ(n) = 〈n| ρres |n〉 =
∑
σ

〈σ, n| ρ |σ, n〉 .

The equation of motion of ρres is obtained by tracing out the atomic degrees of freedom in
the full master equation (5.7),

d
dtρ

res = −iω
[
a†a, ρres

]
− igTratom

([
σ+A+ σ−A

†, ρ
])

+ LRρ
res . (5.11)

Details of this step are given in the Appendix C. Because of the interaction term the equation
of motion of the reduced density matrix ρres is still coupled to the master equation (5.7) of
the full density matrix ρ.

To simplify this system of differential equations we decouple the dynamics of atomic
processes and changes of the resonator state by an adiabatic approximation [40]. The
Lindblad superoperator LQρ describes atomic decay processes that happen on a timescale of
Γ−1
↑ , Γ−1

↓ , and (Γ∗ϕ)−1. Resonator decay processes described by LRρ happen on a timescale
of κ−1. For typical lasing parameters it holds κ � Γ↑,Γ↓,Γ∗ϕ and, therefore, we neglect
decay processes of the resonator in the full master equation (5.7). This yields the following
simplified system of coupled differential equations:

d
dtρ

res = −iω
[
a†a, ρres

]
− igTratom

([
σ+A+ σ−A

†, ρ
])

+ LRρ
res , (5.12a)

d
dtρ = − i

~
[H, ρ] + LQρ . (5.12b)

In order to obtain the stationary photon statistics we calculate the stationary solution
of Eq. (5.12a) for the diagonal elements of the reduced density matrix ρres. The matrix
elements of ρ and ρres are denoted by ρσ,n;τ,m = 〈σ, n| ρ |τ,m〉 and ρn,m = 〈n| ρres |m〉,
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respectively. To evaluate the trace over the interaction term in Eq. (5.12a) we need to
know the matrix elements ρ↑,n;↓,n+1 and ρ↓,n+1;↑,n, which are obtained from the stationary
solution of Eq. (5.12b) as follows: Defining the vector

Rn,m =


ρ↑,n;↑,m
ρ↑,n;↓,m+1
ρ↓,n+1;↑,m
ρ↓,n+1;↓,m+1


and using ρn,m = ρ↑,n;↑,m + ρ↓,n;↓,m, Eq. (5.12b) is cast into a set of matrix differential
equations

Ṙn,m = Mn,m ·Rn,m +An,m (5.13)

for each photon number n,m ∈ N0. The matrix Mn,m and the vector An,m are given by

Mn,m =


−iω(n−m)− Γ1 ig 〈m+ 1|A† |m〉 −ig 〈n|A |n+ 1〉 0
ig 〈m|A |m+ 1〉 −i∆− iω(n−m)− Γϕ 0 −ig 〈n|A |n+ 1〉
−ig 〈n+ 1|A† |n〉 0 i∆− iω(n−m)− Γϕ ig 〈m+ 1|A† |m〉

0 −ig 〈n+ 1|A† |n〉 ig 〈m|A |m+ 1〉 −iω(n−m)− Γ1

 ,

An,m =


Γ↑ρn,m

0
0

Γ↓ρn+1,m+1

 .

We introduced the abbreviations Γ1 = Γ↑ + Γ↓ and Γϕ = Γ1/2 + Γ∗ϕ. The dynamics of the
photon field in the resonator enter Eq. (5.13) via the matrix elements of the reduced density
matrix ρres in the vector An,m. According to the adiabatic approximation the vector An,m

changes slowly compared to Rn,m. Therefore, transient processes in Rn,m can be neglected
and we take the stationary solution of Eq. (5.13),

Rn,m = −M−1
n,m ·An,m ,

which yields for n = m

ρ↑,n;↓,n+1 = gΓ1
〈n|A |n+ 1〉

detMn,n
[ρn,nΓ↑ (∆ + iΓϕ)− ρn+1,n+1Γ↓ (∆ + iΓϕ)] , (5.14a)

ρ↓,n+1;↑,n = gΓ1
〈n+ 1|A† |n〉

detMn,n
[ρn,nΓ↑ (∆− iΓϕ)− ρn+1,n+1Γ↓ (∆− iΓϕ)] , (5.14b)

detMn,n = 4g2Γ1Γϕ 〈n+ 1|A† |n〉 〈n|A |n+ 1〉+ Γ2
1∆2 + Γ2

1Γ2
ϕ (5.14c)

= Γ2
1Γ2

ϕ

(
1 + 4g2

Γ1Γϕ
Nn

)
,

Nn = ∆2

4g2
Γ1
Γϕ

+ 〈n+ 1|A† |n〉 〈n|A |n+ 1〉 . (5.14d)

By defining the quantity A = 2g2

Γ1Γϕ the equation of motion for ρn,n can be expressed as
follows:

d
dtρn,n = κ(Nth + 1)(n+ 1)ρn+1,n+1 − κNth(n+ 1)ρn,n

− κ(Nth + 1)nρn,n + κNthnρn−1,n−1

+ A
1 + 2ANn

|〈n|A |n+ 1〉|2 (Γ↓ρn+1,n+1 − Γ↑ρn,n)

− A
1 + 2ANn−1

|〈n− 1|A |n〉|2 (Γ↓ρn,n − Γ↑ρn−1,n−1) . (5.15)
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For the stationary case a detailed balance condition applies and this equation separates
into two recursion relations for the diagonal elements of ρres,(

κ(Nth + 1)n+ A
1 + 2ANn−1

|〈n− 1|A |n〉|2 Γ↓
)
ρn,n

=
(
κNthn+ A

1 + 2ANn−1
|〈n− 1|A |n〉|2 Γ↑

)
ρn−1,n−1 .

The second relation differs only by a shift n → n + 1 and does not provide any further
information. By reordering terms we find the following recursion relation for ρn,n:

ρn,n = fnρn−1,n−1 , (5.16a)

fn =
κNthn+ Γ↑ A

1+2ANn−1
|〈n− 1|A |n〉|2

κ(Nth + 1)n+ Γ↓ A
1+2ANn−1

|〈n− 1|A |n〉|2
. (5.16b)

The photon statistics ρ(n) ≡ ρn,n is uniquely defined by Eq. (5.16a) and the normalization
condition of the density matrix, Trn(ρres) = 1. It has a local maximum at photon numbers
nmax that fulfill fnmax = 1 and f ′nmax < 0.

The recursion coefficient fn is defined only for integer values of n because it contains the
matrix elements 〈n− 1|A |n〉. In the following we denote by f ′n the value of the symmetric
difference quotient

f ′n = fn+1 − fn−1
2 ,

which is the common definition of the derivative of functions with a discrete support.

5.4.2. Properties of the recursion coefficient

Before evaluating the recursion relation (5.16) in Sec. 5.4.3 we now investigate the properties
of the recursion coefficient fn.

In Fig. 5.2 the recursion coefficient fn is compared to the result obtained for a conventional
laser with pure σx coupling, i.e., θ = π/2 (solid red vs. dotted blue curve). By introducing
the effective atomic pumping and relaxation rates

Γn→n+1 = A
1 + 2ANn

|〈n|A |n+ 1〉|2 Γ↑ and (5.17a)

Γn+1→n = A
1 + 2ANn

|〈n|A |n+ 1〉|2 Γ↓ , (5.17b)

the recursion coefficient can be rewritten in a compact form,

fn = κNthn+ Γn−1→n
κ(Nth + 1)n+ Γn→n−1

. (5.18)

The properties of the recursion coefficient are determined by the interplay of the resonator
excitation and decay rates, κNthn and κ(Nth + 1)n, and the corresponding effective atomic
pumping and decay rates, Γn→n+1 and Γn+1→n. The effective pumping and relaxation
rates vanish at the roots ni0 of the coupling matrix element 〈n|A |n+ 1〉. The recursion
coefficient fn has the following properties:

• The recursion coefficient for pure σx coupling, fn(θ = π/2), is an upper bound for
the recursion coefficient fn(θ) at arbitrary mixing angles 0 ≤ θ < π/2,

fn(θ) ≤ fn
(
π

2

)
,
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Figure 5.2.: Recursion coefficient fn of a single-atom laser. The dotted blue line
represents fn for a conventional laser, i.e., θ = π/2. The solid red line represents fn for a
laser with 90% σz coupling, i.e., θ = π/10. Arrows indicate the maximum of the photon
distribution for a conventional laser, ncl

m, for the laser with additional σz couplings, nm,
and the first root of the coupling matrix element, n1

0. Plot parameters are g = 0.0067ω,
Γ↑ = 0.006ω, Γ↓ = 0.0001ω, Γ∗ϕ = 0.001ω, ∆ = 0ω, Nth = 0, and κ = 1× 10−7 ω.

because of the following reason: As discussed in Sec. 5.3 the matrix elements
〈n|A |n+ 1〉 have an upper bound 〈n|A |n+ 1〉 ≤

√
n+ 1, where the equality holds

for θ = π/2. This implies the following bound on the effective pumping rates:

Γn→n+1/n+1→n ≤
A(n+ 1)

1 + 2A
(

∆2

4g2
Γ1
Γϕ + n+ 1

)Γ↑/↓ .

For typical lasing parameters we have Γ↑ > Γ↓, which finally yields

fn(θ) ≤ fn
(
π

2

)
=

κNthn+ Γ↑ An
1+2A

(
∆2
4g2

Γ1
Γϕ

+n
)

κ(Nth + 1)n+ Γ↓ An
1+2A

(
∆2
4g2

Γ1
Γϕ

+n
) .

• For a resonant atom, ∆ = 0, and 1
A = Γ1Γϕ

2g2 � 2n the recursion coefficient fn(π/2) is
independent of the coupling strength g. In this regime the maximum of the photon
distribution depends only on the bare pumping and loss rates Γ↑, Γ↓, and κ.

• The photon statistics ρ(n) has a local maximum at photon numbers nm where the
conditions fnm = 1 and f ′nm < 0 hold. For a conventional laser with pure σx coupling
fn(π/2) is a monotonically decreasing function and there is exactly one maximum of
the photon distribution, situated at

ncl
m = 1

2

(Γ↑ − Γ↓
κ

− 1
A

)
− ∆2

4g2
Γ1
Γϕ

.
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For generalized couplings there are roots ni0 of the coupling matrix elements where
fn takes the value

fni0
= Nth
Nth + 1 < 1 .

Hence, near each root of the coupling matrix element fn(θ) deviates from the conven-
tional recursion coefficient, fn(π/2), and drops down to the value fni0 < 1. Therefore,
near each root ni0 of the coupling matrix element the conditions fn = 1 and f ′n < 0
are fulfilled and additional local maxima of the photon statistics occur.

• For typical lasing experiments with artificial atoms at low temperature, it holds
Nth ≈ 0. Then, the recursion coefficient for a conventional laser, fn(π/2), reduces to

fn

(
π

2

)
∝ Γ↑

2κ
1
n
.

A similar behavior is found for fn(θ) at arbitrary mixing angles θ: For a sufficiently
small effective relaxation rate, Γn→n−1 � κn, the recursion coefficient is approximated
by

fn(θ) ≈ Γn−1→n
κn

.

For photon numbers n far away from the roots ni0 of the coupling matrix elements
the right-hand side simplifies to the same form as fn(π/2),

fn(θ) ≈ Γ↑
2κ

1
n
. (5.19)

However, close to the roots of the coupling matrix elements, i.e, if n ≈ ni0 for an index
i ∈ N, the recursion coefficient fn(θ) deviates significantly from the conventional
behavior and is dominated by the dependence of the coupling matrix elements on the
photon number,

fn(θ) ≈ Γn−1→n
κni0

= 2g2Γ↑
Γ1Γϕκ

|〈n− 1|A |n〉|2

ni0
. (5.20)

The range of photon numbers around the roots ni0 where fn(θ) deviates significantly
from fn(π/2), is defined by the following condition:

|〈n− 1|A |n〉|2 � Γ1Γϕ
4g2 .

This implies that the deviation range increases if the bare pumping, relaxation, and
dephasing rates are chosen large or the coupling strength is chosen small.

• Depending on the values of the lasing parameters κ, Γ↑, and Γ↓ the recursion coefficient
is bound from above by

fn(θ) ≤ f1(θ) ≤ min
(

Γ↑
Γ↓
,

Γ↑
2κ

)
.
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5.4.3. Numerical methods to calculate the photon statistics

Equation (5.16) can be evaluated numerically in order to obtain the photon statistics
ρ(n) ≡ ρn,n in a range of photon numbers [nlower, nupper]. The boundaries nlower and nupper
should be chosen such that

1. the photon statistics ρ(n) has probabilities close to zero at the edges of the interval,
for instance ρ(nupper) = ρ(nlower) = O(10−100), and

2. all local maxima of the photon statistics with a probability of the order of unity are
situated inside [nlower, nupper]. This condition is automatically fulfilled if fn > 1 holds
for all n < nlower and fn < 1 holds for all n > nupper.

Two numerical approaches to solve Eq. (5.16) have been implemented in Wolfram
Mathematica, version 9.0.1.0, and are described in the following.

First, the recursion relation (5.16) is evaluated directly. Therefore, an arbitrary initial
photon number ni ∈ [nlower, nupper] and an arbitrary initial value ρ(ni) = ρi are cho-
sen. Using Eq. (5.16) the values of ρ(n) for all photon numbers in the considered range
[nlower, nupper] are calculated iteratively, starting from ni. Once ρ(n) has been calcu-
lated for all n ∈ [nlower, nupper], the probability distribution is renormalized such that the
normalization condition of the density matrix is fulfilled,

Trn (ρres) ≈
nupper∑
n=nlower

ρ(n) != 1 . (5.21)

The trace over the resonator states is restricted to the interval [nlower, nupper] because
we assumed that the photon statistics has only peaks of the order of unity inside this
interval and that ρ(n) vanishes at the edges of the interval. In order to ensure numerical
convergence of this algorithm the initial photon number ni should be chosen close to the
actual maximum of the photon statistics, nm, and the initial value of the distribution, ρi,
should be chosen not too small, e.g., of the order of unity.

Alternatively, we calculate the exponent Rn of the photon statistics,

ρn,n = e−Rn . (5.22)

Then, Eq. (5.16a) takes the form

Rn = − log (fn) +Rn−1 . (5.23)

In order to calculate the exponent Rn in the range [nlower, nupper], we choose an arbitrary
initial value for Rnlower and evaluate Eq. (5.23) iteratively for all photon numbers up to
nupper. There is a photon number next where the exponent Rn takes its minimal value
Rnext . As last step before calculating the actual photon statistics ρ(n), Rn is shifted by
the value of this minimum,

Rn → R̃n = Rn −Rnext .

This shift ensures that the photon statistics ρ(n) obtained by applying Eq. (5.22) on R̃n
has approximately the right order or magnitude: R̃next = 0 corresponds to the main peak
of ρ(n), which then has the probability ρ(next) = 1. Finally, ρ(n) is normalized to unity by
imposing the condition (5.21).

Figure 5.3 compares numerical results for the photon statistics ρ(n) obtained by the two
different algorithms. If they are implemented in Mathematica using symbolic calcula-
tion, both algorithms yield identical results. However, in a purely numeric programming
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Figure 5.3.: Comparison of the numerical methods to calculate a double-peaked photon
statistics. The solid red curve of the main plot is obtained using the direct evaluation
of Eq. (5.16) whereas the coinciding dotted blue curve represents result obtained from
the logarithmized recursion relation (5.22). The numerical differences of both results are
smaller than 7× 10−13. Inset: recursion coefficient fn. Plot parameters are g = 0.015ω,
θ = π/10, Γ↑ = 0.006ω, Γ↓ = 0ω, Γ∗ϕ = 0.001ω, ∆ = 0ω, κ = 1.384 × 10−7 ω, and
Nth = 0.

language the direct evaluation of the recursion relation is expected to be numerically less
stable because of the following reasons: Away from the main peaks the photon statistics ρ(n)
takes very small values, e.g., of the order of 10−350 at n = 15450. These values may easily
underflow the range of floating point values representable on a computer. Furthermore,
multiplication of small numbers is prone to numerical errors. In the direct evaluation
of Eq. (5.16) such a multiplication is performed in every iteration step and numerical
errors add up. Hence, in a purely numeric programming language a single-peak photon
statistics is calculated properly when the starting photon number ni is chosen close to
the maximum photon number nmax. But if the photon statistics has two or more peaks,
the numerical results may diverge at the peaks far away of the initial photon number ni.
The logarithmic evaluation circumvents these problems because the values of Rn are of an
order of magnitude that can easily be represented by a computer. Second, multiplication
is replaced by addition circumventing numerical errors of multiplication of very small
numbers.

In conclusion, in a symbolic programming language like Mathematica both algorithms
yield identical results, shown in Fig. 5.3, which is also a crosscheck of the implementation.
However, in a purely numeric evaluation the evaluation of the logarithmized recursion
relation (5.22) is expected to be numerically more stable.

5.5. Photon-number squeezing

A new feature of a laser built out of artificial atoms with additional longitudinal couplings
to the radiation field is the presence of roots of this coupling. This changes the recursion
coefficient fn significantly compared to a conventional laser. In this section we examine the
impact of these roots on the photon statistics ρ(n). The photon statistics is expected to
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Figure 5.4.: Photon statistics of a single-atom laser. Red dots represent the photon
statistics corresponding to the recursion coefficient fn plotted in red in Fig. 5.2, i.e., 90%
σz coupling or a mixing angle θ = π/10. Inset: Coupling matrix element. The first root
of the coupling matrix element at n1

0 = 22598 causes the photon statistics to be peaked
at the photon number nm = 21854 with a photon-number expectation value 〈n〉 = 21851
and a Fano factor F = 0.062 in the cavity frame. The filled faint blue curve represents the
Poissonian photon statistics of a conventional laser operating at the same photon-number
expectation value 〈n〉, which has a Fano factor F = 1. Plot parameters are g = 0.0067ω,
Γ↑ = 0.006ω, Γ↓ = 0.0001ω, Γ∗ϕ = 0.001ω, ∆ = 0ω, Nth = 0, and κ = 1× 10−7 ω.

deviate significantly from the one of a conventional laser if its photon-number expectation
value 〈n〉 is close to a root ni0 of the coupling matrix element. The red dots in Fig. 5.4 are
numerical results for the photon statistics ρ(n) corresponding to such lasing parameters.
We compare this photon statistics to a Poissonian distribution with the same photon
number expectation value 〈n〉, which is the result obtained for a conventional laser with
only σx couplings (filled faint blue curve). For the given lasing parameters the photon
statistics obtained for a laser with additional longitudinal couplings is much narrower than
a Poissonian distribution, i.e., the laser has a sub-Poissonian or photon-number squeezed
statistics. We use the Fano factor introduced in chapter 3 to quantify the squeezedness of
the photon statistics ρ(n).

5.5.1. Corrections to the Fano factor due to the polaron transformation

In Sec. 5.2 we introduced the polaron frame with the basis states |σ, n〉. All calculations in
this chapter are performed in this basis. In particular, the photon statistics ρ(n) is defined
in the polaron frame. However, the Fano factor F given by Eq. (3.2) is defined with respect
to the cavity photon states |nc〉, i.e., in the notation of this chapter it has the form

F =
〈
n2

c
〉
− 〈nc〉2

〈nc〉
.

In order to calculate the Fano factor F out of a photon statistics in the polaron frame the
expectation values

〈
n2

c
〉
and 〈nc〉 have to be transformed to the polaron frame, which gives
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rise to additional correction terms. For an arbitrary operator O it holds

〈Oc〉 =
∑
n,σ

〈σ, nc| ρcOc |σ, nc〉

=
∑
n,σ

〈σ, nc|UU †ρcUU
†OcUU

† |σ, nc〉

=
∑
n,σ

〈σ, n| ρOp |σ, n〉 ,

where ρ and ρc are the density matrices in the polaron and the cavity frame, respectively.
The polaron-transformed operators np and n2

p are given by

np = U †a†aU = a†a− ξ
(
a+ a†

)
+ ξ2 , (5.24a)

n2
p = a†aa†a− ξ

(
a†a

(
a+ a†

)
+
(
a† + a

)
a†a

)
+ ξ2

(
a2 +

(
a†
)2

+ 4a†a+ 1
)
− 2ξ3

(
a+ a†

)
+ ξ4 , (5.24b)

ξ = p0σz . (5.24c)

For the stationary density matrix the relations ρσ,n;σ,n±1 = 0 and ρσ,n;σ,n±2 = 0 hold [41].
Hence, all terms containing an odd power of field operators and all terms proportional to
a2 and (a†)2 vanish, yielding

F =
∑∞
n=0

(
n2 + 2p2

0n
)
ρn,n − (

∑∞
n=0 nρn,n)2 + p2

0∑∞
n=0 nρn,n + p2

0
.

For typical lasing parameters we have p2
0 � 1 � 〈n〉, which allows to rewrite the Fano

factor in the following form:

F = Fp + 2p2
0 ,

Fp =
〈
n2〉− 〈n〉2
〈n〉

,

where Fp is the Fano factor calculated in the polaron frame out of the polaron-frame photon
statistics ρ(n). For the single-atom case the correction 2p2

0 � 1 does not change the value
of Fp significantly. For instance, for the photon statistics shown in Fig. 5.4 we obtain
Fp = 0.0621 in the polaron frame and F = 0.0622 in the cavity frame. However, for the
multi-atom case discussed in Sec. 5.10 larger corrections may arise, depending on the lasing
parameters.

5.5.2. An estimate of the Fano factor

The results of the previous section are sufficient to calculate F and Fp numerically. However,
in order to gain insight into the physics of photon-number squeezing we derive an estimate
of the Fano factor Fp in the polaron frame. This estimate connects the value of Fp to
the slope of the recursion coefficient fn at the photon number nmax corresponding to the
maximum of the photon statistics.

As discussed in Sec. 5.4 the position nmax of the maximum of the photon statistics is
defined by fnmax = 1 and f ′nmax < 0. We linearize fn around the photon number nmax,

fn ≈ f lin
n = 1− c(n− nmax) , (5.25)

where c = −f ′nmax > 0 is the absolute value of the slope of the recursion coefficient fn at
nmax. If c is large compared to the slope of fn for pure σx coupling, the photon statistics
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ρ(n) drops to zero in the vicinity of nmax faster than a Poissonian distribution. Then, the
photon statistics ρ(n) can be calculated using the linearized recursion relation f lin

n because
it is already close to zero in regions where the deviation between fn and f lin

n becomes
significant. Using Eq. (5.25) we obtain the following photon statistics:

ρlin(n) =
{
ρ0(−c)n

(
1− 1

c − nmax
)
n

0 ≤ n < nmax + 1
c ,

0 otherwise .

The two cases arise from the fact that the linearized recursion coefficient is negative for
photon numbers larger than nmax + 1/c, yielding an unphysical probability distribution.
We introduced the Pochhammer symbol

(x)n = x(x+ 1) . . . (x+ n− 1) = Γ(x+ n)
Γ(x) .

The constant ρ0 is determined by the normalization condition
∑∞
n=0 ρ(n) = 1 and is bound

from above by the corresponding value of a Poissonian distribution, ρ0 . e−nmax .

For typical lasing setups c � e−nmax is fulfilled. Then, the following expressions are
obtained for the Fano factor and the photon number expectation value by using ρlin(n):

〈n〉lin = nmax − 1 , (5.26a)

Flin = 1
c

1
〈n〉lin

= 1
c

1
nmax − 1 . (5.26b)

In order to obtain a small Fano factor F < 1 a large photon-number expectation value
〈n〉 ≈ nmax and a steep slope c of the recursion coefficient at nmax are needed. The
numerical value of c is smaller than unity because the recursion coefficient fn decreases
very slowly as a function of n. Therefore, c and nmax compete in order to get a small Fano
factor. For example, for the lasing parameters used in Fig. 5.2 we have nmax ≈ 2 × 105

and c ≈ 7 × 10−4. The value of c is, however, still larger than the one obtained for a
conventional laser, which would be c ≈ 5× 10−6.

5.5.3. Connection of squeezing and roots of the coupling matrix elements

The estimate (5.26b) allows for a physical interpretation how squeezing is connected to the
presence of roots of the coupling.

For a single-peaked photon statistics the photon-number expectation value 〈n〉 is approxi-
mately given by the position nmax of the maximum of the photon statistics. The photon
number nmax is determined by the conditions fnmax = 1 and f ′nmax < 0. Equations (5.17)
and (5.18) reveal that this conditions can be fulfilled in two different ways:

1. For photon numbers n far away from the roots ni0 of the coupling matrix element the
recursion coefficient fn coincides with the recursion coefficient of a conventional laser.
For a conventional laser there is a photon number ncl

max where the bare pumping and
loss rates Γ↑, Γ↓, and κ are in balance. This photon number ncl

max depends linearly
on Γ↑.

2. At the roots ni0 of the coupling matrix elements the interaction between atom and
resonator breaks down and fn drops to a value smaller than unity. Therefore, there
are additional photon numbers nadd

max close to the roots ni0 which also fulfill the criteria
of a local maximum of the photon statistics. Their positions nadd

max are defined by the
roots ni0 of the coupling matrix elements and, therefore, they depend on the quantity
p0 = g cos(θ)/ω, but they are independent of the bare pumping rate Γ↑.
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Figure 5.5.: Dependence of (a) the photon-number expectation value 〈n〉 and (b)
the Fano factor F on the lasing parameters. Strongly photon-number squeezed light is
obtained near each root ni0 of the coupling. The positions ni0 of the roots decrease for
increasing p0 = g cos(θ)/ω. (c): Polaron-frame photon statistics ρ(n) for the three points
a, b, and c marked in the density plots. They represent a transition from a “trapped”
state to a conventional state. The Fano factor at the point b is much larger than unity
because the photon statistics is double-peaked. (d): Photon-number expectation value
〈n〉 as a function ofMΓ↑/κ for a fixed value of p0. This figure is a cut through the density
plot (a) along the dashed line indicated there. 〈n〉 increases linearly with the effective
pumping rate, but it is trapped at roots of the coupling matrix elements and takes a
constant value for a certain range of pumping rates. Plot parameters are M = 1, Nth = 0,
∆ = 0ω, Γ↓ = Γ∗ϕ = 0.0001ω, κ = 1× 10−7 ω, and θ = π/10. g ∈ [0.003ω, 0.015ω] and
Γ↑ ∈ [0.0005ω, 0.01ω]. Other values of κ, M � 100, and 0 < θ < π/4 yield qualitatively
the same plot.
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In Fig. 5.5a the photon-number expectation value 〈n〉 is plotted as a function of the pumping
rate Γ↑ and the coupling strength g. For a fixed coupling strength g the photon-number
expectation value 〈n〉 increases linearly with the pumping rate as long as it is far away
from roots ni0 of the coupling matrix elements. This is the usual scaling behavior of a
conventional laser, 〈n〉 ≈ ncl

max ∝ Γ↑, corresponding to the first scenario mentioned above.
However, in the vicinity of a root ni0 the photon number 〈n〉 gets “trapped” by this root,
〈n〉 ≈ nadd

max ≈ ni0, and keeps constant for a certain range of pumping rates Γ↑. This trapping
of the photon number is due to the breakdown of the coupling between the atom and the
resonator and corresponds to the second scenario. It is clearly visible in Fig. 5.5d, where a
cut through the density plot 5.5a at a constant coupling strength g is shown.

The photon statistics ρ(n) describes the fluctuations of the photon number around its
expectation value 〈n〉. The fluctuations arise as follows: For photon numbers n < 〈n〉
we have fn > 1, i.e., the pumping process dominates and drives the system back to the
photon-number expectation value. Likewise, for n > 〈n〉 losses dominate and, again, the
system is driven back to the photon-number expectation value. Figure 5.5b shows that for
the first scenario, 〈n〉 ≈ ncl

max, the fluctuations have a Poissonian statistics characterized
by a Fano factor F = 1 (cf., for instance, point “a” in Fig. 5.5b), which is the expected
outcome for a conventional laser. However, if the photon-number expectation value 〈n〉 is
trapped by a root, 〈n〉 ≈ nadd

max, fluctuations are strongly suppressed, which corresponds to
a small Fano factor F � 1 (cf. point “c”).

This can be understood as follows: If the photon-number expectation value 〈n〉 ≈ nadd
max

is trapped by a root, the bare pumping rate Γ↑ is larger than the bare loss rates Γ↓ and
κ. This means that if there were not any roots of the coupling matrix elements, the
laser would have a much larger photon-number expectation value 〈n〉, but it is trapped at
〈n〉 ≈ nadd

max because of the breakdown of the effective pumping rates. If some loss process
decreases the photon-number slightly, n < nadd

max, the coupling to the radiation field becomes
nonzero again and the strongly pumped atom compensates the photon loss in the resonator
immediately, driving the system back to the photon-number expectation value 〈n〉 ≈ nadd

max.
Mathematically, the sudden increase in the photon creation rate for n < nadd

max is represented
by the inverse slope 1/c in the estimate (5.26b) of the Fano factor.

For some values of the pumping strength in Fig. 5.5b a Fano factor F � 1 is found. This
occurs at the transition from a trapped state with a constant photon-number expectation
value 〈n〉 to a conventional state with a linear scaling of 〈n〉 with the bare pumping rate
Γ↑. An example of such a state is marked by the point “b” in Fig. 5.5b. At this transition
the photon statistics is double-peaked and, therefore, the Fano factor is much larger than
unity. The change of the photon statistics at such a transition is shown in Fig. 5.5c.

The axes in Fig. 5.5 are scaled by the quantities MΓ↑/κ and p0 = g cos(θ)/ω. The latter
determines the position of the roots ni0 of the coupling. As shown by Eq. (5.19) the factor
MΓ↑/κ represents the dominant dependence of the recursion coefficient fn on the lasing
parameters. The factor M arising for a multi-atom setup is derived in Sec. 5.10.2. Because
of this scaling of the axes the shown behavior of 〈n〉 and F is qualitatively the same for
setups with a different number of atoms, 1 ≤M � 100, a different resonator decay rate κ,
or a different mixing angle 0 < θ � π/4.

In conclusion, the roots of the coupling matrix elements act like a valve that inhibits
an increase of the photon number at ni0 by suppressing the coupling of the atom to the
resonator. Fluctuations around 〈n〉 are the more suppressed the more suddenly the coupling
between atom and resonator breaks down in the vicinity of ni0, i.e., the more quickly the
valve opens and closes. Mathematically, this is expressed by the inverse slope 1/c of the
recursion coefficient in the estimate (5.26b) of the Fano factor. In order to obtain a strongly
photon-number squeezed state the lasing parameters have to be chosen such that the
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photon-number expectation value 〈n〉 is situated close to a root ni0 of the coupling matrix
elements.

5.6. Field strength in the resonator cavity

In this section we derive the field strength of the electric field in a coplanar waveguide
resonator as a function of the photon-number expectation value 〈n〉. A coplanar waveguide
resonator consists of a central box-shaped metallic conductor that is flanked by two grounded
metal planes which are separated from the conductor by narrow gaps. The central conductor
is assumed to be oriented along the z-axis from z = 0 to z = L. Its width and height are
denoted by W and H, respectively. The canonically quantized electromagnetic field (cf.
Sec. 3.1 and Ref. [35]) of a single resonator mode is

E(z, t) =
√

~ω
ε0εrV

sin(kz)
(
ae−iωt + a†eiωt

)
.

The wave vector k must satisfy the boundary conditions, e.g., E(0, t) = E(L, t) = 0 if both
sides of the conductor are connected to ground. The quantization volume is denoted by
V = LHW and εr is the effective electric permittivity. The electric field strength in the
resonator is √〈

|E(z, t)|2
〉

= 2
√

~ω
2ε0εrV

sin(kz)
√
〈n〉+ 1

2 ≈ E0 sin(kz)
√
〈n〉 .

Typical values of the resonator parameters are [42]

L ≈ 20 mm , εr ≈ 5 ,
W ≈ 10µm , f ≈ 5 GHz ,
H ≈ 200 nm .

Hence, the prefactor E0 is of the order of unity when measured in SI units and the
dependence of the electric field strength on the photon-number expectation value is√〈

|E(z, t)|2
〉
≈ 1.9 V

m sin(kz)
√
〈n〉 .

5.7. Suppression of higher-order transition rates

For the solution of the quantum master equation (5.7) in Sec. 5.4 we simplified the
Hamiltonian by assuming that only the energy-conserving matrix elements 〈n|A |n+ 1〉 and
〈n+ 1|A† |n〉 are nonzero. However, the matrix elements 〈n|A |n+m〉 are in fact nonzero
for m 6= 1, too. In this subsection we show that there is a range of lasing parameters where
the energy-nonconserving processes corresponding to these matrix elements are suppressed.

The suppression of energy-nonconserving transitions is crucial for the existence of a photon-
number squeezed state. As shown in Fig. 5.6a, the roots of the matrix elements 〈n|A |n+m〉
do not coincide for different values of m. If energy-nonconserving transitions are not
suppressed, the lasing process is driven across the squeezing points near the roots ni0 of
the energy-conserving coupling matrix element 〈n|A |n+ 1〉: If the single-photon emission
breaks down at ni0, the two-photon emission takes over and increases the number of photons
in the resonator further. Similarly, single- and three-photon creation processes take over at
the roots of the two-photon matrix element 〈n|A |n+ 2〉 and the laser finally evolves into
a stationary state where the photon-number expectation value is defined by the balance of
the bare pumping and loss rates Γ↑, Γ↓, and κ. In general, this results in the Poissonian
photon statistics of a conventional laser.
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Figure 5.6.: Influence and suppression of energy-nonconserving transitions. (a): Matrix
elements |〈n|A |n+m〉| for m = 1 (solid blue), m = 2 (dashed red), m = 3 (dotted green),
and m = 4 (dash-dotted orange curve). Plot parameters are g = 0.0067ω and θ = π/10.
(b): Suppression of the two-photon transition rate Γn→n+2 (coinciding dash-dotted red
and dotted blue curves) compared to the single-photon transition rate Γn→n+1 (solid
red and dashed blue curves) at the maximum of the photon statistics, nm, for a small
bare pumping rate Γ↑ and θ � π/4. Because of approximations the two-photon rates are
only plotted close to the first root n1

0 of the coupling matrix elements. The red curves
correspond to the plot parameters of Fig. 5.2, i.e., g = 0.0067ω, θ = π/10, Γ↑ = 0.006ω,
Γ↓ = 0.0001ω, Γ∗ϕ = 0.001ω, ∆ = 0ω, Nth = 0, and κ = 1× 10−7 ω. The blue curves are
calculated for ten times larger pumping rates Γ↑ = 0.06ω, Γ↓ = 0.001ω, and Γ∗ϕ = 0.01ω.

In Sec. 5.4.2 we already introduced the single-photon transition rates (5.17),

Γn→n+1 = A
1 + 2ANn

|〈n|A |n+ 1〉|2 Γ↑ and

Γn+1→n = A
1 + 2ANn

|〈n|A |n+ 1〉|2 Γ↓ .

These single-photon transition rates vanish at the roots ni0 of the coupling matrix element
〈n|A |n+ 1〉. In order to prevent the take-over of energy-nonconserving transitions, higher-
order transition rates should be suppressed for all photon numbers n near ni0 where the
photon statistics ρ(n) is nonzero. A complete analysis of higher-order effects for arbitrary
photon numbers is only possible within a numerical solution of the master equation (5.7).
However, near ni0 the single-photon matrix elements vanish and the calculations presented in
Sec. 5.4 can be performed including the two-photon transition rates. We obtain a modified
version of Eq. (5.15) that is valid near ni0 and in which the single-photon transition rates
have been replaced by two-photon transition rates,

d
dtρn,n = κ(Nth + 1)(n+ 1)ρn+1,n+1 − κNth(n+ 1)ρn,n

− κ(Nth + 1)nρn,n + κNthnρn−1,n−1

+ Γn+2→nρn+2,n+2 − Γn→n+2ρn,n − Γn→n−2ρn,n + Γn−2→nρn−2,n−2 .

The structure of the two-photon transition rates is

Γn→n+2 = A
1 + 2ANn

|〈n|A |n+ 2〉|2 Γ↑ ,

Γn+2→n = A
1 + 2ANn

|〈n|A |n+ 2〉|2 Γ↓ ,

where the term Nn in the denominator of the single-photon rates has been replaced by

Nn = (∆− ω)2

4g2
Γ1
Γϕ

+ |〈n|A |n+ 2〉|2 .
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We now derive suitable values of the lasing parameters in order to suppress the two-photon
transition rates. The positions ni0 of the roots should be fixed, hence p0 = g

ω cos θ is
assumed to be constant. This allows to eliminate g, yielding

Γn→n+1 = p2
0ω

2 tan2(θ)X(n, 1)
1 + ∆2Γ−2

ϕ + 2p2
0ω

2 tan2(θ)X(n, 1)
Γ↑ ,

Γn→n+2 = p4
0ω

2 tan2(θ)X(n, 2)
1 + (∆− ω)2Γ−2

ϕ + 2p4
0ω

2 tan2(θ)X(n, 2)
Γ↑ .

The term X(n,m) contains all parts of the matrix elements that depend neither on θ nor
on ω (note that p2

0 is a constant),

X(n,m) = 2
Γ1Γϕ

m24m−1e−4p2
0

n!
(n+m)!

(
Lmn (4p2

0)
)2

.

For typical lasing parameters it holds ∆ = 0 and ω � Γϕ. This allows to simplify the
rates,

Γn→n+1 = p2
0ω

2 tan2(θ)X(n, 1)
1 + 2p2

0ω
2 tan2(θ)X(n, 1)

Γ↑ ,

Γn→n+2 = p4
0ω

2 tan2(θ)X(n, 2)
ω2Γ−2

ϕ + 2p4
0ω

2 tan2(θ)X(n, 2)
Γ↑ .

In the limit θ → π/2 both rates yield

lim
θ→π/2

Γn→n+1 = lim
θ→π/2

Γn→n+2 = Γ↑
2 ,

so there is no suppression. On the other hand, for each ω there is an angle θ → 0 such
that 2p2

0ω
2 tan2(θ)X(n, 1)� 1 and 2p4

0 tan2(θ)X(n, 2)� Γ−2
ϕ hold near ni0. In this limit

we obtain

Γn→n+1 = p2
0ω

2X(p, 1)θ2Γ↑ ,
Γn→n+2 = p4

0X(p, 1)Γϕθ2Γ↑ = R(n)Γn→n+1 ,

where the prefactor R(n) is given by

R(n) = p2
0

(Γϕ
ω

)2 X(n, 2)
X(n, 1) .

We want p2
0 to be constant and

X(n, 2)
X(n, 1) = 16

n+ 2

(
L2
n(4p2

0)
L1
n(4p2

0)

)2

is a function of n that diverges at ni0 and fulfills X(n, 2)/X(n, 1) . 1 for all photon numbers
where ρ(n) takes finite values. Therefore, the only way to suppress the prefactor R(n) is to
choose Γϕ small compared to ω. The condition Γϕ � ω implies small pumping rates.
Once the two-photon rates are suppressed, similar arguments are applicable to suppress
three- and multi-photon rates.
In conclusion, if a secular approximation or, equivalently [43], a rotating wave approximation
applies, i.e., if the rates Γ↑, Γ↓, and Γ∗ϕ are much smaller than ω, higher-order transitions
are suppressed and it is possible to obtain a photon-number squeezed state near a root ni0
of the coupling matrix element 〈n|A |n+ 1〉.
As the suppression relies on the case θ � π/2 a large σz coupling of the atom to the
resonator is needed. Figure 5.6b illustrates the suppression of the two-photon rates for a
mixing angle θ = π/10 and two sets of lasing parameters whose pumping rates differ by
one order of magnitude.
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5.8. Pumping process and Lindblad superoperators in the polaron frame

In section 5.2 Lindblad superoperators in the polaron frame of the form of Eqs. (2.8)
and (2.9) had been postulated. Now, a detailed derivation of these Lindblad terms is given.

5.8.1. Pumping and relaxation

An experimental realization of a pumping process needs at least a three level system. Two
levels are connected by the lasing transition and the third one, |1〉, is an intermediate level
for the pumping process. We discuss the following three-level pumping process:

. . . −→ |↓, n〉 −→ |1, n〉 −→ |↑, n〉 lasing transition−→ |↓, n+ 1〉 −→ . . . .

It increases the number of photons in the resonator in each pumping step by one.

In order to derive effective pumping rates between the two levels of the lasing transition,
the third level has to be accounted for explicitly. Therefore, the initial Hamiltonian (5.2)
is extended to

H ′1 = ~ωa†a+ 1
2εσz + ~g

(
cos(θ)σz + sin(θ)σx

) (
a+ a†

)
+ ε1 |1〉 〈1| .

The energy of the intermediate pumping state |1〉 is denoted by ε1. The atom couples
linearly to two external bosonic baths that provide the energy for the pumping process,

H = H ′1 +Hbath
1,↓ +Hbath

1,↑ + ~Q1,↓X1,↓ + ~Q1,↑X1,↑ ,
Q1,↓ = |1〉 〈↓|+ |↓〉 〈1| ,
Q1,↑ = |1〉 〈↑|+ |↑〉 〈1| .

The bath Hamiltonians Hbath
1,↑/↓ and the bath coupling operators X1,↑/↓ need not be specified

explicitly because they are integrated out. Only the spectral functions of the baths enter
the results. Now, σx and σz are generalized Pauli matrices defined by

σz |↑〉 = + |↑〉 , σx |↑〉 = |↓〉 ,
σz |↓〉 = − |↓〉 , σx |↓〉 = |↑〉 ,
σz |1〉 = 0 , σx |1〉 = 0 .

The polaron transformation (5.4) maps H ′1 to a Jaynes-Cummings-like Hamiltonian and
modifies the coupling operators,

Hp = H ′1,p +Hbath
1,↓ +Hbath

1,↑ + ~O1,↓X1,↓ + ~O1,↑X1,↑ ,

H ′1,p = ~ωa†a+ 1
2εσz + ε1 |1〉 〈1|+ ~g

(
σ+

e−ipxe−ip

~g
+ σ−

eipxeip

~g

)
+ const ,

O1,↓ = U †Q1,↓U = |1〉 〈↓| e−ip + eip |↓〉 〈1| ,
O1,↑ = U †Q1,↑U = |1〉 〈↑| eip + e−ip |↑〉 〈1| .

If we replace HS = H ′1,p, HR = Hbath
1,↓ +Hbath

1,↑ , andHC = O1,↓X1,↓+O1,↑X1,↑, the derivation
of the quantum master equation outlined in Sec. 2.2 applies. By tracing out the bath
degrees of freedom iteratively we obtain

d
dtρ(t) = − i

~

[
H ′1,p, ρ(t)

]
+

∑
O∈{O1,↓,O1,↑}

[
Õ+ρ(t)O +Oρ(t)Õ− −OÕ+ρ(t)− ρ(t)Õ−O

]
,
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where the operators Õ± are defined in Eq. (2.6).

We evaluate the operators Õ± in the lasing basis |↑ / ↓ /1, n〉. As discussed in Sec. 5.7
a rotating wave approximation must hold in order to suppress higher-order transitions.
Hence, we can exploit the relation g � ω and neglect the interaction term in H ′1,p for the
following calculation. Then, the states of the lasing basis are eigenstates of the system and
the matrix elements of the coupling operators Õ± are given by

〈σ, n| Õ±
∣∣σ′,m〉 =

∫ 0

−∞
dτ ei(Eσ,n−Eσ′,m)τ/~ 〈σ, n|O

∣∣σ′,m〉 〈XI(0)XI(±τ)〉R

= 1
2S±

(
∓
Eσ,n − Eσ′,m

~

)
〈σ, n|O

∣∣σ′,m〉 .
An expansion of the coupling operators in the lasing basis yields

Õ1,↓,+ =
∑
n,m

[
1
2S

1,↓
+

(
−E1,n − E↓,m

~

)
〈n| e−ip |m〉 |1, n〉 〈↓,m|

+1
2S

1,↓
+

(
E1,n − E↓,m

~

)
〈m| eip |n〉 |↓,m〉 〈1, n|

]
,

Õ1,↓,− =
∑
n,m

[
1
2S

1,↓
−

(
E1,n − E↓,m

~

)
〈n| e−ip |m〉 |1, n〉 〈↓,m|

+1
2S

1,↓
−

(
−E1,n − E↓,m

~

)
〈m| eip |n〉 |↓,m〉 〈1, n|

]
,

Õ1,↑,+ =
∑
n,m

[
1
2S

1,↑
+

(
−E1,n − E↑,m

~

)
〈n| eip |m〉 |1, n〉 〈↑,m|

+1
2S

1,↑
+

(
E1,n − E↑,m

~

)
〈m| e−ip |n〉 |↑,m〉 〈1, n|

]
,

Õ1,↑,− =
∑
n,m

[
1
2S

1,↑
−

(
E1,n − E↑,m

~

)
〈n| eip |m〉 |1, n〉 〈↑,m|

+1
2S

1,↑
−

(
−E1,n − E↑,m

~

)
〈m| e−ip |n〉 |↑,m〉 〈1, n|

]
.

The matrix elements 〈n| e±ip |m〉 are nonzero for m 6= n and, therefore, allow for pumping
steps that create or annihilate more than one photon per step. Contrary to the lasing
transition these pumping processes create or annihilate photons incoherently and they have
to be suppressed by suitably chosen spectral functions of the baths.

In order to define the properties of the spectral functions, the pumping process has to be
specified in more detail. We choose ε1 > ~ω/2 > 0, i.e., the pumping process is now given
by

. . . −→ |↓, n〉 pumping−→ |1, n〉 relaxation−→ |↑, n〉 lasing transition−→ |↓, n+ 1〉 −→ . . . .

Figure 5.7a shows a sketch of the level diagram in the lasing basis. In the pumping step the
energy ε1 + ~ω/2 = |−ε1 − ~ω/2| is absorbed out of the bath H1,↓. In the relaxation step
the energy ε1 − ~ω/2 > 0 is released into the bath H1,↑. Transition energies that create or
annihilate additional photons differ by an integer multiple of ~ω. Therefore, the spectral
functions of the baths have to be peaked sharply at ±ε1 − ~ω/2 and they have to be small
at all energies differing by an integer multiple of ~ω.
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Figure 5.7.: Pumping process. (a): Level diagram in the lasing basis. Green arrows
indicate a release of energy into the bath H1,↑, magenta arrows indicate an absorption of
energy out of the bath H1,↓. Dashed transitions have to be suppressed by the spectral
functions of the baths. (b): Spectral functions S1,↑ (solid red) and S1,↓ (dashed blue)
of the baths. A positive frequency Ω > 0 corresponds to a release of energy into the
bath, Ω < 0 corresponds to an absorption out of the bath. Solid and open circles indicate
desired and suppressed transitions, respectively. The transitions of the pumping process
are marked in green and magenta. Black circles correspond to undesired higher-order
processes and blue circles indicate transitions of the inverse pumping process. The plot
parameters are ε1 = 5ω, γ′ = 0.28ω, and γ = 0.08ω.

Figure 5.7b demonstrates that these conditions can be fulfilled by a spectral function of
a harmonic oscillator at infinite temperature for the pumping bath and by a Lorentzian
spectral function for the absorption bath,

S1,↓(Ω) = Spump(Ω) = S0√
(Ω2 − ω2

r )2 + 4γ2Ω2 ,

S1,↑(Ω) = Srelax(Ω) = S′0
π

γ′

(Ω− ωr)2 + γ′2
.

Alternatively, a harmonic oscillator at zero temperature could be used for the relaxation
bath. The spectral functions S1,↑ and S1,↓ have their resonance peaks at ωr = ε1 − ~ω/2
and ωr = −ε1−~ω/2, respectively. If the width parameters fulfill γ, γ′ ≈ 0.1ωr, the spectral
functions drop fast enough to suppress all undesired transitions. An experimental setup
providing a Lorentzian spectral function has been demonstrated recently [9].

Based on these assumptions, the spectral functions are rewritten as follows:

S1,↓
±

(
∓E1,n − E↓,m

~

)
= S1,↓

± (∓ω1,↓)δn,m ,

S1,↑
±

(
∓E1,n − E↑,m

~

)
= S1,↑

± (∓ω1,↑)δn,m ,

where ~ω1,↓/↑ = E1,n − E↓/↑,n. Now, we separate the terms of the Bloch-Redfield master
equation into those which connect diagonal elements of ρ to either diagonal or resonant
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off-diagonal matrix elements of ρ, and all other terms,

d
dtρ =− i

~

[
H ′1,p, ρ

]
+
∑
n

[
S1,↓(−ω1,↓)

∣∣∣〈n| e−ip |n〉∣∣∣2 · |1, n〉 〈↓, n| ρ |↓, n〉 〈1, n|
+S1,↓(ω1,↓)

∣∣∣〈n| eip |n〉∣∣∣2 · |↓, n〉 〈1, n| ρ |1, n〉 〈↓, n|
−
∣∣∣〈n| e−ip |n〉∣∣∣2 · (1

2S
1,↓
+ (−ω1,↓) |↓, n〉 〈↓, n| ρ+ 1

2S
1,↓
− (−ω1,↓)ρ |↓, n〉 〈↓, n|

)

−
∣∣∣〈n| eip |n〉∣∣∣2 · (1

2S
1,↓
+ (ω1,↓) |1, n〉 〈1, n| ρ+ 1

2S
1,↓
− (ω1,↓)ρ |1, n〉 〈1, n|

)]

+
∑
n

[
S1,↑(−ω1,↑)

∣∣∣〈n| eip |n〉∣∣∣2 · |1, n〉 〈↑, n| ρ |↑, n〉 〈1, n|
+S1,↑(ω1,↑)

∣∣∣〈n| e−ip |n〉∣∣∣2 · |↑, n〉 〈1, n| ρ |1, n〉 〈↑, n|
−
∣∣∣〈n| eip |n〉∣∣∣2 · (1

2S
1,↑
+ (−ω1,↑) |↑, n〉 〈↑, n| ρ+ 1

2S
1,↑
− (−ω1,↑)ρ |↑, n〉 〈↑, n|

)

−
∣∣∣〈n| e−ip |n〉∣∣∣2 · (1

2S
1,↑
+ (ω1,↑) |1, n〉 〈1, n| ρ+ 1

2S
1,↑
− (ω1,↑)ρ |1, n〉 〈1, n|

)]
+ terms connecting to non-resonant off-diagonal matrix elements .

All terms connecting diagonal matrix elements to non-resonant off-diagonal matrix elements
are neglected within a secular approximation. To justify this, we note that all rates in this
master equation are of the same order of magnitude, given by the product of a spectral
function and two matrix elements,

1
2S

1,↑/↓
± (±ω1,↑/↓) 〈n| eip |n〉

〈
n′
∣∣ e−ip ∣∣m′〉 .

As it turns out below, the rates connecting diagonal elements to themselves are proportional
to the bare pumping and relaxation rates Γ↑ and Γ↓. In Sec. 5.7 we demanded the condition
Γ↑,Γ↓,Γ∗ϕ � ω for the suppression of higher-order lasing transitions. Hence, all rates in the
above master equation are much smaller than ω and all rates to non-resonant off-diagonal
matrix elements can be neglected using a secular approximation.

The terms in big round brackets are simplified using the relations (2.7a) and (2.7b), yielding

1
2S

1,↓
+ (−ω1,↓) |↓, n〉 〈↓, n| ρ+ 1

2S
1,↓
− (−ω1,↓)ρ |↓, n〉 〈↓, n|

= S1,↓(−ω1,↓)
2 (|↓, n〉 〈↓, n| ρ+ ρ |↓, n〉 〈↓, n|) + iP

∫ dΩ
2π

S1,↓(Ω)
−ω1,↓ − Ω [|↓, n〉 〈↓, n| , ρ] ,

1
2S

1,↓
+ (ω1,↓) |1, n〉 〈1, n| ρ+ 1

2S
1,↓
− (ω1,↓)ρ |1, n〉 〈1, n|

= S1,↓(ω1,↓)
2 (|1, n〉 〈1, n| ρ+ ρ |1, n〉 〈1, n|) + iP

∫ dΩ
2π

S1,↓(Ω)
ω1,↓ − Ω [|1, n〉 〈1, n| , ρ] ,

and similar for the terms emerging from O1,↑. The terms involving the Cauchy principle
value integral P

∫
dΩ are an energy renormalization and the remaining terms have the
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usual form of a Lindblad superoperator,

ρ̇ =− i

~

[
H ′1,p, ρ

]
+
∑
n

[
Γ↓,n→1,n

2 (2 |1, n〉 〈↓, n| ρ |↓, n〉 〈1, n| − |↓, n〉 〈↓, n| ρ− ρ |↓, n〉 〈↓, n|)

+Γ1,n→↓,n
2 (2 |↓, n〉 〈1, n| ρ |1, n〉 〈↓, n| − |1, n〉 〈1, n| ρ− ρ |1, n〉 〈1, n|)

+Γ↑,n→1,n
2 (2 |1, n〉 〈↑, n| ρ |↑, n〉 〈1, n| − |↑, n〉 〈↑, n| ρ− ρ |↑, n〉 〈↑, n|)

+Γ1,n→↑,n
2 (2 |↑, n〉 〈1, n| ρ |1, n〉 〈↑, n| − |1, n〉 〈1, n| ρ− ρ |1, n〉 〈1, n|)

]
,

where the rates are defined as follows:

Γ↓,n→1,n = S1,↓(−ω1,↓)
∣∣∣〈n| e−ip |n〉∣∣∣2 , Γ↑,n→1,n = S1,↑(−ω1,↑)

∣∣∣〈n| eip |n〉∣∣∣2 ,

Γ1,n→↓,n = S1,↓(ω1,↓)
∣∣∣〈n| e−ip |n〉∣∣∣2 , Γ1,n→↑,n = S1,↑(ω1,↑)

∣∣∣〈n| eip |n〉∣∣∣2 .

Finally, the intermediate pumping state is eliminated and effective rates between the upper
and the lower lasing state are calculated. If the population of the intermediate pumping
state does not change, ρ̇1,n;1,n = 0, effective rates are given by

Γ↑ = Γ↓,n→↑,n = Γ↓,n→1,nΓ1,n→↑,n
Γ↓,n→1,n + Γ1,n→↑,n

= S1,↓(−ω1,↓)S1,↑(ω1,↑)
S1,↓(−ω1,↓) + S1,↑(ω1,↑)

∣∣∣〈n| eip |n〉∣∣∣2 , (5.27a)

Γ↓ = Γ↑,n→↓,n = Γ↑,n→1,nΓ1,n→↓,n
Γ↑,n→1,n + Γ1,n→↓,n

≈ 0 . (5.27b)

The rate Γ↓ vanishes because the single-peaked spectral function S1,↑ suppresses the
transition rate Γ↑,n→1,n ≈ 0. The matrix elements 〈n| eip |n〉 have roots at certain photon
numbers ni0′, but the first root of 〈n| eip |n〉 is situated at a larger photon number than the
first root of 〈n|A |n+ 1〉. Therefore, the pumping process allows to reach at least the first
root of the coupling matrix element 〈n|A |n+ 1〉 and a photon-number squeezed state can
be established, there.

In conclusion, pumping and relaxation processes can be modeled in the polaron frame by a
Lindblad superoperator as given by the first line of Eq. (2.9). Pure dephasing is covered in
the next subsection.

5.8.2. Pure dephasing

Pure dephasing is modeled with a σz coupling to the external bath,

H = H1 +Hbath
pd + ~QpdXpd ,

Qpd = σz .

The coupling operator Qpd is invariant under a polaron transformation so that the trans-
formed system is given by

Hp = H1,p +Hbath
pd + ~OpdXpd ,

Opd = σz .
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Again, the derivation of the master equation outlined in Sec. 2.2 is used by replacing
HS = H ′1,p, HR = Hbath

pd , and HC = OpdXpd. The Bloch-Redfield form of the master
equation is now

d
dtρ(t) = − i

~

[
H ′1,p, ρ(t)

]
+
[
Õpd,+ρ(t)Opd +Opdρ(t)Õpd,− −OpdÕpd,+ρ(t)− ρ(t)Õpd,−Opd

]
,

Õpd,± = 1
2S

pd
± (0)Opd .

We find that the Bloch-Redfield master equation is given by

d
dtρ(t) = − i

~

[
H ′1,p, ρ(t)

]
+ Spd(0) (σzρσz − ρ) ,

which corresponds to the standard form of a Lindblad superoperator for pure dephasing
with a pure-dephasing rate Γ∗ϕ = 2Spd(0). Combining this with the result of the previous
subsection we find that the atomic Lindblad superoperator describing pumping, relaxation,
and dephasing in the polaron frame is given by Eq. (2.9).

5.8.3. Resonator decay

Resonator decay is modeled using the following coupling to an external bath:

H = H1 +Hbath
res + ~QresXres ,

Qres = a+ a† .

The polaron transformed Hamiltonian is given by

Hp = H1,p +Hbath
res + ~OresXres ,

Ores = a+ a† − 2p0σz .

The Bloch-Redfield form of the master equation is

d
dtρ(t) = − i

~

[
H ′1,p, ρ(t)

]
+
[
Õres,+ρ(t)Ores +Oresρ(t)Õres,− −OresÕres,+ρ(t)− ρ(t)Õres,−Ores

]
,

Õres,± = 1
2S

res
± (±ω)a+ 1

2S
res
± (∓ω)a† − Sres

± (0)p0σz .

Similar to the derivation of the Lindblad superoperator for pumping and relaxation, the
terms in the Bloch-Redfield master equation are separated into those which connect diagonal
matrix elements or resonant off-diagonal matrix elements to other diagonal or resonant
off-diagonal matrix elements, and all other terms. Again, all rates in the master equation
are of the same order of magnitude and a secular approximation holds because of the
condition κ � ω. Therefore, all terms that do not connect diagonal matrix elements or
resonant off-diagonal matrix elements to similar terms are neglected in the Bloch-Redfield
master equation. The remaining terms can be rewritten as follows:

Õres,+ρOres +OresρÕres,− −OresÕres,+ρ− ρÕres,−Ores

= Sres(−ω)
(
a†ρa− 1

2
(
aa†ρ+ ρaa†

))
+ Sres(ω)

(
aρa† − 1

2
(
a†aρ+ ρa†a

))
+ 4p2

0S
res(0) (σzρσz − ρ) + iP

∫ ∞
0

dΩ
2π

(
Sres(Ω)
ω + Ω − Sres(Ω)

ω − Ω

) [
a†a, ρ

]
.
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Figure 5.8.: Influence of the mixing angle θ on squeezing. The plots correspond to
the four cases discussed in Sec. 5.9. (a): θ = π/2, n1

0 � ncl
max, F = 1. (b): θ = π/4,

nm < n1
0 < ncl

max, F = 0.16 but higher-order rates are not suppressed and drive the system
across the squeezed state. (c): θ = π/10, nm < n1

0 < ncl
max, F = 0.04, squeezed light is

produced. (d): θ = π/500, F = 0.75, the recursion coefficient decreases because of fn ∝ θ
and the steepness of the slope at nm decreases. Therefore, the Fano factor increases again.
Plot parameters are g = 0.0067ω, ∆ = 0ω, κ = 4.5× 10−8 ω, M = 1, and Nth = 0.

The last term is a renormalization of the resonator frequency that can be absorbed into the
system Hamiltonian. The first line on the right-hand side is the standard form of a Lindblad
superoperator for resonator relaxation. The spectral functions are given by Sres(−ω) = κNth
and Sres(ω) = κ(Nth + 1). Because of the additional σz coupling arising form the polaron
transformation, the bath Hbath

res has an influence on atomic pure dephasing, which is the
first term on the second line. This effect can be absorbed into the pure dephasing rate Γ∗ϕ
in the atomic Lindblad superoperator.

In conclusion, pumping, dephasing, and relaxation processes for the atom and the resonator
are modeled by standard Lindblad superoperators even after a polaron transformation.
The rates Γ↑, Γ↓ and Γ∗ϕ are effective rates, given by Eqs. (5.27a), (5.27b), and

Γ∗ϕ = 2
(
Spd(0) + 4p2

0S
res(0)

)
.

5.9. Influence of the mixing angle on squeezing

In Secs. 5.4 and 5.5 we showed that the creation of a photon-number squeezed state relies
on the roots of the coupling matrix element 〈n|A |n+ 1〉 and, therefore, on the presence of
a σz coupling to the radiation field. In this section we discuss the influence of the mixing
angle θ on squeezing and find that only mixing angles 0 < θ � π/4 actually allow for
squeezing.

The polaron transformation is a nontrivial unitary transformation for 0 ≤ θ < π/2. For any
mixing angle θ in this range the coupling matrix element 〈n|A |n+ 1〉 has roots at certain
photon numbers ni0. However, in order to get photon-number squeezed light the position
of one of these roots, e.g., the first one, n1

0, must be smaller than the photon number ncl
max

of the maximum of the photon statistics of a conventional laser with pure σx couplings.
The conventional photon number ncl

max is defined by the balance of the bare pumping and
loss rates in the system.

For θ ≈ π/2, i.e, pure σx coupling, p0 tends to zero and, therefore, the position of the
first root of the coupling matrix element tends to infinity. Hence, the first root is situated
beyond the photon number ncl

max of a conventional laser, n1
0 � ncl

max, and squeezing is not
possible for any set of realistic lasing parameters (Fig 5.8a). Instead, a Poissonian photon
statistics is observed with a photon-number expectation value 〈n〉 ≈ ncl

max.
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For π/4 . θ < π/2, we may find a root of the coupling matrix element at a photon number
smaller than ncl

max, n1
0 < ncl

max, by a suitable choice of lasing parameters. Then, a local
maximum of the photon distribution nm ≈ n1

0 < ncl
max exists that allows in principle for a

photon-number squeezed state. However, in this range of the mixing angle higher-order
transition rates are not suppressed and they will drive the system across the root of the
coupling at n1

0. The squeezed state cannot establish and the laser produces light with
a Poissonian statistics at the photon-number expectation value of a conventional laser,
〈n〉 ≈ ncl

m (Fig. 5.8b).

For 0 < θ � π/4 we still can satisfy the condition nm ≈ n1
0 < ncl

max and, now, higher order
rates are suppressed. Therefore, a photon-number squeezed state can be realized with an
average photon number 〈n〉 ≈ n1

0 (Fig. 5.8c).

For very small mixing angles θ → 0, i.e., almost pure σz coupling, the coupling matrix
elements are proportional to θ as shown by Eq. (5.10). Hence, for sufficiently small θ the
recursion coefficient is given by the approximation (5.20) for all photon numbers n. By
combining this with Eq. (5.10) we obtain a linear scaling of the recursion coefficient fn
with the mixing angle,

fn ∝
θ

κn
.

If the recursion coefficient fn tends to zero, the position of the maximum of the photon
distribution, nm, decreases. On the other hand, the position of the first root, n1

0, is bounded
from below by nmin

0 = limθ→0 p
2
0 = g

ω . Therefore, for sufficiently small mixing angles θ we
have nm < nmin

0 . As shown in Fig. 5.8d the slope of the recursion coefficient fn at the
photon number nm decreases. Therefore, the Fano factor increases and the laser intensity
decreases for a very small mixing angle θ → 0.

In conclusion, squeezed light is created for a mixing angle in the range 0 < θ � π/4 and
there is a trade-off between a good suppression of higher-order transitions, which demands
a small mixing angle θ, and a sufficient coupling between atom and resonator, which relies
on a not too small mixing angle θ.

5.10. Multi-atom lasing setups

5.10.1. Polaron transformation and mean-field Hamiltonian

In this section we generalize the results obtained so far to a multi-atom lasing Hamiltonian.
We consider M identical atoms, i.e., the generalized lasing Hamiltonian (5.1) takes now
the following form,

HM = ~ωa†a+
M∑
j=1

1
2εσ

j
z +

M∑
j=1

~g
(
cos(θ)σjz + sin(θ)σjx

) (
a† + a

)
.

The polaron transformation (5.4) is generalized to M atoms as well,

U = exp

ip M∑
j=1

σjz

 ,
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where the quantity p is still given by Eq. (5.3b). A polaron transformation of the Hamilto-
nian HM yields (cf. Appendix B.1)

H = ~ωa†a+
M∑
j=1

1
2εσ

j
z +

M∑
j=1

(
σj+e

−ipxe−ip + σj−e
ipxeip

)

− 2~g
2

ω
sin(θ) cos(θ)

M∑
j 6=l=1

(
σj+σ

l
ze
−2ip + σj−σ

l
ze

2ip
)

(5.28)

− ~
g2

ω
cos2(θ)M − ~

g2

ω
cos2(θ)

M∑
j 6=l=1

σlzσ
j
z .

Two new terms arise because of the polaron transformation: First, there are couplings
between the atoms that depend on the lasing activity, σj±σlze∓2ip. Second, there are
correlations between the atoms, σjzσlz. In order to obtain an effective Hamiltonian of M
independent atoms coupled to a common resonator a mean-field approximation is performed
by rewriting

σlzσ
j
z ≈ σlz

〈
σjz

〉
+
〈
σlz

〉
σjz −

〈
σlz

〉〈
σjz

〉
, (5.29a)

σi±σ
j
z ≈ σi±

〈
σjz

〉
+
〈
σi±

〉
σjz −

〈
σi±

〉〈
σjz

〉
= σi±

〈
σjz

〉
. (5.29b)

In the last step we used that only energy-conserving matrix elements of ρ are nonzero.

Introducing the sum of all atomic polarizations except of the one of atom j itself,

Sjz =
M∑
i6=j
i=1

〈
σiz

〉
, (5.30)

the Hamiltonian (5.28) can be rewritten as follows,

HMF = ~ωa†a+
M∑
j=1

1
2E(Sjz)σjz +

M∑
j=1

~g
(
σj+A(Sjz) + σj−A

†(Sjz)
)

+ c , (5.31)

with a modified level splitting energy E(Sjz), modified field operators A(†)(Sjz), and an
irrelevant constant energy shift given by

E(Sjz) = ε− 4~ωp2
0S

j
z , (5.32a)

A(Sjz) = e−ipxe−ip

~g
− 2

~g
x0p0S

j
ze
−2ip , (5.32b)

c = −~ωp2
0M + ~ωp2

0

M∑
j 6=l=1

〈
σlz

〉〈
σjz

〉
. (5.32c)

The quantity Sjz needs to be determined self-consistently.

Both terms in the matrix elements 〈n|A(†)(Sjz) |n+m〉 are proportional to the operator
e−2ip and, therefore, using Eqs. (5.8) and (5.9) the coupling matrix elements can be
rewritten as follows:

〈n|A(Sjz) |n+m〉 = −
( 1
~g
m

2
x0
p0

+ 2
~g
x0p0S

j
z

)
T−n,m , (5.33a)

〈n|A†(Sjz) |n+m〉 = +
( 1
~g
m

2
x0
p0
− 2

~g
x0p0S

j
z

)
T+
n,m . (5.33b)
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The position of the roots is determined only by T±n,m and does not depend on Sjz . Hence,
the single-atom laser and the multi-atom laser have roots of the coupling matrix elements
at the same photon numbers ni0. However, the amplitude of the matrix elements contains a
term that scales linearly with Sjz , i.e., in the multi-atom lasing setup the effective coupling
strength of each atom to the radiation field is increased. This increase of the effective
coupling strength is different from the collective renormalization by a factor of

√
M found

in Sec. 4.3 because Sjz scales linearly with M . The scaling behavior follows from the
definition (5.30) and is explicitly derived in Sec. 5.10.3.

5.10.2. Quantum master equation and photon statistics

The single-atom quantum master equation in the polaron frame, Eq. (5.7), is now generalized
to M atoms:

d
dtρ = − i

~
[HMF, ρ] + LRρ+

M∑
j=1

LQ,jρ . (5.34)

Here ρ is the density matrix describingM two-level atoms and the resonator. The derivation
of the Lindblad superoperators in the polaron frame shown in Sec. 5.8 holds for multi-atom
lasing setups as well. By LR we denote the usual Lindblad superoperator for the resonator
introduced in Eq. (2.8), and LQ,j is an atomic Lindblad superoperator as given in Eq. (2.9),
which describes the pumping, relaxation and dephasing of atom j. Hence, all Pauli matrices
in LQ,j act only on atom j. As all atoms are assumed to be identical, the pumping,
relaxation and dephasing rates Γ↑, Γ↓ and Γ∗ϕ are the same for all M atoms.

Similar to the single-atom case the atomic states are traced out in order to obtain the
reduced density matrix of the resonator,

d
dtρ

res = −iω
[
a†a, ρres

]
− ig

M∑
j=1

Tratom j

([
σj+A(Sjz) + σj−A

†(Sjz), ρj,res
])

+ LRρ
res .

Here ρj,res represents a reduced density matrix describing the dynamics of atom j and
the resonator. Analogous to the single-atom case the interaction term still couples the
reduced density matrix of the resonator, ρres, to the density matrix ρj,res that also accounts
for the dynamics of the atom j. As we assume all atoms to be identical it is sufficient to
calculate the reduced density matrix ρk,res for one arbitrarily chosen atom k. Similar to
the single-atom laser we are left with

d
dtρ

res = −iω
[
a†a, ρres

]
− igM Tratom k

([
σk+A(Skz ) + σk−A

†(Skz ), ρk,res
])

+ LRρ
res ,

(5.35a)
d
dtρ

k,res = − i
~

[
~ωa†a+ 1

2E(Skz )σkz + ~g
(
σk+A(Skz ) + σ−A

†(Skz )
)
, ρk,res

]
+ LQ,kρ

k,res .

(5.35b)

Details on the derivation are given in the Appendix C. Like for the single-atom case the
resonator Lindblad term LRρ has been eliminated from equation (5.35b) using an adiabatic
approximation. This system of coupled differential equations has the same structure as
the corresponding system in the single-atom case, Eq. (5.12), but the effective coupling
strength in equation (5.35a) has been increased by a factor of M originating from the sum
over all atoms.

The matrix elements ρk,res
↑,n;↓,n+1 and ρk,res

↓,n+1;↑,n are calculated out of Eq. (5.35b) analogously
to the single-atom case, i.e., Eq. (5.35b) is reformulated as a matrix differential equation of
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the form of Eq. (5.13), but with the following replacements in the matrix Mn,m:

A→ A(Skz ) ,
A† → A†(Skz ) ,
∆→ ∆(Skz ) = E(Skz )/~− ω = ∆− 4ωp2

0S
k
z .

The solution of this matrix differential equation generalizes Eq (5.14) as follows,

ρk,res
↑,n;↓,n+1 = gΓ1

〈n|A(Skz ) |n+ 1〉
detMn,n(Skz )

[
ρn,nΓ↑

(
∆(Skz ) + iΓϕ

)
− ρn+1,n+1Γ↓

(
∆(Skz ) + iΓϕ

)]
,

ρk,res
↓,n+1;↑,n = gΓ1

〈n+ 1|A†(Skz ) |n〉
detMn,n(Skz )

[
ρn,nΓ↑

(
∆(Skz )− iΓϕ

)
− ρn+1,n+1Γ↓

(
∆(Skz )− iΓϕ

)]
,

detMn,n(Skz ) = Γ2
1Γ2

ϕ

(
1 + 4g2

Γ1Γϕ
Nn(Skz )

)
,

Nn(Skz ) = ∆2(Skz )
4g2

Γ1
Γϕ

+ 〈n+ 1|A†(Skz ) |n〉 〈n|A(Skz ) |n+ 1〉 .

For later we also give the results for the diagonal matrix elements of ρk,res,

ρk,res
↑n,↑n = Γ↑

Γ1
ρn,n −

κ

Γ1M
(n+ 1)

(
(Nth + 1)ρn+1,n+1 −Nthρn,n

)
and (5.36a)

ρk,res
↓n,↓n = Γ↓

Γ1
ρn,n + κ

Γ1M
n
(
(Nth + 1)ρn,n −Nthρn−1,n−1

)
. (5.36b)

The equation of motion of the diagonal elements of the reduced resonator density matrix,
Eq. (5.15), now takes the following form:

d
dtρn,n = κ(Nth + 1)(n+ 1)ρn+1,n+1 − κNth(n+ 1)ρn,n

− κ(Nth + 1)nρn,n + κNthnρn−1,n−1

+ MA
1 + 2ANn(Skz )

∣∣∣〈n|A(Skz ) |n+ 1〉
∣∣∣2 (Γ↓ρn+1,n+1 − Γ↑ρn,n)

− MA
1 + 2ANn−1(Skz )

∣∣∣〈n− 1|A(Skz ) |n〉
∣∣∣2 (Γ↓ρn,n − Γ↑ρn−1,n−1) .

The quantity A = 2g2

Γ1Γϕ is the same as in the single-atom case. The recursion relation (5.16)
obtained out of a detailed balance condition is modified as well,

ρn,n = fnρn−1,n−1 , (5.37a)

fn =
κNthn+ Γ↑ MA

1+2ANn−1(Skz )

∣∣∣〈n− 1|A(Skz ) |n〉
∣∣∣2

κ(Nth + 1)n+ Γ↓ MA
1+2ANn−1(Skz ) |〈n− 1|A(Skz ) |n〉|2

. (5.37b)

This result shows that for the multi-atom laser the bare pumping and relaxation rates are
rescaled by the number of atoms M , Γ↑/↓ → MΓ↑/↓. Therefore, the maximum photon
number of a conventional laser with pure σx coupling scales linearly with M ,

ncl
m = 1

2

(
M

Γ↑ − Γ↓
κ

− 1
A

)
− ∆2

4g2
Γ1
Γϕ

.

The suppression of higher-order transitions and the derivation of the Lindblad superoperators
describing pumping, relaxation, and dephasing hold for the multi-atom case as well.
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Figure 5.9.: Recursion coefficient and photon statistics in a multi-atom lasing setup.
(a): Comparison of the recursion coefficient fn in the single-atom case (dash-dotted blue
line, κ = 1 × 10−7 ω) with the recursion coefficient for M = 100 atoms (solid red line,
κ = 1×10−5 ω). The dotted green curve represents the results obtained for a conventional
laser with pure σx coupling. (b): Corresponding photon statistics ρ(n) for M = 1 atom
(blue curve) and M = 100 atoms (red curve). Both setups produce photon-number
squeezed light with a Fano factor of Fp = 0.062 and Fp = 0.082 in the polaron frame,
which corresponds to a Fano factor of F = 0.062 and F = 0.144 in the cavity frame,
respectively. The photon-number expectation values are 〈n〉 = 21562 and 〈n〉 = 21851,
respectively. The filled faint red and blue curves represent a Poissonian statistics with
the same mean photon number, which is the result for a conventional laser. The plot
parameters are g = 0.0067ω, θ = π/10, Γ↑ = 0.006ω, Γ↓ = 0.0001ω, Γ∗ϕ = 0.001ω,
∆ = 0ω, and Nth = 0. For the multi-atom lasing setup we have Skz = 25.76.

In Fig. 5.9a the recursion coefficient in the single-atom case (dash-dotted blue line) is
compared to the corresponding quantity in the multi-atom case (solid red line). The
resonator decay rate κ is rescaled by a factor of M in the multi-atom lasing setup to
compensate the increase of the pumping rate by the same factor. Therefore, the recursion
coefficients are of the same order of magnitude and coincide for photon numbers away
from the roots of the coupling matrix element. As expected from Eq. (5.33) the roots of
the coupling matrix elements are identical for the single-atom and the multi-atom case.
However, the range of photon numbers in which fn drops to zero near a root of the coupling
matrix elements depends on the value of Sjz and is increased for a multi-atom lasing setup.
In Fig. (5.9b) the corresponding photon statistics in the polaron frame are shown. The
increase of the drop region of the recursion coefficient due to a nonzero value Skz > 0
decreases the photon-number expectation value 〈n〉 of the multi-atom lasing setup and
increases the Fano factor Fp in the polaron frame.

5.10.3. Self-consistency equation

The photon statistics ρ(n) is calculated numerically by evaluating Eq. (5.37) with the
methods described in Sec. 5.4.3. Out of ρ(n) the atomic polarization Skz is determined.
Using the matrix elements (5.36) we obtain the following expression for Skz :

Skz =
M∑
i6=k
i=1

〈
σiz

〉
=

M∑
i6=k
i=1

∑
n

(
ρi,res
↑,n;↑,n − ρ

i,res
↓,n;↓,n

)
= (M − 1)D0 −

M − 1
M

2κ
Γ1

(〈n〉 −Nth) .

(5.38)

The value of Skz depends on the photon statistics ρ(n) via the photon-number expectation
value 〈n〉. In turn, ρ(n) is determined by the recursion relation (5.37) that depends
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on Skz . A self-consistent solution for these coupled quantities ρ(n) and Skz is calculated
iteratively, starting with an initial guess for Skz . The number of necessary iterations depends
significantly on this initial guess and should be as small as possible because the numerical
evaluation of the recursion relation (5.37) is slow.

A good estimate on Skz can be obtained as follows: The recursion coefficient fn is plotted
for Skz = 0 and the maximum nmax of the photon statistics, defined by fnmax = 1 and
f ′nmax < 0, is calculated numerically. This calculation is performed much faster than the
evaluation of the recursion relation (5.37). Then, an estimate on Skz is obtained using
Eq. (5.38) with the photon-number expectation value 〈n〉 set to nmax. If necessary, these
two steps are repeated several times until the estimate for Skz converges to a constant value.
Finally, this value is used as an initial guess in the numerical evaluation of the recursion
relation (5.37).

For a conventional laser the photon-number expectation value 〈n〉 is determined by the
balance of pumping and loss rates. Therefore, the atomic polarization

〈
σiz
〉
is close to

zero for all atoms and we have Skz ≈ 0. However, for a laser producing squeezed light
the photon-number expectation value 〈n〉 is determined by the position of the roots of
the coupling matrix elements and, in general, we have

〈
σiz
〉
6= 0 and Skz 6= 0. The value

of Skz is a measure how deep the laser is operated in the trapping regime, where the
photon-number expectation value is fixed by a root ni0 of the coupling matrix elements.
When the pumping rate Γ↑ is increased, the quantity Skz increases starting from the value
Skz ≈ 0 of a conventional laser to Skz > 0. Right before the trapping breaks down, Skz
reaches a maximum value (point “c” in Fig. 5.5) and then jumps back to Skz ≈ 0 (point “a”
in Fig. 5.5).

5.10.4. Fano factor

The Fano factor Fp in the polaron frame is obtained out of the self-consistently calculated
photon statistics ρ(n). As discussed for the single-atom case it differs from the Fano
factor F defined in the cavity frame by corrections due to the polaron transformation.
In this subsection the corrections for the multi-atom lasing setup are calculated. Out of
Eqs. (5.24a) and (5.24b) the following corrections are obtained for the nominator of the
Fano factor:〈

n2
c

〉
− 〈nc〉2 =

〈
n2
〉
− 〈n〉2

−
〈
ξ
(
a†a(a+ a†) + (a+ a†)a†a

)〉
+ 2

〈
a†a

〉〈
ξ(a+ a†)

〉
+
〈
ξ2
(
a2 + (a†)2 + 4a†a+ 1

)〉
−
〈
ξ(a+ a†)

〉2
− 2

〈
a†a

〉〈
ξ2
〉

− 2
〈
ξ3(a+ a†)

〉
+ 2 〈ξ〉2

〈
ξ(a+ a†)

〉
+
〈
ξ4
〉
−
〈
ξ2
〉2

,

with ξ = p0
∑M
i=1 σ

i
z. Most of the terms cancel because of the following reasons:

1. Within the mean-field approach the expectation values of products of σz operators
factorize, i.e., 〈ξr〉 = 〈ξ〉r and

〈
ξrξa(†)

〉
= 〈ξ〉r

〈
ξa(†)

〉
for r ∈ N0, and

2. energy-nonconserving matrix elements are zero, i.e.,
〈
ξa(†)

〉
∝ ρσ,n;σ,n±1 = 0.

Hence, only three of the correction terms remain,〈
n2

c

〉
− 〈nc〉2 =

〈
n2
〉
− 〈n〉2 + 4

〈
ξ2a†a

〉
+
〈
ξ2
〉
− 2

〈
a†a

〉〈
ξ2
〉
.
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The expectation values
〈
ξ2〉 and 〈ξ2a†a

〉
are obtained using Eq. (5.36),

〈
ξ2
〉

= p2
0M + p2

0
M

M − 1
(
Skz

)2
,〈

ξ2a†a
〉

= 〈n〉
〈
ξ2
〉
− p2

0
2κ
Γ1
Skz

[〈
n2
〉
− (〈n〉+Nth)

(
〈n〉+ 1

2

)]
.

Therefore, the Fano factor in the cavity frame is given by

F =
Fp 〈n〉+ (2 〈n〉+ 1)

〈
ξ2〉− p2

0
8κ
Γ1
Skz

[〈
n2〉− (〈n〉+Nth)

(
〈n〉+ 1

2

)]
〈n〉+ 〈ξ2〉

.

In order to clarify the structure of this equation we use the approximations 1, Nth, Fp,
〈
ξ2〉�

〈n〉. Then, F can be rewritten as

F = Fp

(
1− p2

0
8κ
Γ1
Skz

)
+ 2

(
p2

0M + p2
0

M

M − 1
(
Skz

)2
)

. (5.39)

All corrections proportional to p2
0 are negligible for typical lasing parameters, except of the

last term: As discussed in the previous subsection, in general the atomic polarization
〈
σjz
〉

is nonzero for a laser that produces squeezed light. Therefore, we have 0 ≤ |Skz | ≤M . For
typical lasing parameters and M of the order of 100 it holds p2

0M � 1, but p2
0M

2 may be
of the order of unity. Hence, the last term in Eq. (5.39) can be a relevant correction to Fp
depending on the actual numerical value of Skz ,

F ≈ Fp + 2p2
0

(
Skz

)2
≤ Fp + 2p2

0M
2 . (5.40)

In conclusion, for a multi-atom setup large corrections to Fp may arise, depending on the
value of Skz . Even a Fano factor F > 1 may be reached, i.e., larger fluctuations appear than
for a conventional laser. In order to avoid this the lasing parameters have to be chosen
such that Skz is close to zero. This is the case if the photon-number expectation value 〈n〉
is close to the photon number ncl

max corresponding to the maximum of the photon statistics
of a conventional laser. This means that a multi-atom lasing setup should be operated at
the smallest possible pumping rate Γ↑ that allows for a trapping of the photon-number
expectation value 〈n〉 by a root ni0. If Γ↑ is increased, the laser is further driven into the
trapping regime and corrections to Fp due to a nonzero value of Skz may spoil squeezing.
On the other hand, if a nonzero value of Skz cannot be avoided and if the Fano factor F
should not exceed a certain threshold value, Eq. (5.40) puts an upper bound on the number
of atoms M in the setup.

5.10.5. Photon statistics in the cavity frame

The corrections to the Fano factor in the polaron frame and the increase of the Fano
factor in the cavity frame for large values of Skz are due to the fact that |σ, n〉 is actually a
superposition of several cavity-frame states |σ,mc〉. The cavity-frame photon statistics is
a convolution of the polaron-frame photon statistics and the decomposition of a polaron
frame into cavity states. This broadens the photon statistics in the cavity frame. In this
section we derive an approximation of the photon statistics in the cavity frame in order to
qualitatively understand the enhancement of the Fano factor.

The polaron transformation is essentially a displacement operator

U = exp
[
p0

M∑
i=1

σiz

(
a− a†

)]
= exp

[
αa† − α∗a

]
= D(α) ,
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where α is the displacement parameter. It holds U † = D(−α). The displacement parameter
α is in this case a real quantity and proportional to the sum of all atomic polarizations,

α = α∗ = −p0

M∑
i=1

σiz .

In the following we denote the combined atomic and resonator states of a M -atom system
by |σ, n〉 = |σ〉 ⊗ |n〉, where the vector σ contains the M atomic states, σ = (σ1

z , . . . , σ
M
z ).

In the Appendix B.2 the decomposition of a polaron-frame state |σ, n〉 into cavity-frame
states |σ,mc〉 is derived, yielding

|σ, n〉 =
∞∑
m=0

an,m(α(σ)) |σ,mc〉 ,

an,m(α) = 1√
n!m!

e−|α|
2/2

n∑
k=0

(−1)n+k
(
n

k

)
m!

(m− k)! (−α)m+n−2kΘ(m− k) ,

where Θ(x) is the Heaviside step function, which is equal to unity for a non-negative
argument and zero otherwise.

Using this decomposition the full polaron-frame density matrix ρ is expanded in the basis
of cavity states,

ρ =
∑
σ,σ′

∑
n,n′

ρσ,n;σ′,n′ |σ, n〉
〈
σ′, n′

∣∣
=
∑
σ,σ′

∑
n,n′

∑
m,m′

ρσ,n;σ′,n′an,m(α)a∗n′,m′(α′) |σ,mc〉
〈
σ′,m′c

∣∣ ,
where α depends on the atomic state vector σ and α′ on σ′. We read off the following trans-
formation from the polaron-frame density matrix elements ρσ,n;σ′,n′ to the corresponding
cavity-frame quantities ρcav

σ,m;σ′,m′ :

ρcav
σ,m;σ′,m′ =

∑
n,n′

ρσ,n;σ′,n′an,m(α)a∗n′,m′(α′) .

The photon statistics in the cavity frame is given by

ρcav
m,m =

∑
σ

ρcav
σ,m;σ,m =

∑
σ

∑
n,n′

ρσ,n;σ,n′an,m(α)a∗n′,m(α)

=
∑
σ

∞∑
n=0

ρσ,n;σ,n |an,m(α)|2 . (5.41)

In the last step we used that only diagonal elements of the stationary density matrix in
the polaron frame are nonzero [41].

In order to evaluate Eq. (5.41) numerically the sum over the photon numbers n is restricted
to all n for that an,m(α) is nonzero. The matrix element ρσ,n;σ,n is approximated by ρn,n
multiplied with the probability pσ to find the system in the state |σ〉, which is obtained as
follows: For M identical atoms the polarization 〈σz〉 of each atom is 〈σz〉 = Skz /(M − 1)
and the probability p↑/↓ for this atom to be in the state |↑〉 or |↓〉, respectively, is

p↑ = 1 + 〈σz〉
2 and p↓ = 1− 〈σz〉

2 .
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Figure 5.10.: Comparison of the photon statistics in the polaron and the cavity frame.
The blue dots represent the photon statistics in the polaron frame shown in Fig. 5.9b.
Its plot parameters are M = 100, g = 0.0067ω, θ = π/10, Γ↑ = 0.006ω, Γ↓ = 0.0001ω,
Γ∗ϕ = 0.001ω, ∆ = 0ω, κ = 1 × 10−5 ω, and Nth = 0. It has a Fano factor Fp = 0.082
in the polaron frame and Skz = 25.76. The solid red line represents the corresponding
photon statistics in the cavity frame with a Fano factor F = 0.144. The dashed green and
the dash-dotted orange lines represent the photon statistics in the cavity frame which one
would obtain for Sjz = 40 and 60 with a Fano factor of F = 0.22 and F = 0.39, respectively.
For large Sjz the photon statistics in the cavity frame evolves into a double-peaked shape
corresponding to a large Fano factor.

As all M atoms are assumed to be identical the total number of atoms in the state |↓〉, N ,
defines the state of the multi-atom system completely. Hence, the probability of a state |σ〉
with N atoms being in the state |↓〉 and M −N atoms being in the state |↑〉 is given by

pσ = p(N) =
(

M

M −N,N

)
pN↓ p

M−N
↑ ,

where the multinomial coefficient accounts for the different combinatoric possibilities to
distribute the state |↓〉 on N out of M atoms. The displacement coefficient α(σ) is also
expressed in terms of N , α(N) = −p0(M − 2N), such that we finally obtain

ρcav
m,m =

M∑
N=0

∞∑
n=0

ρn,np(N) |αn,m(α(N))|2 . (5.42)

Figure 5.10 shows numerical results obtained for different values of Skz . The blue dots
represent the photon statistics in the polaron frame. For small values of Skz the photon
statistics in the cavity frame is broadened, but still has a single peak (solid red and dashed
green curves). However, for large values of Skz the photon statistics evolves into a symmetric
double-peaked shape corresponding to a strongly increased Fano factor F > 1 (dash-dotted
orange curve).

The arising of a double-peaked photon statistics can be understood as follows: The polaron
transformation shifts a state |ψ〉 =

∑
n g(n) |σ, n〉 in the photon-number space, i.e., if its

distribution g(n) was originally peaked at a certain photon number npeak, the polaron-
transformed state U |ψ〉 is peaked at a different photon number n′peak. However, the
expansion coefficients an,m(α) in Eq. (5.41) are squared because both states in the projector
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|σ, n〉 〈σ, n| undergo a polaron transformation. Therefore, the dash-dotted orange cavity-
frame photon statistics in Fig. 5.10 has two peaks shifted symmetrically to the maximum
of the polaron-frame photon statistics.

The distance of the shift is given by the parameter α(σ) and depends on the atomic
expectation values

〈
σjz
〉
. Equation (5.42) shows that the sum of the atomic states |σ〉

represents essentially a superposition of all possible displacement parameters α(σ) weighted
with the probability of the realization of the corresponding atomic state |σ〉. If the sum of
atomic polarizations is close to zero, Skz ≈ 0, both atomic states |↑〉 and |↓〉 are equally
probable, p↑ ≈ p↓. Hence, most of the multi-atom states |σ〉 correspond to a displacement
parameter α(σ) ≈ 0 and the cavity-frame photon statistics is only weakly shifted compared
to the polaron-frame statistics. However, if we have Skz > 0, the probability p↑ is larger than
p↓ and, therefore, most of the atomic states |σ〉 yield a nonzero shift parameter α(σ) > 0.
Then, the polaron-frame photon statistics is shifted to lower and higher photon numbers,
which causes the broadening and the double-peaked shape.

5.11. Disorder in the mixing angle and the detuning

As discussed in the introduction different superconducting circuits, e.g., charge and flux
qubits, as well as quantum dots are described by the same effective Hamiltonian (1.2),

H = δ

2σz −
t

2σx .

For a charge qubit the level-splitting energy δ is proportional to the control charge on the
superconducting island and t is the Josephson energy of the junction. For a flux qubit
δ describes the asymmetry of the double-well potential and t is the tunneling amplitude
through the potential barrier.

The dominant source of noise in charge qubits are fluctuations of the control charge.
This so-called charge noise introduces fluctuations in the level-splitting energy δ which
translate into a fluctuating mixing angle θ = tan−1(−t/δ). Flux qubits are designed to
be independent of charge fluctuations as the qubit control is based on the magnetic flux.
However, experiments revealed that flux qubits are sensitive to so-called flux noise. It is
caused, for instance, by flux trapping or fluctuations of the critical current of the Josephson
junctions [15]. Inhomogeneities in the applied magnetic flux in metamaterials built out
of a large number of flux qubits may also lead to different flux biases for the individual
qubits. In conclusion, also in a flux qubit system the parameters δ and t are affected by
noise, which translates into fluctuations of the mixing angle θ. Simultaneously, also the
detuning ∆ =

√
δ2 + t2/~− ω is subject to variations as it depends on δ and t as well.

In order to obtain understand the influence of these effects on squeezing we examine
numerically disorder in the mixing angle θ and the detuning ∆ in a multi-atom lasing setup.
We consider the following Hamiltonian,

HM = ~ωa†a+
M∑
j=1

1
2εjσ

j
z +

M∑
j=1

~g
(
cos(θj)σjz + sin(θj)σjx

) (
a† + a

)
, (5.43)

with an individual mixing angle θi and an individual level-splitting energy εi of each atom
i. The generalization of our calculations to this Hamiltonian is given in the following
subsection. Numerical results are presented in subsection 5.11.2.



78 Chapter 5. Longitudinal couplings

5.11.1. Photon statistics and Fano factor in disordered lasing setups

The polaron transformation that maps the Hamiltonian (5.43) on a Jaynes-Cummings-like
Hamiltonian depends in a disordered setup on the individual mixing angles θj ,

U = exp

i M∑
j=1

pjσ
j
z

 ,

pj = ip0,j
(
a† − a

)
= i

g

ω
cos(θj)

(
a† − a

)
,

xj = x0,j
(
a† + a

)
= ~g sin(θj)

(
a† + a

)
.

The polaron-transformed Hamiltonian reads

Hp =
M∑
j=1

1
2εjσ

j
z + ~ωa†a+ ~g

M∑
j=1

(
σj+

e−ipjxje
−ipj

~g
+ σj−

eipjxje
ipj

~g

)

− ~ω
M∑
j=1

p2
0,j − ~ω

M∑
j 6=l=1

p0,jp0,lσ
j
zσ

l
z − 2

M∑
j 6=l=1

x0,jp0,l
(
σj+σ

l
ze
−2ipj + σj−σ

l
ze

2ipj
)
.

Again, a mean-field approximation is performed, i.e., products of Pauli matrices are
rewritten using the approximation (5.29), and a self-consistency equation is introduced,

S̃jz =
M∑
i6=j
i=1

p0,i
〈
σiz

〉
.

Note that, compared to Eq. (5.30), S̃jz includes an additional factor p0,j . The effective
Hamiltonian within this mean-field approach is given by

HMF = ~ωa†a+
M∑
j=1

1
2Ẽj(S̃

j
z)σjz + ~g

M∑
j=1

[
σj+Ã(S̃jz) + σj−Ã

†(S̃jz)
]

+ const ,

Ẽj(S̃jz) = εj − 4~ωp0,jS̃
j
z ,

Ãj(S̃jz) = e−ipjxje
−ipj

~g
− 2

~g
x0,jS̃

j
ze
−2ipj .

The master equation for the diagonal elements of the reduced density matrix of the resonator
reads

d
dtρn,n = κ(Nth + 1)(n+ 1)ρn+1,n+1 − κNth(n+ 1)ρn,n

− κ(Nth + 1)nρn,n + κNthnρn−1,n−1

+
M∑
j=1

[
A

1 + 2AN j
n(S̃jz)

∣∣∣〈n| Ãj(S̃jz) |n+ 1〉
∣∣∣2 (Γ↓ρn+1,n+1 − Γ↑ρn,n)

− A
1 + 2AN j

n−1(S̃kz )

∣∣∣〈n− 1| Ãj(S̃jz) |n〉
∣∣∣2 (Γ↓ρn,n − Γ↑ρn−1,n−1)

]
,

N j
n(S̃jz) =

(
∆j − 4ωp0,jS̃

j
z

)2

4g2
Γ1
Γϕ

+
∣∣∣〈n| Ãj(S̃jz) |n+ 1〉

∣∣∣2 ,
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with A = 2g2/(Γ1Γϕ). The stationary solution for the diagonal elements ρn,n of the reduced
density matrix of the resonator is defined by the following recursion relation,

ρn,n = f̃nρn−1,n−1 , (5.44a)

f̃n =
κNthn+ Γ↑

∑M
j=1

A
1+2ANj

n−1(S̃jz)

∣∣∣〈n− 1| Ãj(S̃jz) |n〉
∣∣∣2

κ(Nth + 1)n+ Γ↓
∑M
j=1

A
1+2ANj

n−1(S̃jz)

∣∣∣〈n− 1| Ãj(S̃jz) |n〉
∣∣∣2 . (5.44b)

The self-consistency condition is now

S̃iz = D0

M∑
j 6=i
j=1

p0,j + 2κ
Γ1

∞∑
n=0

fi(n)(n+ 1)
(
Nthρn,n − (Nth + 1)ρn+1,n+1

)
, (5.45a)

fi(n) =

 M∑
j 6=i
j=1

p0,j

∣∣∣〈n| Ãj(S̃jz) |n+ 1〉
∣∣∣2

1 + 2AN j
n(S̃jz)


 M∑
l=1

∣∣∣〈n| Ãl(S̃lz) |n+ 1〉
∣∣∣2

1 + 2AN l
n(S̃lz)


−1

. (5.45b)

For a given set of lasing parameters {∆j}, {θj}, and {Sjz}, Eqs. (5.44) and (5.45) can be
solved numerically.

The Fano factor F in the cavity frame is given by

F =
〈
n2〉− 〈n〉2 + (2 〈n〉+ 1)

〈
ξ2〉+ 4(X + Y )

〈n〉+ 〈ξ2〉
,

〈
ξ2
〉

=
M∑
i=1

p2
0,i +D0

M∑
i=1

p0,iS̃
i
z

+ 2
Γ1

M∑
i=1

p0,iS̃
i
z

∞∑
n=0

A
1 + 2AN i

n(S̃iz)

∣∣∣〈n| Ãi(S̃iz) |n+ 1〉
∣∣∣2 (Γ↓ρn+1 − Γ↑ρn) ,

X = 2κ
Γ1
D0

M∑
i=1

p0,i

∞∑
n=0

(
n+ 1

2 − 〈n〉
)

(n+ 1)fi(n) [Nthρn − (Nth + 1)ρn+1] ,

Y = 4κ
Γ2

1

M∑
i=1

p0,i

∞∑
n=0

[
A

1 + 2AN i
n(S̃iz)

∣∣∣〈n| Ãi(S̃iz) |n+ 1〉
∣∣∣2 (Γ↓ρn+1 − Γ↑ρn)

]

×
∞∑
m=0

[
fi(m)

(
m+ 1

2 − 〈n〉
)

(m+ 1) [Nthρm − (Nth + 1)ρm+1]
]
.

Numerical results for the photon statistics and the Fano factor are given in the next
subsection.

5.11.2. Numerical results

In Fig. 5.11 numerical results for the Fano factor F , the photon-number expectation value
〈n〉, and the recursion coefficient fn in case of disorder in the mixing angle θj and the
atomic detuning ∆j are shown.

The photon-number expectation value 〈n〉 and the Fano factor F are calculated for Nens =
150 systems consisting of M = 25 atoms. The lasing parameters of these systems are
randomly generated as follows: As a preliminary step a mixing angle θ in the range
0 < θ � π/4 is chosen. The mean detuning be ∆ = 0, which implies the condition√

δ
2 + t2

!= ω ,
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Figure 5.11.: Influence of disorder in the mixing angle θ and the detuning ∆ on squeezing.
Disorder in the level-splitting energy δ of the bare qubit Hamiltonian (1.2) is modeled
by a Gaussian distribution with mean δ = 0.95ω and standard deviation σδ. (a): Fano
factor F as a function of σδ. (b): Photon number expectation value 〈n〉 as a function of
σδ. Data was obtained by averaging for each value of σδ over Nens = 150 systems. The
error bars indicate the standard deviation of the fluctuations. (c): Recursion coefficient
fn for a randomly chosen system (out of Nens) for σδ = 0.001ω (solid red), σδ = 0.01ω
(dashed blue), σδ = 0.1ω (dotted green), and σδ = 0.3ω (dash-dotted orange curve).
Plot parameters are g = 0.01ω, Nth = 0, κ = 4× 10−7 ω, Γ↑ = 0.008ω, Γ↓ = 0.0001ω,
Γ∗ϕ = 0.001ω, t = 0.31ω, and M = 25.

where δ and t are the parameters of the qubit Hamiltonian (1.2). This condition is solved
by δ = cos(θ)ω and t = sin(θ)ω, which determines the values of δ and t. As discussed
in Chap. 4 the range of values of the standard deviation σδ of the disorder distribution
is restricted by physical constraints. First, the condition ∆ ≥ −ω puts the constraint√
δ2 + t2 > 0 which is, however, always fulfilled. Second, the level splitting energy δ of

the qubit Hamiltonian (1.2) should be positive, δ ≥ 0. Therefore, Eq. (4.9) restricts the
standard deviation to

σg ≤
δ√

2 erfc−1(2ε)
= 0.3ω

for ε = 0.001 and δ = 0.95ω. Now, the level-splitting energy δi of each atom i is chosen
randomly according to a Gaussian distribution with mean δ and standard deviation σδ.
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Out of this the individual mixing angle θi and the atomic detuning ∆i are calculated:

θi = arctan
(
− t

δi

)
and ∆i =

√
δ2
i + t2

~
− ω .

In Fig. 5.11a, the Fano factor F as a function of the standard deviation σg of the disorder
distribution is shown. It increases with the disorder, i.e., disorder in the lasing parame-
ters perturbs photon-number squeezing. However, for the given parameters the photon
distribution is still photon-number squeezed even at the maximum allowed value of σδ.

Similar to the observations in Sec. 4.2 the photon number expectation value shown in
Fig. 5.11b decreases slowly as a function of the standard deviation σδ of the disorder
distribution. Even at the maximum standard deviation the setup is still operating at
approximately 70% of the intensity obtained in an ordered system, whose results are
obtained in the limit σg → 0.

In order to explain these features it is instructive to examine the recursion coefficient fn
for disordered systems. Figure 5.11c shows the recursion coefficient of one randomly chosen
system out of the Nens systems calculated for each value of the standard deviation σδ of the
disorder distribution. The different colors correspond to four different values of σg. The
plot reveals the following properties of the recursion coefficient fn in disordered setups:

1. The position of the root of the coupling matrix element of atom i is determined
by p0,i = g

ω cos(θi). Disorder in the mixing angle θi yields different positions of the
root for the individual atoms. Therefore, in disordered setups, σδ > 0, the recursion
coefficient fn does not drop exactly to zero any more. However, the position of its
minimum coincides still quite well with the position ni0 of the root in an ordered
system. The reason for this is that the quantity p0,i ∝ cos(θi) ≈ 1 − θ2

i is robust
against small fluctuations in the mixing angle θi. Therefore, the roots are only
weakly shifted and the recursion coefficient fn still takes a minimal value at ni0 that
is much smaller than unity. Only for the maximum standard deviation σδ = 0.3ω
the minimum of fn in the disordered system differs significantly from the position ni0
of the root in an ordered system.

2. The range of photon numbers in which fn drops from the asymptotic value fn(θ/2)
to its minimal value is significantly broadened by disorder. In Sec. 5.4.2 we showed
that the width of the drop region is defined by the condition∣∣∣〈n− 1| Ãj(S̃jz) |n〉

∣∣∣2 � Γ1Γϕ
4g2 . (5.46)

It implies that the drop region increases if the matrix elements are suppressed: For
small mixing angles θ the matrix elements scale proportional to the mixing angle, as
described by Eq. (5.10),

〈n− 1| Ãj(S̃jz) |n〉 ∝ θj .

With increasing disorder the amount of atoms with a small mixing angle θj � θ
increases. The contributions of these atoms to the recursion coefficient fn broaden
the drop region according to Eq. (5.46).

This broadening shifts the maximum of the photon statistics, defined by fn = 1 and f ′n < 0,
to smaller photon numbers. Therefore, the photon-number expectation value 〈n〉 decreases.
However, the absolute value of the slope of fn is still larger than the corresponding value
for an ordered system with a mixing angle θ = π/2, i.e., the photon statistics is still
photon-number squeezed.
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In conclusion, in the regime of large σz couplings, i.e., θ � π/4, the position of the minimum
of the recursion coefficient fn is almost independent of disorder. We observe a decrease of
the photon number expectation value 〈n〉 and an increase of the Fano factor F in disordered
systems. These effects are caused by the scaling of the matrix elements proportional to the
mixing angle θ and, therefore, a broadening of the drop region of the recursion coefficient
fn around its minimum due to the influence of atoms with a small mixing angle θi � θ.
Although disorder in the mixing angle θ and the detuning ∆ increases the Fano factor F ,
it is still possible to obtain a photon-number squeezed statistics.



6. Conclusion

In this thesis we investigated the influence of disorder and longitudinal couplings on lasing
setups that use quantum metamaterials as optically active medium. An advantage of
metamaterials built out of artificial atoms is the possibility to tailor the atomic properties.
This gives rise to novel interactions with the electromagnetic field and allows for new
functionality. In particular we have shown that longitudinal couplings between atoms and
the radiation field of a resonator allow for the creation of photon-number squeezed laser
light.

Whereas conventional atoms are identical by nature, artificially created atoms, e.g., super-
conducting circuits or quantum dots, exhibit fluctuations of their individual parameters,
for instance, the level splitting energy ε, the coupling strength g to a resonator, or the
pumping strength D0. These fluctuations are caused by the fabrication process, noise,
and interactions with the environment. If the magnitude of these fluctuations is too large,
some artificial atoms are expected not to participate in the lasing process, for instance,
because they are too far detuned or too weakly coupled. This may obstruct lasing processes
and, therefore, we have investigated the influence of disorder on multi-atom lasing setups.
However, we have found that multi-atom lasing setups become robust against disorder
when the number of atoms is increased, which opens a way to compensate for inevitable
fluctuations of the atomic parameters in quantum metamaterials.

In order to investigate the influence of disorder on a M -atom lasing setup we calculated its
photon-number expectation value 〈n〉M using the semiquantum theory of lasing. Disorder
in the lasing setup has been modeled by a probability distribution p that describes the
spread of the atomic parameters around their intended mean values. We have developed
a method to relate the mean photon-number expectation value 〈n〉M of a M -atom lasing
setup to the mean and the standard deviation of this probability distribution p, and we
have applied this method to disorder in the atomic detuning ∆, the coupling strength g,
and the pumping strength D0. Multi-atom lasing setups have been found to be quite robust
against these types of disorder. The dependence of the mean photon-number expectation
value 〈n〉M on the disorder standard deviation for disorder in the detuning and the coupling
strength is remarkably weak: Based on the photon-number expectation value 〈n〉1 of a
single-atom lasing setup one would expect the mean photon-number expectation value
〈n〉M of the multi-atom lasing setup to decrease strongly if the standard deviation σ of the
disorder distribution increases. For disorder in the pumping strength D0 the photon-number
expectation value 〈n〉M is even found to be independent of the standard deviation of the
disorder distribution, i.e., it depends only on the mean pumping strength D0.

The origin of this robustness against disorder is a widening of the range of parameters
that allow for lasing in the multi-atom lasing setup: At a threshold detuning ∆max(1)
a single-atom laser exhibits a crossover from a lasing state with a large photon-number
expectation value to a non-lasing state with a very small photon-number expectation value.
In a multi-atom system this threshold detuning ∆max is increased, ∆max(M) ≥ ∆max(1),

83



84 Chapter 6. Conclusion

i.e., the multi-atom lasing system tolerates a larger detuning of each atom than a single-atom
laser, while still being in a lasing state. In particular, lasing is observed in a multi-atom
setup even if the individual detuning of all atoms is larger than ∆max(1). Likewise, there is
a minimal coupling strength gmin(1) where the single-atom laser shows a crossover from
a non-lasing state to a lasing state. In a multi-atom lasing setup the minimally required
coupling strength to the resonator is lowered, gmin(M) ≤ gmin(1). Similarly, the lasing-
crossover pumping strength D0,min in a multi-atom lasing setup is lowered compared to
the corresponding value of a single-atom laser. For an ordered system explicit expressions
for the scaling behavior have been derived, ∆max(M) ∝

√
M , gmin(M) ∝ 1/

√
M , and

D0,min(M) ∝ 1/M .

In order to explain the physical origin of this effect we have reformulated the implicit
equation defining the photon-number expectation value 〈n〉M of a M -atom setup as a set
of coupled equations for the single-atomic contributions 〈ni〉, i ∈ {1, . . . ,M}, to the overall
photon-number expectation value 〈n〉 =

∑M
i=1 〈ni〉. The set of coupled equations has to be

solved self-consistently. This approach reveals that a collective widening of the range of
lasing parameters also takes place in disordered systems. It is caused by an increase of the
stimulated emission of each atom i due to the presence of photons in the resonator that are
emitted by other atoms j 6= i. Therefore, strongly coupled resonant atoms create a nonzero
photon number in the resonator that “drags” detuned, weakly coupled, or weakly pumped
atoms into resonance such that they participate in the lasing process at a reduced effective
detuning and an increased effective coupling and pumping strength. The multi-atom lasing
setup evolves into a self-organized stationary state that is quite independent of the initial
disordered atomic parameters.

The derivation of the mean photon-number expectation value 〈n〉M is exact in the limit
of large system sizes M →∞. However, for realistic system sizes M . 100 deviations of
the actual photon-number expectation value 〈n〉M from its mean value 〈n〉M are expected,
which are caused by sample-to-sample fluctuations of the atomic lasing parameters. Noise
and quasistatic fluctuations of the atomic parameters have a similar influence on 〈n〉M . We
have investigated these fluctuations numerically. Disorder in the detuning at a realistic
standard deviation σ∆ = 0.2ω of the disorder distribution causes relative fluctuations of
〈n〉M around 〈n〉M of the order of 10% for small system sizes M . 100. These fluctuations
are reduced if the number M of atoms in the metamaterial is increased, and for M & 800
the relative fluctuations are found to be less than a percent. Hence, a laser built out of a
large metamaterial reaches a good long-term power stability even for realistic assumptions
on the disorder. This opens a way to build on-chip sources of coherent microwave radiation
that have applications in low-temperature experiments. However, it remains still an
effort to reach the stability of standard microwave sources even though they also show
power fluctuations due to thermal effects, fluctuations of the power-amplifier bias point, or
amplification of parasitic signals.

Superconducting circuits or quantum dots have not only a transversal but also a longitudinal
coupling to the radiation field. We showed that a strong longitudinal coupling allows for the
creation of photon-number squeezed light. Using a polaron transformation we mapped the
effective lasing Hamiltonian with both a longitudinal and a transversal coupling between the
atoms and the radiation field onto a Tavis-Cummings-like Hamiltonian. In this transformed
Hamiltonian the usual coupling operators to the resonator, a and a†, are replaced by more
complicated operators that have roots at certain photon numbers and allow for multi-photon
transitions. At these roots the coherent emission of photons into the resonator breaks down.
The position of the roots can be adjusted via the coupling strength g and the mixing angle
θ that defines the relative strength of longitudinal and transversal couplings.

We have shown that if the laser is operated at a photon-number expectation value 〈n〉
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close to a root of the coupling matrix elements, photon-number squeezed light is created.
Realistic parameters, e.g., a coupling strength of the order of 1× 10−3 ω, allow for strong
squeezing, characterized by a Fano factor F � 1, at large photon numbers, e.g., of the
order of 1× 104.

Numerical methods to examine a squeezed photon statistics of a laser are restricted to
rather small photon numbers of the order of 1×102. Our analytic approach allows to discuss
photon-number squeezing at photon numbers beyond the range of numerical methods.

The coupling operators allow for multi-photon transitions, but in order to obtain a squeezed
photon distribution these multi-photon transitions in the pumping process and in the lasing
transition have to be suppressed. This is the case if

1. the system has a strong σz interaction, i.e., the mixing angle θ is in the range
0 < θ . π/4,

2. a rotating wave approximation holds, i.e., all atomic rates Γ↓, Γ↑, and Γ∗ϕ as well as
the resonator decay rate κ are much smaller than the resonator frequency ω, and

3. the spectral functions of the pumping and relaxation baths are sufficiently narrowly
peaked to suppress multi-photon transitions.

If the first requirement of a strong σz interaction is not fulfilled, the laser has a Poissonian
photon statistics like a conventional laser as observed in recent experiments [7]. The second
requirement holds for typical relaxation and decay rates in superconducting circuits. An
experimental setup that allows to fulfill the third requirement has been presented recently
[9].

Finally, the influence of disorder in the mixing angle θ and the detuning ∆ has been
investigated. Such fluctuations arise in quantum metamaterials built out of superconducting
qubits because of charge or flux noise. A numerical analysis revealed that the Fano factor
increases with increasing disorder, but the photon statistics still remains photon-number
squeezed even for large disorder.

A drawback of the studied effective lasing Hamiltonian is the need for a polaron transfor-
mation to obtain the Tavis-Cummings-like Hamiltonian with roots of the coupling to the
electromagnetic field. The density matrix and the photon statistics are calculated in the po-
laron frame. However, the photon state |n〉 in the polaron frame is actually a superposition
of different Fock states |mc〉, which represent states with exactly m photons in the resonator
cavity. Therefore, the photon statistics in the cavity frame is broadened compared to the
one calculated in the polaron frame. This implies that the experimentally relevant Fano
factor F in the cavity frame is larger than the Fano factor Fp in the polaron frame. We
have found that some corrections to the polaron-frame Fano factor Fp originating from the
polaron transformation scale proportional to M2. For small numbers of atoms, M � 100,
these corrections are negligible. However, for M & 100 significant corrections arise that
can be of the order of unity and spoil photon-number squeezing. In this regime, the photon
statistics in the cavity frame has been found to be double-peaked. The photon-number
expectation value 〈n〉 in the cavity frame is also modified by corrections due to the polaron
transformation, however, these corrections are negligible for any realistic system size M .

Hence, the polaron transformation imposes for large system sizes M a restriction on the
range of lasing parameters that yield a photon-number squeezed statistics. In the near
future, experimentally realized quantum metamaterials are expected to have rather small
system sizes, M � 100, and, therefore, are not affected by this restriction. For larger
system sizes an improvement can be achieved by using artificial atoms that have roots in
the coupling to the electromagnetic field already in the effective lasing Hamiltonian. Such
couplings have been discussed, for instance, for a superconducting single-electron transistor
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that couples to a resonator via the phase difference across its junction [44] and they are
also known for voltage-biased Josephson junctions in series with a resonator [13]. Our
calculations apply to these systems as well, but there is no need for a polaron transformation
of the initial Hamiltonian any more. Therefore, corrections to the Fano factor due to the
polaron transformation do not arise which opens a way to obtain photon-number squeezed
light also for quantum metamaterials with a very large number of atoms.

In conclusion, we found that disorder due to imperfections in the control of material
parameters does not prohibit the construction of multi-atom lasing setups using quantum
metamaterials as active lasing medium. Metamaterials built out of superconducting circuits
and quantum dots have longitudinal couplings to the radiation field which allow for the
creation of photon-number squeezed light. Our results will help to construct miniaturized on-
chip sources for coherent microwave radiation, which have applications in low-temperature
experiments, e.g., qubit control or interferometric measurements.
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Appendix

A. Influence of the shape of a disorder distribution on the mean photon-
number expectation value

Figures 4.2 and 4.3 show that, for disorder in the detuning or the coupling strength,
the mean photon-number expectation values 〈n〉M obtained for a Gaussian and a box
distribution coincide for small values of the standard deviation of the disorder distribution.
For a sufficiently narrow disorder distribution the actual shape of the distribution, defined
by its higher moments, does not matter and the mean value and the variance are sufficient
for characterization. Here we substantiate this observation in the case of disorder in the
atomic detuning.

For disorder in the detuning the fixed point equation (4.8) reads

〈n〉 = Nth +Mβ

∫ ∞
−∞

d∆ p(∆)
D0
(
〈n〉+ 1

2

)
+ 1

2

Γ2
κ + ∆2 + α

(
〈n〉+ 1

2

) .
In the case of a large photon-number expectation value 〈n〉 the right-hand side is expanded
into a Taylor polynomial of order N in terms of ε = 1/ 〈n〉 � 1:

〈n〉 = Nth +Mβ

∫ ∞
−∞

d∆ p(∆)
[
D0
α

+
N∑
m=1

cm
1
〈n〉m

+RN (n)
]
,

cm = (−1)m
(
Γ2
κ + ∆2 + α

2
)m−1

αm+1

(
D0
(
Γ2
κ + ∆2

)
− α

2

)
,

where the rest term RN (n) is bounded by the upper limit

|RN (n)| ≤ D0

(
Γ2
κ + α

2 + ∆2)m
(αn)m+1

∣∣∣∣Γ2
κ + ∆2 − α

2D0

∣∣∣∣ .
We now perform the integration term by term and obtain

〈n〉 = Mβ

[
D0
α

+
∞∑
m=1

(−1)m

αm
1
〈n〉m

(
D0
α

m∑
k=0

(
m
k

)(
Γ2
κ + α

2

)m−k
∆2k

− D0 + 1
2

m−1∑
k=0

(
m− 1
k

)(
Γ2
κ + α

2

)m−1−k
∆2k

)]
+Nth +RN (n) , (A.1)

where the moments of the probability distribution p are denoted by ∆2k =
∫∞
−∞ d∆ p(∆)∆2k

and the averaged rest term is given by RN (n) = Mβ
∫∞
−∞ d∆ p(∆)RN (n). The Taylor
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expansion converges for photon-number expectation values fulfilling 〈n〉 > 1
2 + (Γ2

κ + ∆2)/α.
Hence, if p(∆) has a compact support [−a, a], a > 0, the rest term RN (n) vanishes in the
limit N →∞ for all photon numbers that satisfy the condition 〈n〉 > 1

2 + (Γ2
κ+a2)/α. This

applies for a box distribution, whereas a Gaussian distribution has support (−∞,∞) and,
therefore, the expansion never converges. However, if the order N of the Taylor expansion
is chosen suitably, the rest term RN (n) takes a minimal value much smaller than unity so
that the expansion is still a good approximation.

The properties of the probability distribution p(∆) enter into Eq. (A.1) through its even
moments ∆2k. For a given probability distribution these moments can be expressed by
polynomials of the mean value µ, the standard deviation σ, and other parameters of the
distribution. As all lasing parameters are much smaller than the frequency ω, higher order
terms of these polynomials can be neglected because it holds µ/ω � 1 and σ/ω � 1.
Therefore, two probability distributions yield the same results for the mean photon-number
expectation value 〈n〉M if their moments are identical to low orders of µ and σ.

B. Properties of the polaron transformation

B.1. Transformation rules
In this section we give the transformation properties of the Pauli matrices and the photon
creation and annihilation operators under a polaron transformation of the form

U = exp

i M∑
j=1

pjσ
j
z

 ,

pj = ip0,j
(
a† − a

)
= i

g

ω
cos(θj)

(
a† − a

)
.

The field operators transform as follows:

ap = U †aU = a−
M∑
i=1

p0,iσ
i
z ,

a†p = U †a†U = a† −
M∑
i=1

p0,iσ
i
z ,

a†pap = U †a†aU = a†a−
M∑
i=1

p0,iσ
i
z

(
a+ a†

)
+

M∑
i=1

p2
0,i +

M∑
i 6=j=1

p0,ip0,jσ
i
zσ

j
z .

For the third Pauli matrix and the atomic ladder operators we have

σjz,p = U †σjzU = σjz ,

σj+,p = U †σj+U = σj+e
−2ipj ,

σj−,p = U †σj−U = σj−e
2ipj .

B.2. Expansion of a polaron state into cavity states
In this section we calculate the expansion of a polaron-frame state |σ, n〉 ≡ |σ〉 ⊗ |n〉 into
states in the cavity frame, |σ,mc〉 ≡ |σ〉 ⊗ |mc〉. The states of the M atoms are denoted
by the vector σ = (σ1

z , . . . , σ
M
z ). Polaron and cavity states are connected via a polaron

transformation,

|σ, n〉 = U † |σ, nc〉 ,

U = exp

 M∑
j=1

p0,jσ
j
z

(
a− a†

) ,
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which is essentially a displacement operator

U = D(α) = exp
[
αa† − α∗a

]
,

with the displacement parameter α(σ) = α∗(σ) = −
∑M
j=1 p0,jσ

j
z. It holds U † = D(−α).

The expansion of the polaron-frame state |σ, n〉 into cavity states |σ,mc〉 is formally given
by

|σ, n〉 =
∞∑
m=0

an,m(σ) |σ,mc〉 ,

an,m(σ) = 〈σ,m|D(−α(σ)) |σ, n〉 .

In order to calculate the expansion coefficient an,m(σ) we use the following representation
of the state |n〉 in the polaron frame:

|n〉 = (a†)n√
n!
|0〉 = 1√

n!
dn

dλn e
λa†
∣∣∣∣
λ=0
|0〉 .

As a preliminary step we calculate the action of the displacement operator D(β) on a state
eλa
† |0〉,

D(β)eλa† |0〉 = e−|β|
2/2−β∗λ+|β+λ|2/2 |β + λ〉 ,

which yields the following matrix element:

〈m|D(β)eλa† |0〉 = e−|β|
2/2−β∗λ (β + λ)m√

m!
.

The matrix element 〈m|D(β) |n〉 of the displacement operator is connected to this via

〈m|D(β) |n〉 = 1√
n!m!

e−|β|
2/2 dn

dλn e
−β∗λ(β + λ)m

∣∣∣∣
λ=0

.

By complete induction one can proof the identity

dn

dλn e
−β∗λ(β + λ)m =

∞∑
k=0

(−1)n+k
(
n

k

)
m!

(m− k)! (β + λ)m−k(β∗)n−ke−β∗λΘ(m− k) ,

where
(n
k

)
is a binomial coefficient and Θ(x) is the Heaviside step function, which is equal

to unity for x ≥ 0 and zero otherwise. With this result we obtain

〈m|D(β) |n〉 = 1√
n!m!

e−|β|
2/2

n∑
k=0

(−1)n+k
(
n

k

)
m!

(m− k)!β
m−k(β∗)n−kΘ(m− k)

= 1√
n!m!

e−|β|
2/2(−1)n(β∗)n−m U(−m, 1−m+ n, |β|2) ,

where U(a, b, x) is the hypergeometric function of the second kind.

For β = −α(σ) = −α∗(σ) we finally obtain the expansion coefficient an,m(σ):

an,m(σ) = 1√
n!m!

e−|α|
2/2

n∑
k=0

(−1)n+k
(
n

k

)
m!

(m− k)! (−α)m+n−2kΘ(m− k) .
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C. Calculating traces of the quantum master equation

The density matrix ρ is the most general way to describe the state of a quantum-mechanical
system. If only information of a certain subsystem is required, a reduced density matrix for
this subsystem is obtained by tracing out all degrees of freedom that do not belong to that
subsystem. Analogously, by tracing out certain degrees of freedom in the quantum master
equation of the density matrix ρ an equation of motion for the reduced density matrix
is obtained. In this section we discuss the behavior of the coherent Liouville term and
the Lindblad terms under such tracing operations. The time evolution of the full density
matrix ρ is given by the following quantum master equation:

d
dtρ = − i

~
[H, ρ] + LRρ+

M∑
j=1

LQ,jρ ,

where the coherent M -atom Hamiltonian H and the Lindblad superoperators are given by

H = Hres +
M∑
j=1

Hj
at +

M∑
j=1

Hj
int ,

LRρ = κ

2 (Nth + 1)
(
2aρa† − a†aρ− ρa†a

)
+ κ

2Nth
(
2a†ρa− aa†ρ− ρaa†

)
,

LQ,jρ = Γ↓
2
(
2σj−ρσ

j
+ − ρσ

j
+σ

j
− − σ

j
+σ

j
−ρ
)

+ Γ↑
2
(
2σj+ρσ

j
− − ρσ

j
−σ

j
+ − σ

j
−σ

j
+ρ
)

+
Γ∗ϕ
2
(
σjzρσ

j
z − ρ

)
.

Here Hres is the Hamiltonian of the resonator, Hj
at is the Hamiltonian of atom j, j =

1, . . . ,M , and Hj
int is the interaction of atom j with the resonator.

The state of the M atoms is denoted by the vector σ = (σ1
z , . . . , σ

M
z ) and the state of

M − 1 atoms except of atom k is denoted by σ′k = (σ1
z , . . . , σ

k−1
z , σk+1

z , . . . , σMz ). In the
following we are interested in the reduced density matrix of the resonator, ρres, and the
reduced density matrix of the resonator and atom k, ρk,res, which are defined by

ρres = Trσ(ρ) =
∑
σ

〈σ| ρ |σ〉 ,

ρk,res = Trσ′
k
(ρ) =

∑
σ′
k

〈
σ′k
∣∣ ρ ∣∣σ′k〉 .

C.1. Reduced density matrix of the resonator

If all atomic states are traced out, the different terms of the master equation yield

Trσ
([
Hj

at, ρ
])

=
∑
σ

〈σ|
[
Hj

at, ρ
]
|σ〉 =

∑
σ

(E(σj)− E(σj)) 〈σ| ρ |σ〉 = 0 ,

Trσ ([Hres, ρ]) =
∑
σ

〈σ| [Hres, ρ] |σ〉 =
∑
σ

[Hres, 〈σ| ρ |σ〉] = [Hres, ρ
res] ,

Trσ
([
Hj

int, ρ
])

=
∑
σ

〈σ|
[
Hj

int, ρ
]
|σ〉 =

∑
σjz

〈
σjz

∣∣∣ [Hj
int, ρ

j,res
] ∣∣∣σjz〉 ,

Trσ (LQ,jρ) =
∑
σjz

〈
σjz

∣∣∣LQ,jρ
j,res

∣∣∣σjz〉
=
∑
σjz

(
Γ↓ 〈↑| ρj,res |↑〉

(
δ
σjz ,↓
− δ

σjz ,↑

)
+ Γ↑ 〈↓| ρj,res |↓〉

(
δ
σjz ,↑
− δ

σjz ,↓

))
= 0 ,

Trσ (LRρ) = LRρ
res .
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Therefore, the reduced density matrix of the resonator has the following equation of motion:

d
dtρ

res = − i
~

[Hres, ρ
res]− i

~

M∑
j=1

∑
σjz

〈
σjz

∣∣∣ [Hj
int, ρ

j,res
] ∣∣∣σjz〉+ LRρ

res .

C.2. Reduced density matrix of one atom and the resonator
Similarly, if all atomic states but one are traced out, we obtain

Trσ′
k

([
Hj

at, ρ
])

=
∑
σ′
k

〈
σ′k
∣∣ [Hj

at, ρ
] ∣∣σ′k〉 =

∑
σ′
k

[
Hj

at,
〈
σ′j

∣∣∣ ρ ∣∣∣σ′j〉] δj,k =
[
Hj

at, ρ
j,res

]
δj,k ,

Trσ′
k

([Hres, ρ]) =
∑
σ′
k

〈
σ′k
∣∣ [Hres, ρ]

∣∣σ′k〉 =
∑
σ′
k

[
Hres,

〈
σ′k
∣∣ ρ ∣∣σ′k〉] =

[
Hres, ρ

k,res
]
,

Trσ′
k

(LQ,jρ) =
∑
σ′
k

〈
σ′k
∣∣LQ,jρ

∣∣σ′k〉 = LQ,jρ
j,resδj,k ,

Trσ′
k

(LRρ) = LRρ
k,res .

The trace of the interaction term is more complicated. For an interaction of the form
Hj

int = ~g(σj+A+ σj−A
†) we obtain for k = j

Trσ′j
([
Hj

int, ρ
])

=
∑
σ′j

〈
σ′j

∣∣∣ [Hj
int, ρ

] ∣∣∣σ′j〉 =
[
Hj

int, ρ
j,res

]
.

However, for k 6= j the interaction Hamiltonian yields

Trσ′
k

([
Hj

int, ρ
])

= ~g
∑
σj

〈σj |
[
Hj

int, ρ
j,k,res

]
|σj〉

= ~g
(

A 〈↓j | ρj,k,res |↑j〉+A† 〈↑j | ρj,k,res |↓j〉

− 〈↓j | ρj,k,res |↑j〉A− 〈↑j | ρj,k,res |↓j〉A†
)
,

where ρj,k,res is the reduced density matrix for the resonator and the atoms j and k.
Therefore, we obtain the following equation of motion for the reduced density matrix of
atom k and the resonator:

d
dtρ

k,res = − i
~

[
Hk

at +Hres +Hk
int, ρ

k,res
]

+ LQ,kρ
k,res + LRρ

k,res − i

~

M∑
j 6=k
j=1

Trσ′
k

([
Hj

int, ρ
])

.

(C.1)

We neglect the term Trσ′
k

([
Hj

int, ρ
])

for j 6= k and the resonator Lindblad term LRρ
k,res

by using that

1. all M qubits are independent, i.e., there are no correlations between different qubits,
and

2. an adiabatic approximation holds for typical lasing parameters.

To justify this step we consider the contribution of Trσ′
k

([
Hj

int, ρ
])

to the equations of
motion of the matrix elements ρσ,n;σ,n, ρ↑,n;↓,n+1, and ρ↓,n+1;↑,n. These matrix elements
are subsumed in the vector R during the calculation of the photon statistics in Sec. 5.4. If
only energy-conserving transitions are considered, we obtain the following contributions:

d
dtρ

k,res
σ,n;σ,n ∝ ~g

(
〈n|A |n+ 1〉 ρσk,↓j ,n+1;σk,↑j ,n + 〈n|A† |n− 1〉 ρσk,↑j ,n−1;σk,↓j ,n

−ρσk,↓jn;σk,↑j ,n−1 〈n− 1|A |n〉 − ρσk,↑j ,n;σk,↓j ,n+1 〈n+ 1|A† |n〉
)
,
(C.2a)
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d
dtρ

k,res
↑,n;↓,n+1 ∝ ~g

(
〈n|A |n+ 1〉 ρ↑k,↓j ,n+1;↓k,↑j ,n+1 + 〈n|A† |n− 1〉 ρ↑k,↑j ,n−1;↓k,↓j ,n+1

−ρ↑k,↓j ,n;↓k,↑j ,n 〈n|A |n+ 1〉 − ρ↑k,↑j ,n;↓k,↓j ,n+2 〈n+ 2|A† |n+ 1〉
)

= 0 , (C.2b)
d
dtρ

k,res
↓,n+1;↑,n ∝ ~g

(
〈n+ 1|A |n+ 2〉 ρ↓k,↓j ,n+2;↑k,↑j ,n + 〈n+ 1|A† |n〉 ρ↓k,↑j ,n;↑k,↓j ,n

−ρ↓k,↓j ,n+1;↑k,↑j ,n−1 〈n− 1|A |n〉 − ρ↓k,↑j ,n+1;↑k,↓j ,n+1 〈n+ 1|A† |n〉
)

= 0 . (C.2c)

For the sake of a compact notation the superscript “k, j, res” has been dropped at the
density matrix elements on the right-hand side. Equations (C.2b) and (C.2c) are zero
because the occurring density matrix elements describe correlations between the atoms
k and j. These matrix elements vanish as all M atoms are independent of each other.
However, the contributions to the equation of motion given by Eq. (C.2a) are nonzero.
The assumption of independent atoms allows to rewrite the occurring matrix elements as
follows:

ρσk,σj ,n;σk,σ′j ,n′ = ρσk,σk ⊗ ρσj ,n;σ′j ,n′ .

Now we obtain

d
dtρ

k,res
σ,n;σ,n ∝ ~gρσk,σk ⊗

(
〈n|A |n+ 1〉 ρ↓j ,n+1;↑j ,n + 〈n|A† |n− 1〉 ρ↑j ,n−1;↓j ,n

−ρ↓j ,n;↑j ,n−1 〈n− 1|A |n〉 − ρ↑j ,n;↓j ,n+1 〈n+ 1|A† |n〉
)
.

The terms in round brackets are evaluated using Eq. (5.14). We find that they only
introduce a phase change,

d
dtρ

k,res
σ,n;σ,n ∝ 2i~g2Γ1Γϕρσk,σk ⊗

[
Γ↑

(
|〈n− 1|A |n〉|2

detMn−1,n−1
ρres
n−1,n−1 −

|〈n|A |n+ 1〉|2

|Mn,n|
ρn,n

)

−Γ↓

(
|〈n− 1|A |n〉|2

detMn−1,n−1
ρres
n,n −

|〈n|A |n+ 1〉|2

|Mn,n|
ρn+1,n+1

)]

= i
[
γ1ρ

k,res
σ,n−1;σ,n−1 + γ2ρ

k,res
σ,n;σ,n + γ3ρ

k,res
σ,n+1;σ,n+1

]
.

A numerical evaluation reveals that the rates γ1, γ2, and γ3 are of the order of the resonator
decay rate κ.

This allows to apply an adiabatic approximation: The atomic Lindblad term LQ,kρ
k,res in

Eq. (C.1) describes atomic decay processes that happen on a timescale of Γ−1
↑ , Γ−1

↓ , and
(Γ∗ϕ)−1. The resonator Lindblad term LRρ

k,res and the interaction term Trσ′
k

([
Hj

int, ρ
])

for
j 6= k describe decay processes and phase changes that happen on a timescale of κ−1. For
typical lasing parameters it holds κ� Γ↑,Γ↓,Γ∗ϕ and, therefore, we neglect these processes
in the master equation (C.1) focusing only on atomic decay processes.

In conclusion, the reduced density matrix for the resonator and the atom k has the following
equation of motion:

d
dtρ

k,res = − i
~

[
Hk

at +Hres +Hk
int, ρ

k,res
]

+ LQ,kρ
k,res .
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