Home | Impressum | Sitemap | KIT

Prof. Dr. Carsten Rockstuhl

Sprechstunden: Montag 13.00 Uhr - 14.00 Uhr
Raum: 10-23
Tel.: +49 721 608-46054
carsten rockstuhlChf1∂kit edu

 

Institut für Theoretische Festkörperphysik
Karlsruher Institut für Technologie (Universität)
Wolfgang-Gaede-Str. 1
D-76131 Karlsruhe
Germany

 



Publications


2018
Journal Articles
  1. Correction: Computing the T-matrix of a scattering object with multiple plane wave illuminations.
    Fruhnert, M.; Fernandez-Corbaton, I.; Yannopapas, V.; Rockstuhl, C.
    2018. Beilstein journal of nanotechnology, 9, 953. doi:10.3762/bjnano.9.88
  2. Shape design of a reflecting surface using Bayesian Optimization.
    Garcia-Santiago, X.; Schneider, P. I.; Rockstuhl, C.; Burger, S.
    2018. Journal of physics / Conference Series, 963 (1), Art.Nr. 012003. doi:10.1088/1742-6596/963/1/012003
  3. Predicting Observable Quantities of Self-Assembled Metamaterials from the T-Matrix of Its Constituting Meta-Atom.
    Suryadharma, R.; Rockstuhl, C.
    2018. Materials, 11 (2), Art.Nr. 213. doi:10.3390/ma11020213
  4. Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm.
    Kirner, R.; Vetter, A.; Opalevs, D.; Gilfert, C.; Scholz, M.; Leisching, P.; Scharf, T.; Noell, W.; Rockstuhl, C.; Voelkel, R.
    2018. Optics express, 26 (2), 730-743. doi:10.1364/OE.26.000730
  5. Quantum Description of Radiative Decay in Optical Cavities.
    Oppermann, J.; Straubel, J.; Słowik, K.; Rockstuhl, C.
    2018. Physical review / A, 97 (1), Art.Nr. 013809. doi:10.1103/PhysRevA.97.013809
  6. Strategy for tailoring the size distribution of nanospheres to optimize rough backreflectors of solar cells.
    Nanz, S.; Abass, A.; Piechulla, P. M.; Sprafke, A.; Wehrspohn, R. B.; Rockstuhl, C.
    2018. Optics express, 26 (2), A111-A123. doi:10.1364/OE.26.00A111
  7. An electromagnetic multipole expansion beyond the long-wavelength approximation.
    Alaee, R.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2018. Optics communications, 407, 17-21. doi:10.1016/j.optcom.2017.08.064
Presentations
  1. Räumliche Kohärenz, ein experimenteller Zugang zum verbeserten Verständnis.
    Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.
    2018. DPG Frühjahrstagung der Sektion Materie und Kosmos (SMuK), Fachverband Didaktik der Physik, Würzburg, 19.-23.März 2018
  2. Ultrafast single photon detection on a photonic waveguide.
    Muenzberg, J.; Vetter, A.; Hartmann, W.; Beutel, F.; Ferrari, S.; Rockstuhl, C.; Pernice, W.
    2018. 82.Jahrestagung der DPG und DPG-Frühjahrstagung der Sektion Atome, Moleküle, Quantenoptik und Plasmen (SAMOP), Fachverband Quantenoptik und Photonik, Erlangen, 4.-9.Mäerz 2018
  3. Hybrid photonic-plasmonic whispering-gallery-mode resonators.
    Klusmann, C.; Oppermann, J.; Forster, P.; Rockstuhl, C.; Kalt, H.
    2018. DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS, Fachverband Kristalline Festkörper und deren Mikrostruktur, Berlin, 11.-16.März 2018
  4. Mie-resonant all-dielectric metasurfaces with tailored positional disorder.
    Arslan, D.; Rahimzadegan, A.; Fasold, S.; Falkner, M.; Rockstuhl, C.; Pertsch, T.; Staude, I.
    2018. DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS, Fachverband Halbleiterphysik, Berlin, 11.-16.März 2018
  5. Manipulation of electric and magnetic dipole emission from Eu3+ with silicon metasurfaces.
    Vaskin, A.; Mashhadi, S.; Noginova, N.; Chong, K. E.; Nanz, S.; Abass, A.; Fernandez-Corbaton, I.; Rusak, E.; Noginov, M. A.; Kivshar, Y. S.; Keene, D.; Rockstuhl, C.; Pertsch, T.; Neshev, D.; Staude, I.
    2018. DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS, Fachverband Halbleiterphysik, Berlin, 11.-16.März 2018
Posters
  1. Demonstrationsversuche zum Elektromagnetismus.
    Pallmer, S.; Herr, T.; Bergmann, A.; Rockstuhl, C.
    2018. DPG Frühjahrstagung der Sektion Materie und Kosmos (SMuK), Fachverband Didaktik der Physik, Würzburg, 19.-23.März 2018
  2. Praktikumsexperimente zur drahtlosen Energieübertragung.
    Dürr, E.; Bergmann, A.; Rockstuhl, C.
    2018. DPG Frühjahrstagung der Sektion Materie und Kosmos (SMuK), Fachverband Didaktik der Physik, Würzburg, 19.-23.März 2018
2017
Journal Articles
  1. Theory of metasurface based perfect absorbers.
    Alaee, R.; Albooyeh, M.; Rockstuhl, C.
    2017. Journal of physics / D, 50 (50), Art.Nr.: 503002. doi:10.1088/1361-6463/aa94a8
  2. Enhanced Directional Emission from Monolayer WSe₂ Integrated onto a Multiresonant Silicon-Based Photonic Structure.
    Chen, H.; Nanz, S.; Abass, A.; Yan, J.; Gao, T.; Choi, D.-Y.; Kivshar, Y. S.; Rockstuhl, C.; Neshev, D. N.
    2017. ACS photonics, 4 (12), 3031-3038. doi:10.1021/acsphotonics.7b00550
  3. A Green’s function based analytical method for forward and inverse modeling of quasi-periodic nanostructured surfaces.
    Abass, A.; Zilk, M.; Nanz, S.; Fasold, S.; Ehrhardt, S.; Pertsch, T.; Rockstuhl, C.
    2017. Journal of applied physics, 122 (18), Art.Nr.: 183103. doi:10.1063/1.4998541
  4. Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres.
    Ismail Abdelrahman, M.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2017. Scientific reports, 7 (1), Art.Nr. 14762. doi:10.1038/s41598-017-15192-0
  5. Measuring the electromagnetic chirality of 2D arrays under normal illumination.
    Garcia-Santiago, X.; Burger, S.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2017. Optics letters, 42 (20), 4075-4078. doi:10.1364/OL.42.004075
  6. Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors.
    Lee, J.-S.; Huynh, T.; Lee, S.-Y.; Lee, K.-G.; Lee, J.; Tame, M.; Rockstuhl, C.; Lee, C.
    2017. Physical review / A, 96 (3), Art.Nr.: 033833. doi:10.1103/PhysRevA.96.033833
  7. On the dynamic toroidal multipoles from localized electric current distributions.
    Fernandez-Corbaton, I.; Nanz, S.; Rockstuhl, C.
    2017. Scientific reports, 7 (1), Art. Nr.: 7527. doi:10.1038/s41598-017-07474-4
  8. Studying plasmonic resonance modes of hierarchical self-assembled meta-atoms based on their transfer matrix.
    Suryadharma, R. N. S.; Fruhnert, M.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2017. Physical review / B, 96 (4), Art. Nr. 045406. doi:10.1103/PhysRevB.96.045406
  9. Dual-SNOM investigations of multimode interference in plasmonic strip waveguides.
    Klein, A. E.; Janunts, N.; Schmidt, S.; Bin Hasan, S.; Etrich, C.; Fasold, S.; Kaiser, T.; Rockstuhl, C.; Pertsch, T.
    2017. Nanoscale, 9 (20), 6695-6702. doi:10.1039/c6nr06561a
  10. Hybridizing whispering gallery modes and plasmonic resonances in a photonic metadevice for biosensing applications.
    Klusmann, C.; Suryadharma, R. N. S.; Oppermann, J.; Rockstuhl, C.; Kalt, H.
    2017. Journal of the Optical Society of America / B, 34 (7), D46-D55. doi:10.1364/JOSAB.34.000D46
  11. Subwavelength Focusing of Bloch Surface Waves.
    Kim, M.-S.; Vosoughi Lahijani, B.; Descharmes, N.; Straubel, J.; Negredo, F.; Rockstuhl, C.; Häyrinen, M.; Kuittinen, M.; Roussey, M.; Herzig, H. P.
    2017. ACS photonics, 4 (6), 1477-1483. doi:10.1021/acsphotonics.7b00245
  12. Entangled light from bimodal optical nanoantennas.
    Straubel, J.; Sarniak, R.; Rockstuhl, C.; Słowik, K.
    2017. Physical review / B, 95 (8), Art. Nr.: 085421. doi:10.1103/PhysRevB.95.085421
  13. Unified theory to describe and engineer conservation laws in light-matter interactions.
    Fernandez-Corbaton, I.; Rockstuhl, C.
    2017. Physical review / A, 95 (5), Art. Nr. 053829. doi:10.1103/PhysRevA.95.053829
  14. Singular-value decomposition for electromagnetic-scattering analysis.
    Suryadharma, R. N. S.; Fruhnert, M.; Rockstuhl, C.; Fernandez-Corbaton, I.
    2017. Physical review / A, 95 (5), Art. Nr. 053834. doi:10.1103/PhysRevA.95.053834
  15. Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors.
    Ferrari, S.; Kovalyuk, V.; Hartmann, W.; Vetter, A.; Kahl, O.; Lee, C.; Korneev, A.; Rockstuhl, C.; Gol’tsman, G.; Pernice, W.
    2017. Optics express, 25 (8), 8739-8750. doi:10.1364/OE.25.008739
  16. Computing the T-matrix of a scattering object with multiple plane wave illuminations.
    Fruhnert, M.; Fernandez-Corbaton, I.; Yannopapas, V.; Rockstuhl, C.
    2017. Beilstein journal of nanotechnology, 8 (1), 614-626. doi:10.3762/bjnano.8.66
  17. Optical alignment of oval graphene flakes.
    Mobini, E.; Rahimzadegan, A.; Alaee, R.; Rockstuhl, C.
    2017. Optics letters, 42 (6), 1039-1042. doi:10.1364/OL.42.001039
  18. Fundamental limits of optical force and torque.
    Rahimzadegan, A.; Alaee, R.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2017. Physical review / B, 95 (3), 035106. doi:10.1103/PhysRevB.95.035106
  19. A simple DPSS laser setup and experiments for undergraduates.
    Bergmann, A.; Kircher, S.; Setzler, D.; Gerharz, M.; Rockstuhl, C.
    2017. European journal of physics, 38 (1), Art. Nr.: 014004. doi:10.1088/0143-0807/38/1/014004
Reports
  1. Interface conditions for a metamaterial with strong spatial dispersion.
    Khrabustovskyi, A.; Mnasri, K.; Plum, M.; Stohrer, C.; Rockstuhl, C.
    2017. KIT, Karlsruhe
  2. Beyond local effective material properties for metamaterials.
    Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.
    2017. KIT, Karlsruhe
2016
Journal Articles
  1. Purely bianisotropic scatterers.
    Albooyeh, M.; Asadchy, V. S.; Alaee, R.; Hashemi, S. M.; Yazdi, M.; Mirmoosa, M. S.; Rockstuhl, C.; Simovski, C. R.; Tretyakov, S. A.
    2016. Physical review / B, 94 (24), Art. Nr.: 245428. doi:10.1103/PhysRevB.94.245428
  2. Sub-Poisson-binomial light.
    Lee, C.; Ferrari, S.; Pernice, W. H. P.; Rockstuhl, C.
    2016. Physical review / A, 94 (5), 053844. doi:10.1103/PhysRevA.94.053844
  3. Transverse multipolar light-matter couplings in evanescent waves.
    Fernandez-Corbaton, I.; Zambrana-Puyalto, X.; Bonod, N.; Rockstuhl, C.
    2016. Physical review / A, 94 (5), 053822. doi:10.1103/PhysRevA.94.053822
  4. Cavity-Enhanced and Ultrafast Superconducting Single-Photon Detectors.
    Vetter, A.; Ferrari, S.; Rath, P.; Alaee, R.; Kahl, O.; Kovalyuk, V.; Diewald, S.; Goltsman, G. N.; Korneev, A.; Rockstuhl, C.; Pernice, W. H. P.
    2016. Nano letters, 16 (11), 7085-7092. doi:10.1021/acs.nanolett.6b03344
  5. Surface phonon–polaritons: To scatter or not to scatter.
    Staude, I.; Rockstuhl, C.
    2016. Nature materials, 15 (8), 821–822. doi:10.1038/nmat4713
  6. Bottom-Up Fabrication of Hybrid Plasmonic Sensors: Gold-Capped Hydrogel Microspheres Embedded in Periodic Metal Hole Arrays.
    Weiler, M.; Menzel, C.; Pertsch, T.; Alaee, R.; Rockstuhl, C.; Pacholski, C.
    2016. ACS applied materials & interfaces, 8 (39), 26392-26399. doi:10.1021/acsami.6b08636
  7. Optically assisted trapping with high-permittivity dielectric rings: Towards optical aerosol filtration.
    Alaee, R.; Kadic, M.; Rockstuhl, C.; Passian, A.
    2016. Applied physics letters, 109 (14), 141102. doi:10.1063/1.4963862
  8. Phase-change material-based nanoantennas with tunable radiation patterns.
    Alaee, R.; Albooyeh, M.; Tretyakov, S.; Rockstuhl, C.
    2016. Optics letters, 41 (17), 4099-4102. doi:10.1364/OL.41.004099
  9. Fully integrated quantum photonic circuit with an electrically driven light source.
    Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol'tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
    2016. Nature photonics. doi:10.1038/nphoton.2016.178
  10. Optical force and torque on dipolar dual chiral particles.
    Rahimzadegan, A.; Fruhnert, M.; Alaee, R.; Fernandez-Corbaton, I.; Rockstuhl, C.
    2016. Physical review / B, 94 (12), Art. Nr.: 125123. doi:10.1103/PhysRevB.94.125123
  11. Broadband Anti-Reflective Coating Based on Plasmonic Nanocomposite.
    Hedayati, M. K.; Abdelaziz, M.; Etrich, C.; Homaeigohar, S.; Rockstuhl, C.; Elbahri, M.
    2016. Materials, 9 (8), Art.Nr.:636. doi:10.3390/ma9080636
  12. Insights into directional scattering : from coupled dipoles to asymmetric dimer nanoantennas.
    Abass, A.; Gutsche, P.; Maes, B.; Rockstuhl, C.; Martins, E. R.
    2016. Optics express, 24 (17), 19638-19650. doi:10.1364/OE.24.019638
  13. Objects of Maximum Electromagnetic Chirality.
    Fernandez-Corbaton, I.; Fruhnert, M.; Rockstuhl, C.
    2016. Physical review / X, 6 (3), Art.Nr.:031013. doi:10.1103/PhysRevX.6.031013
  14. Efficient mode conversion in an optical nanoantenna mediated by quantum emitters.
    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.
    2016. Optics letters, 41 (10), 2294-2297. doi:10.1364/OL.41.002294
  15. Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible.
    Fruhnert, M.; Monti, A.; Fernandez-Corbaton, I.; Alù, A.; Toscano, A.; Bilotti, F.; Rockstuhl, C.
    2016. Physical Review B, 93 (24), 245127. doi:10.1103/PhysRevB.93.245127
  16. Quantum Plasmonic Sensing: Beyond the Shot-Noise and Diffraction Limit.
    Lee, C.; Dieleman, F.; Lee, J.; Rockstuhl, C.; Maier, S. A.; Tame, M.
    2016. ACS Photonics, 3 (6), 992–999. doi:10.1021/acsphotonics.6b00082
  17. Experimental realisation of all-dielectric bianisotropic metasurfaces.
    Odit, M. A.; Kapitanova, P. V.; Belov, P. A.; Alaee, R.; Rockstuhl, C.; Kivshar, Y. S.
    2016. Applied Physics Letters, 108 (22), Art.Nr.:221903. doi:10.1063/1.4953023
  18. Plasmonic nanoantenna based triggered single-photon source.
    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.
    2016. Physical review / B, 93 (19), Art.Nr.: 195412. doi:10.1103/PhysRevB.93.195412
  19. Enhancement of second-harmonic generation in nonlinear nanolaminate metamaterials by nanophotonic resonances.
    Hsiao, H. H.; Abass, A.; Fischer, J.; Alaee, R.; Wickberg, A.; Wegener, M.; Rockstuhl, C.
    2016. Optics Express, 24 (9), 9651-9659. doi:10.1364/OE.24.009651
  20. Refraction limit of miniaturized optical systems: A ball-lens example.
    Kim, M.-S.; Scharf, T.; Mühlig, S.; Fruhnert, M.; Rockstuhl, C.; Bitterli, R.; Noell, W.; Voelkel, R.; Herzig, H. P.
    2016. Optics Express, 24 (7), 6996-7005. doi:10.1364/OE.24.006996
  21. Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy.
    Kaiser, T.; Falkner, M.; Qi, J.; Klein, A.; Steinert, M.; Menzel, C.; Rockstuhl, C.; Pertsch, T.
    2016. Applied Physics B: Lasers and Optics, 122 (3), 53. doi:10.1007/s00340-015-6312-9
  22. Multipolar Coupling in Hybrid Metal-Dielectric Metasurfaces.
    Guo, R.; Rusak, E.; Staude, I.; Dominguez, J.; Decker, M.; Rockstuhl, C.; Brener, I.; Neshev, D. N.; Kivshar, Y. S.
    2016. ACS Photonics, 3 (3), 349-353. doi:10.1021/acsphotonics.6b00012
  23. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy.
    Schmidt, S.; Klein, A. E.; Paul, T.; Gross, H.; Diziain, S.; Steinert, M.; Assafrao, A. C.; Pertsch, T.; Urbach, H. P.; Rockstuhl, C.
    2016. Optics Express, 24 (4), 4128-4142. doi:10.1364/OE.24.004128
  24. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate.
    Wolf, S.; Rensberg, J.; Johannes, A.; Thomae, R.; Smit, F.; Neveling, R.; Moodley, M.; Bierschenk, T.; Rodriguez, M.; Afra, B.; Hasan, S. B.; Rockstuhl, C.; Ridgway, M.; Bharuth-Ram, K.; Ronning, C.
    2016. Nanotechnology, 27 (14), 145202. doi:10.1088/0957-4484/27/14/145202
  25. Quantitative and Direct Near-Field Analysis of Plasmonic-Induced Transparency and the Observation of a Plasmonic Breathing Mode.
    Khunsin, W.; Dorfmüller, J.; Esslinger, M.; Vogelgesang, R.; Rockstuhl, C.; Etrich, C.; Kern, K.
    2016. ACS Nano, 10 (2), 2214-2224. doi:10.1021/acsnano.5b06768
  26. Nonradiative and Radiative Resonances in Coupled Metamolecules.
    Cong, L.; Xu, N.; Chowdhury, D. R.; Manjappa, M.; Rockstuhl, C.; Zhang, W.; Singh, R.
    2016. Advanced Optical Materials, 4 (2), 252-258. doi:10.1002/adom.201500557
  27. Manipulation of photoluminescence of two-dimensional MoSe₂ by gold nanoantennas.
    Chen, H.; Yang, J.; Rusak, E.; Straubel, J.; Guo, R.; Myint, Y. W.; Pei, J.; Decker, M.; Staude, I.; Rockstuhl, C.; Lu, Y.; Kivshar, Y. S.; Neshev, D.
    2016. Scientific reports, 6, Art.Nr.: 22296. doi:10.1038/srep22296
Conference Proceedings Articles
  1. Magnetoelectric coupling without electric and magnetic response?.
    Albooyeh, M.; Hashemi, S. M.; Asadchy, V.; Alaee, R.; Yazdi, M.; Mirmoosa, M. S.; Rockstuhl, C.; Simovski, C. R.; Tretyakov, S. A.
    2016. URSI Commission B. International Symposium on Electromagnetic Theory (EMTS 2016), Espoo, Finland, 14–18 August 2016, 215-217, IEEE, Piscataway (NJ). doi:10.1109/URSI-EMTS.2016.7571356
  2. Transition of optical regime in miniaturized optical systems: Light interactions beyond the refraction limit.
    Kim, M.-S.; Scharf, T.; Rockstuhl, C.; Nakagawa, W.; Voelkel, R.; Herzig, H. P.
    2016. MOEMS and Miniaturized Systems XV; San Francisco; United States; 15 February 2016 through 17 February 2016, Art.Nr. 97600W, SPIE, Bellingham (Wash.). doi:10.1117/12.2225366
2015
Book Chapters
  1. Randomly Textured Surfaces.
    Rockstuhl, C.; Fahr, S.; Lederer, F.; Bittkau, K.; Beckers, T.; Ermes, M.; Carius, R.
    2015. Photon Management in Solar Cells. Ed.: R. Wehrspohn, 91-116, Wiley, Weinheim
  2. Light-Trapping in Solar Cells by Directionally Selective Filters.
    Ulbrich, C.; Peters, M.; Fahr, S.; Üpping, J.; Kirchartz, T.; Rockstuhl, C.; Goldschmidt, J. C.; Gerber, A.; Lederer, F.; Wehrspohn, R. B.; Bläsi, B.; Rau, U.
    2015. Photon Management in Solar Cells. Ed.: R. Wehrspohn, 183-208, Wiley, Weinheim. doi:10.1002/9783527665662.ch7
  3. Rear Side Diffractive Gratings for Silicon Wafer Solar Cells.
    Peters, M.; Hauser, H.; Bläsi, B.; Kroll, M.; Helgert, C.; Fahr, S.; Wiesendanger, S.; Rockstuhl, C.; Kirchartz, T.; Rau, U.; Mellor, A.; Steidl, L.; Zentel, R.
    2015. Photon Management in Solar Cells. Ed.: R. Wehrspohn, 49-90, Wiley, Weinheim. doi:10.1002/9783527665662.ch3
Journal Articles
  1. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays.
    Chekini, M.; Filter, R.; Bierwagen, J.; Cunningham, A.; Rockstuhl, C.; Bürgi, T.
    2015. Journal of Applied Physics, 118 (23), 233107/1-10. doi:10.1063/1.4938025
  2. All-dielectric reciprocal bianisotropic nanoparticles.
    Alaee, R.; Albooyeh, M.; Rahimzadegan, A.; Mirmoosa, M. S.; Kivshar, Y. S.; Rockstuhl, C.
    2015. Physical Review B - Condensed Matter and Materials Physics, 92 (24), 245130. doi:10.1103/PhysRevB.92.245130
  3. Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes.
    Schumann, M. F.; Wiesendanger, S.; Goldschmidt, J. C.; Bläsi, B.; Bittkau, K.; Paetzold, U. W.; Sprafke, A.; Wehrspohn, R. B.; Rockstuhl, C.; Wegener, M.
    2015. Optica, 2, 850-853. doi:10.1364/OPTICA.2.000850
  4. Exact dipolar moments of a localized electric current distribution.
    Fernandez-Corbaton, I.; Nanz, S.; Alaee, R.; Rockstuhl, C.
    2015. Optics Express, 23 (26), 33044-33064. doi:10.1364/OE.23.033044
  5. Single-pass and omniangle light extraction from light-emitting diodes using transformation optics.
    Schumann, M. F.; Abass, A.; Gomard, G.; Wiesendanger, S.; Lemmer, U.; Wegener, M.; Rockstuhl, C.
    2015. Optics letters, 40 (23), 5626-5629. doi:10.1364/OL.40.005626
  6. A bianisotropic metasurface with resonant asymmetric absorption.
    Yazdi, M.; Albooyeh, M.; Alaee, R.; Asadchy, V.; Komjani, N.; Rockstuhl, C.; Simovski, C. R.; Tretyakov, S.
    2015. IEEE Transactions on Antennas and Propagation, 63, 3004-3015. doi:10.1109/TAP.2015.2423855
  7. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics.
    Toscano, G.; Straubel, J.; Kwiatkowski, A.; Rockstuhl, C.; Evers, F.; Asger Mortensen, N.; Wubs, M.
    2015. Nature Communications, 6, 7132/1-11. doi:10.1038/ncomms8132
  8. Revisiting substrate-induced bianisotropy in metasurfaces.
    Albooyeh, M.; Alaee, R.; Rockstuhl, C.; Simovski, C.
    2015. Physical Review B, 91, 195304/1-11. doi:10.1103/PhysRevB.91.195304
  9. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial.
    Lewandowski, W.; Fruhnert, M.; Mieczkowski, J.; Rockstuhl, C.; Gorecka, E.
    2015. Nature Communications, 6, 6590/1-9. doi:10.1038/ncomms7590
  10. Synthesis, separation, and hypermethod characterization of gold nanoparticle dimers connected by a rigid rod linker.
    Fruhnert, M.; Kretschmer, F.; Geiss, R.; Perevyazko, I.; Cialla-May, D.; Steinert, M.; Janunts, N.; Sivun, D.; Hoeppener, S.; Hager, M. D.; Pertsch, T.; Schubert, U. S.; Rockstuhl, C.
    2015. Journal of Physical Chemistry C, 119, 17809-17817. doi:10.1021/acs.jpcc.5b04346
  11. Dual and chiral objects for optical activity in general scattering directions.
    Fernandez-Corbaton, I.; Fruhnert, M.; Rockstuhl, C.
    2015. ACS Photonics, 2, 376-384. doi:10.1021/ph500419a
  12. Scattering dark states in multiresonant concentric plasmonic nanorings.
    Alaee, R.; Lehr, D.; Filter, R.; Lederer, F.; Kley, E. B.; Rockstuhl, C.; Tünnermann, A.
    2015. ACS Photonics, 2, 1085-1090. doi:10.1021/acsphotonics.5b00133
  13. A generalized Kerker condition for highly directive nanoantennas.
    Alaee, R.; Filter, R.; Lehr, D.; Lederer, F.; Rockstuhl, C.
    2015. Optics Letters, 40, 645-2648. doi:10.1364/OL.40.002645
  14. Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications.
    Alaee, R.; Albooyeh, M.; Yazdi, M.; Komjani, N.; Simovski, C.; Lederer, F.; Rockstuhl, C.
    2015. Physical Review B, 91, 115119. doi:10.1103/PhysRevB.91.115119
  15. Enhancing resonances of optical nanoantennas by circular gratings.
    Qi, J.; Kaiser, T.; Klein, A. E.; Steinert, M.; Pertsch, T.; Lederer, F.; Rockstuhl, C.
    2015. Optics express, 23 (11), 14583-14595. doi:10.1364/OE.23.014583
2014
Journal Articles
  1. Survey of Plasmonic Nanoparticles : From Synthesis to Application.
    Kretschmer, F.; Mühlig, S.; Hoeppener, S.; Winter, A.; Hager, M. D.; Rockstuhl, C.; Pertsch, T.; Schubert, U. S.
    2014. Particle & particle systems characterization, 31 (7), 721-744. doi:10.1002/ppsc.201300309
  2. Effective Optical Properties of Plasmonic Nanocomposites.
    Etrich, C.; Fahr, S.; Hedayati, M. K.; Faupel, F.; Elbahri, M.; Rockstuhl, C.
    2014. Materials, 7 (2), 727-741. doi:10.3390/ma7020727
  3. The spectral shift between near- and far-field resonances of optical nano-antennas.
    Menzel, C.; Hebestreit, E.; Mühlig, S.; Rockstuhl, C.; Burger, S.; Lederer, F.; Pertsch, T.
    2014. Optics Express, 22 (8), 9971-9982. doi:10.1364/OE.22.009971
  4. Nonlinear plasmonic antennas.
    Hasan, S. B.; Lederer, F.; Rockstuhl, C.
    2014. Materials today, 17 (10), 478-485. doi:10.1016/j.mattod.2014.05.009
  5. Metamorphose VI - the Virtual Institute for artificial electromagnetic materials and metamaterials: origin, mission, and activities.
    Bilotti, F.; Rockstuhl, C.; Schuchinsky, A.; Tretyakov, S.
    2014. EPJ Applied Metamaterials, 1, 1-5. doi:10.1051/epjam/2014002
  6. Towards negative index self-assembled metamaterials.
    Fruhnert, M.; Mühlig, S.; Lederer, F.; Rockstuhl, C.
    2014. Physical Review B, 89, 0775408/1-6. doi:10.1103/PhysRevB.89.075408
  7. Plasmonic nanoparticle clusters with tunable plasmonic resonances in the visible spectral region.
    Kretschmer, F.; Fruhnert, M.; Geiss, R.; Mansfeld, U.; Höppener, C.; Rockstuhl, C.; Pertsch, T.; Schubert, U. S.
    2014. Journal of Materials Chemistry C, 31, 6415-6422. doi:10.1039/c4tc01018c
  8. Highly resonant and directional optical nanoantennas.
    Qi, J.; Kaiser, T.; Peuker, R.; Pertsch, T.; Lederer, F.; Rockstuhl, C.
    2014. Journal of the Optical Society of America / A, 31, 388-393. doi:10.1364/JOSAA.31.000388
  9. Nanoantennas for ultrabright single photon sources.
    Filter, R.; Slowik, K.; Straubel, J.; lederer, F.; Rockstuhl, C.
    2014. Optics Letters, 39, 1246-1249. doi:10.1364/OL.39.001246
  10. Plasmonic nanoring fabrication tuned to pitch: efficient, deterministic, and large scale realization of ultra-small gaps for next generation plasmonic devices.
    Lehr, D.; Alaee, R.; Filter, R.; Dietrich, K.; Siefke, T.; Rockstuhl, C.; Lederer, F.; Kley, E. B.; Tünnermann, A.
    2014. Applied Physics Letters, 105, 143110. doi:10.1063/1.4897497
  11. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.
    Filter, R.; Bösel, C.; Toscano, G.; Lederer, F.; Rockstuhl, C.
    2014. Optics Letters, 39, 6118-6121. doi:10.1364/OL.39.006118
  12. Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces.
    Singh, R.; Al-Naib, I.; Chowdhury, D. R.; Cong, L.; Rockstuhl, C.; Zhang, W.
    2014. Applied Physics Letters, 105, 081108/1-5. doi:10.1063/1.4893726
  13. Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene.
    Yu, R.; Alaee, R.; Lederer, F.; Rockstuhl, C.
    2014. Physical review / B, 90, Art.Nr.: 085409/1-6. doi:10.1103/PhysRevB.90.085409
  14. Effects of film growth modes on light trapping in silicon thin film solar cells.
    Wiesendanger, S.; Bischoff, T.; Jovanov, V.; Knipp, D.; Burger, S.; Lederer, F.; Rockstuhl, C.
    2014. Applied Physics Letters, 104, 231103/1-5. doi:10.1063/1.4882997
  15. Stacked and tunable large-scale plasmonic nanoparticle arrays for surface-enhanced Raman spectroscopy.
    Mühlig, S.; Cialla, D.; Cunningham, A.; März, A.; Weber, K.; Bürgi, T.; Lederer, F.; Rockstuhl, C.
    2014. Journal of Physical Chemistry C, 118, 10230-10237. doi:10.1021/jp409688p
  16. Dissipation-driven entanglement between qubits mediated by plasmonic nanoantennas.
    Hou, J.; Slowik, K.; Lederer, F.; Rockstuhl, C.
    2014. Physical Review B, 89, 235413/1-9. doi:10.1103/PhysRevB.89.235413
  17. Extreme coupling: A route towards local magnetic metamaterials.
    Menzel, C.; Hebestreit, E.; Alaee, R.; Albooyeh, M.; Mühlig, S.; Burger, S.; Rockstuhl, C.; Simovski, C.; Tretyakov, S.; Lederer, F.; Pertsch, T.
    2014. Physical Review B, 89, 155125/1-8. doi:10.1103/PhysRevB.89.155125
  18. Bloch oscillations in plasmonic waveguide arrays.
    Block, A.; Etrich, C.; Limboeck, T.; Bleckmann, F.; Soergel, E.; Rockstuhl, C.; Linden, S.
    2014. Nature Communications, 5, 3843. doi:10.1038/ncomms4843
2013
Book Chapters
  1. Phase anomalies in micro-optics.
    Kim, M.-S.; Scharf, T.; Rockstuhl, C.; Herzig, H. P.
    2013. Progress in Optics, 115-197, Elsevier, Amsterdam. doi:10.1016/B978-0-444-62644-8.00003-0
  2. Multipole analysis of self-assembled metamaterials.
    Mühlig, S.; Rockstuhl, C.
    2013. Amorphous Nanophotonics. Ed.: T. Scharf, 89-118, Springer, Berlin. doi:10.1007/978-3-642-32475-8_4
Monographs
  1. Amorphous Nanophotonics.
    Rockstuhl, C.; Scharf, T.
    2013. Springer, Berlin
Journal Articles
  1. Phase anomalies in Talbot light carpets of selfimages.
    Kim, M.-S.; Scharf, T.; Menzel, C.; Rockstuhl, C.; Herzig, H. P.
    2013. Optics Express, 21 (1), 1287-1300. doi:10.1364/OE.21.001287
  2. Tunable graphene antennas for selective enhancement of THz-emission.
    Filter, R.; Farhat, M.; Steglich, M.; Alaee, R.; Rockstuhl, C.; Lederer, F.
    2013. Optics Express, 21 (3), 3737-3745. doi:10.1364/OE.21.003737
  3. Propagation of electromagnetic fields in bulk terahertz metamaterials: A combined experimental and theoretical study.
    Alaee, R.; Menzel, C.; Banas, A.; Banas, K.; Xu, S.; Chen, H.; Moser, H. O.; Lederer, F.; Rockstuhl, C.
    2013. Physical Review B - Condensed Matter and Materials Physics, 87 (7), 075110. doi:10.1103/PhysRevB.87.075110
  4. Longitudinal-differential phase distribution near the focus of a high numerical aperture lens: Study of wavefront spacing and Gouy phase.
    Kim, M.-S.; Da Costa Assafrao, A.; Scharf, T.; Rockstuhl, C.; Pereira, S. F.; Urbach, H. P.; Herzig, H. P.
    2013. Journal of Modern Optics, 60 (3), 197-201. doi:10.1080/09500340.2013.765053
  5. A self-organized anisotropic liquid-crystal plasmonic metamaterial.
    Dintinger, J.; Tang, B.-J.; Zeng, X.; Liu, F.; Kienzler, T.; Mehl, G. H.; Ungar, G.; Rockstuhl, C.; Scharf, T.
    2013. Advanced Materials, 25 (14), 1999-2004. doi:10.1002/adma.201203965
  6. Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells.
    Wiesendanger, S.; Zilk, M.; Pertsch, T.; Rockstuhl, C.; Lederer, F.
    2013. Optics Express, 21 (SUPPL.3), A450-A459. doi:10.1364/OE.21.00A450
  7. A 3D tunable and multi-frequency graphene plasmonic cloak.
    Farhat, M.; Rockstuhl, C.; Baci, H.
    2013. Optics Express, 21 (10), 12592-12603. doi:10.1364/OE.21.012592
  8. Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies.
    Jovanov, V.; Palanchoke, U.; Magnus, P.; Stiebig, H.; Hüpkes, J.; Sichanugrist, P.; Konagai, M.; Wiesendanger, S.; Rockstuhl, C.; Knipp, D.
    2013. Optics Express, 21 (13), A595-A606. doi:10.1364/OE.21.00A595
  9. Exploiting extreme coupling to realize a metamaterial perfect absorber.
    Huebner, U.; Pshenay-Severin, E.; Alaee, R.; Menzel, C.; Ziegler, M.; Rockstuhl, C.; Lederer, F.; Pertsch, T.; Meyer, H.-G.; Popp, J.
    2013. Microelectronic Engineering, 111, 110-113. doi:10.1016/j.mee.2013.02.028
  10. Impedance generalization for plasmonic waveguides beyond the lumped circuit model.
    Kaiser, T.; Hasan, S. B.; Paul, T.; Pertsch, T.; Rockstuhl, C.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (3), 035117. doi:10.1103/PhysRevB.88.035117
  11. A self-assembled three-dimensional cloak in the visible.
    Mühlig, S.; Cunningham, A.; Dintinger, J.; Farhat, M.; Hasan, S. B.; Scharf, T.; Bürgi, T.; Lederer, F.; Rockstuhl, C.
    2013. Scientific Reports, 3, 2328. doi:10.1038/srep02328
  12. Deep-subwavelength plasmonic nanoresonators exploiting extreme coupling.
    Alaee, R.; Menzel, C.; Huebner, U.; Pshenay-Severin, E.; Bin Hasan, S.; Pertsch, T.; Rockstuhl, C.; Lederer, F.
    2013. Nano Letters, 13 (8), 3482-3486. doi:10.1021/nl4007694
  13. Negative refractive index materials for improved solar cells.
    Fahr, S.; Rockstuhl, C.; Lederer, F.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (11), 115403. doi:10.1103/PhysRevB.88.115403
  14. Experimental and theoretical study of the Gouy phase anomaly of light in the focus of microlenses.
    Kim, M.-S.; Naqavi, A.; Scharf, T.; Weible, K. J.; Völkel, R.; Rockstuhl, C.; Herzig, H. P.
    2013. Journal of Optics, 15 (10), 105708. doi:10.1088/2040-8978/15/10/105708
  15. A path to implement optimized randomly textured surfaces for solar cells.
    Wiesendanger, S.; Zilk, M.; Pertsch, T.; Lederer, F.; Rockstuhl, C.
    2013. Applied Physics Letters, 103 (13), 131115. doi:10.1063/1.4823554
  16. Plasmon coupling in self-assembled gold nanoparticle-based honeycomb islands.
    Scheeler, S. P.; Mühlig, S.; Rockstuhl, C.; Hasan, S. B.; Ullrich, S.; Neubrech, F.; Kudera, S.; Pacholski, C.
    2013. Journal of Physical Chemistry C, 117 (36), 18634-18641. doi:10.1021/jp405560t
  17. Distinguishing chemical and electromagnetic enhancement in surface-enhanced Raman spectra: The case of para-nitrothiophenol.
    Thomas, M.; Mühlig, S.; Deckert-Gaudig, T.; Rockstuhl, C.; Deckert, V.; Marquetand, P.
    2013. Journal of Raman Spectroscopy, 44 (11), 1497-1505. doi:10.1002/jrs.4377
  18. Strong coupling of optical nanoantennas and atomic systems.
    Slowik, K.; Filter, R.; Straubel, J.; Lederer, F.; Rockstuhl, C.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (19), 195414. doi:10.1103/PhysRevB.88.195414
  19. Optical metamaterials with quasicrystalline symmetry: Symmetry-induced optical isotropy.
    Kruk, S. S.; Helgert, C.; Decker, M.; Staude, I.; Menzel, C.; Etrich, C.; Rockstuhl, C.; Jagadish, C.; Pertsch, T.; Neshev, D. N.; Kivshar, Y. S.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (20), 201404. doi:10.1103/PhysRevB.88.201404
  20. Enhancing the nonlinear response of plasmonic nanowire antennas by engineering their terminations.
    Hasan, S. B.; Etrich, C.; Filter, R.; Rockstuhl, C.; Lederer, F.
    2013. Physical Review B - Condensed Matter and Materials Physics, 88 (20), 205125. doi:10.1103/PhysRevB.88.205125
  21. The fano resonance in symmetry broken terahertz metamaterials.
    Singh, R.; Al-Naib, I.; Cao, W.; Rockstuhl, C.; Koch, M.; Zhang, W.
    2013. IEEE Transactions on Terahertz Science and Technology, 3 (6), 820-826. doi:10.1109/TTHZ.2013.2285498
  22. Self-assembled plasmonic metamaterials.
    Mühlig, S.; Cunningham, A.; Dintinger, J.; Scharf, T.; Bürgi, T.; Lederer, F.; Rockstuhl, C.
    2013. Nanophotonics, 2 (3), 211-240. doi:10.1515/nanoph-2012-0036
Encyclopedia Entries
  1. Theory of Optical Metamaterials.
    Rockstuhl, C.; Menzel, C.; Mühlig, S.; Lederer, F.
    2013. Encyclopedia of Nanotechnology. Ed.: Bharat Bhushan, 2667-2680, Springer, Berlin
2012
Book Chapters
  1. Surface Plasmon Polaritons in Metallic Nanostructures: Fundamentals and Their Application to Thin-Film Solar Cells.
    Rockstuhl, C.; Fahr, S.; Lederer, F.
    2012. Next Generation of Photovoltaics : New Concepts. Ed.: A. B. Cristóbal López, 95-130, Springer, Berlin. doi:10.1007/978-3-642-23369-2_5
  2. Multipole Metamaterials.
    Petschulat, J.; Rockstuhl, C.; Menzel, C.; Chipouline, A.; Tünnermann, A.; Lederer, F.; Pertsch, T.
    2012. Plasmonics and Plasmonic Metamaterials: Analysis and Applications. Ed.: G. Shvets, 67-99, World Scientific, Singapur
Journal Articles
  1. Second-order nonlinear frequency conversion processes in plasmonic slot waveguides.
    Hasan, S. B.; Rockstuhl, C.; Pertsch, T.; Lederer, F.
    2012. Journal of the Optical Society of America B: Optical Physics, 29 (7), 1606-1611. doi:10.1364/JOSAB.29.001606
  2. Scattering cancellation of the magnetic dipole field from macroscopic spheres.
    Farhat, M.; Mühlig, S.; Rockstuhl, C.; Lederer, F.
    2012. Optics Express, 20 (13), 13896-13906. doi:10.1364/OE.20.013896
  3. Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas.
    Filter, R.; Mühlig, S.; Eichelkraut, T.; Rockstuhl, C.; Lederer, F.
    2012. Physical Review B - Condensed Matter and Materials Physics, 86 (3), 035404. doi:10.1103/PhysRevB.86.035404
  4. Perfect absorbers on curved surfaces and their potential applications.
    Alaee, R.; Menzel, C.; Rockstuhl, C.; Lederer, F.
    2012. Optics Express, 20 (16), 18370-18376. doi:10.1364/OE.20.018370
  5. Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials.
    Al-Naib, I.; Singh, R.; Rockstuhl, C.; Lederer, F.; Delprat, S.; Rocheleau, D.; Chaker, M.; Ozaki, T.; Morandotti, R.
    2012. Applied Physics Letters, 101 (7), 071108. doi:10.1063/1.4745790
  6. Exciting bright and dark eigenmodes in strongly coupled asymmetric metallic nanoparticle arrays.
    Cunningham, A.; Muhlig, S.; Rockstuhl, C.; Burgi, T.
    2012. Journal of Physical Chemistry C, 116 (33), 17746-17752. doi:10.1021/jp301764d
  7. Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial.
    Reinhold, J.; Shcherbakov, M. R.; Chipouline, A.; Panov, V. I.; Helgert, C.; Paul, T.; Rockstuhl, C.; Lederer, F.; Kley, E.-B.; Tünnermann, A.; Fedyanin, A. A.; Pertsch, T.
    2012. Physical Review B - Condensed Matter and Materials Physics, 86 (11), 115401. doi:10.1103/PhysRevB.86.115401
  8. Sandwiching intermediate reflectors in tandem solar cells for improved photon management.
    Fahr, S.; Rockstuhl, C.; Lederer, F.
    2012. Applied Physics Letters, 101 (13), 133904. doi:10.1063/1.4755873
  9. A perfect absorber made of a graphene micro-ribbon metamaterial.
    Alaee, R.; Farhat, M.; Rockstuhl, C.; Lederer, F.
    2012. Optics express, 20 (27), 28017-28024. doi:10.1364/OE.20.028017
  10. Spatial and spectral light shaping with metamaterials.
    Walther, B.; Helgert, C.; Rockstuhl, C.; Setzpfandt, F.; Eilenberger, F.; Kley, E.-B.; Lederer, F.; Tünnermann, A.; Pertsch, T.
    2012. Advanced Materials, 24 (47), 6300-6304. doi:10.1002/adma.201202540
  11. Phase anomalies in Bessel-Gauss beams.
    Kim, M.-S.; Scharf, T.; Da Costa Assafrao, A.; Rockstuhl, C.; Pereira, S. F.; Paul Urbach, H.; Herzig, H. P.
    2012. Optics Express, 20 (27), 28929-28940. doi:10.1364/OE.20.028929
  12. Optical bistability in a doubly resonant x (2 )-nonlinear plasmonic nanocavity.
    Hänsel, A.; Egorov, O. A.; Hasan, S. B.; Rockstuhl, C.; Lederer, F.
    2012. Physical Review A - Atomic, Molecular, and Optical Physics, 85 (5), 053843. doi:10.1103/PhysRevA.85.053843
  13. Circular optical nanoantennas: An analytical theory.
    Filter, R.; Qi, J.; Rockstuhl, C.; Lederer, F.
    2012. Physical Review B - Condensed Matter and Materials Physics, 85 (12), 125429. doi:10.1103/PhysRevB.85.125429
  14. A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles.
    Dintinger, J.; Mühlig, S.; Rockstuhl, C.; Scharf, T.
    2012. Optical Materials Express, 2 (3), 269-278. doi:10.1364/OME.2.000269
  15. Talbot images of wavelength-scale amplitude gratings.
    Kim, M.-S.; Scharf, T.; Menzel, C.; Rockstuhl, C.; Herzig, H. P.
    2012. Optics Express, 20 (5), 4903-4920. doi:10.1364/OE.20.004903
  16. Genuine effectively biaxial left-handed metamaterials due to extreme coupling.
    Menzel, C.; Alaee, R.; Pshenay-Severin, E.; Helgert, C.; Chipouline, A.; Rockstuhl, C.; Pertsch, T.; Lederer, F.
    2012. Optics Letters, 37 (4), 596-598. doi:10.1364/OL.37.000596
  17. Longitudinal-differential interferometry: Direct imaging of axial superluminal phase propagation.
    Kim, M.-S.; Scharf, T.; Etrich, C.; Rockstuhl, C.; Peter, H. H.
    2012. Optics Letters, 37 (3), 305-307. doi:10.1364/OL.37.000305
  18. Chirale photonische Metamaterialien - Polarisationskontrolle durch Nanostrukturierung.
    Helgert, C.; Pshenay-Severin, E.; Falkner, M.; Menzel, C.; Rockstuhl, C.; Kley, E.-B.; Tünnermann, A.; Lederer, F.; Pertsch, T.
    2012. Photonik, 2 (40)
  19. 3D THz metamaterials from micro/nanomanufacturing.
    Moser, H. O.; Rockstuhl, C.
    2012. Laser & Photonics Review, 6 (2), 219-244. doi:10.1002/lpor.201000019
2011
Journal Articles
  1. Understanding the functionality of an array of invisibility cloaks.
    Farhat, M.; Chen, P.-Y.; Guenneau, S.; Enoch, S.; McPhedran, R.; Rockstuhl, C.; Lederer, F.
    2011. Physical Review B - Condensed Matter and Materials Physics, 84 (23), 235105. doi:10.1103/PhysRevB.84.235105
  2. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry.
    Singh, R.; Al-Naib, I. A. I.; Yang, Y.; Roy Chowdhury, D.; Cao, W.; Rockstuhl, C.; Ozaki, T.; Morandotti, R.; Zhang, W.
    2011. Applied Physics Letters, 99 (20), 201107. doi:10.1063/1.3659494
  3. Relating localized nanoparticle resonances to an associated antenna problem.
    Hasan, S. B.; Filter, R.; Ahmed, A.; Vogelgesang, R.; Gordon, R.; Rockstuhl, C.; Lederer, F.
    2011. Physical Review B - Condensed Matter and Materials Physics, 84 (19), 195405. doi:10.1103/PhysRevB.84.195405
  4. Chiral metamaterial composed of three-dimensional plasmonic nanostructures.
    Helgert, C.; Pshenay-Severin, E.; Falkner, M.; Menzel, C.; Rockstuhl, C.; Kley, E.-B.; Tünnermann, A.; Lederer, F.; Pertsch, T.
    2011. Nano Letters, 11 (10), 4400-4404. doi:10.1021/nl202565e
  5. Reflection and transmission of light at periodic layered metamaterial films.
    Paul, T.; Menzel, C.; Migaj, W.; Rockstuhl, C.; Lalanne, P.; Lederer, F.
    2011. Physical Review B - Condensed Matter and Materials Physics, 84 (11), 115142. doi:10.1103/PhysRevB.84.115142
  6. Multipole analysis of meta-atoms.
    Mühlig, S.; Menzel, C.; Rockstuhl, C.; Lederer, F.
    2011. Metamaterials, 5 (2-3), 64-73. doi:10.1016/j.metmat.2011.03.003
  7. Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells.
    Üpping, J.; Bielawny, A.; Wehrspohn, R. B.; Beckers, T.; Carius, R.; Rau, U.; Fahr, S.; Rockstuhl, C.; Lederer, F.; Kroll, M.; Pertsch, T.; Steidl, L.; Zentel, R.
    2011. Advanced Materials, 23 (34), 3896-3900. doi:10.1002/adma.201101419
  8. Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range.
    Mühlig, S.; Cunningham, A.; Scheeler, S.; Pacholski, C.; Bürgi, T.; Rockstuhl, C.; Lederer, F.
    2011. ACS Nano, 5 (8), 6586-6592. doi:10.1021/nn201969h
  9. Long-distance indirect excitation of nanoplasmonic resonances.
    Khunsin, W.; Brian, B.; Dorfmüller, J.; Esslinger, M.; Vogelgesang, R.; Etrich, C.; Rockstuhl, C.; Dmitriev, A.; Kern, K.
    2011. Nano Letters, 11 (7), 2765-2769. doi:10.1021/nl201043v
  10. Scattering properties of meta-atoms.
    Rockstuhl, C.; Menzel, C.; Mühlig, S.; Petschulat, J.; Helgert, C.; Etrich, C.; Chipouline, A.; Pertsch, T.; Lederer, F.
    2011. Physical Review B, 83 (24), 245119. doi:10.1103/PhysRevB.83.245119
  11. Approaching the Lambertian limit in randomly textured thin-film solar cells.
    Fahr, S.; Kirchartz, T.; Rockstuhl, C.; Lederer, F.
    2011. Optics Express, 19 (14), A865-A874. doi:10.1364/OE.19.00A865
  12. Multipole approach in electrodynamics of metamaterials.
    Chipouline, A.; Petschulat, J.; Tuennermann, A.; Pertsch, T.; Menzel, C.; Rockstuhl, C.; Lederer, F.
    2011. Applied Physics A: Materials Science and Processing, 103 (3), 899-904. doi:10.1007/s00339-011-6339-7
  13. Effects of anisotropic disorder in an optical metamaterial.
    Helgert, C.; Rockstuhl, C.; Etrich, C.; Kley, E.-B.; Tünnermann, A.; Lederer, F.; Pertsch, T.
    2011. Applied Physics A: Materials Science and Processing, 103 (3), 591-595. doi:10.1007/s00339-010-6190-2
  14. Gouy phase anomaly in photonic nanojets.
    Kim, M.-S.; Scharf, T.; Mühlig, S.; Rockstuhl, C.; Herzig, H. P.
    2011. Applied Physics Letters, 98 (19), 191114. doi:10.1063/1.3591175
  15. Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles.
    Cunningham, A.; Mühlig, S.; Rockstuhl, C.; Bürgi, T.
    2011. Journal of Physical Chemistry C, 115 (18), 8955-8960. doi:10.1021/jp2011364
  16. Cloaking dielectric spherical objects by a shell of metallic nanoparticles.
    Mühlig, S.; Farhat, M.; Rockstuhl, C.; Lederer, F.
    2011. Physical Review B - Condensed Matter and Materials Physics, 83 (19), 195116. doi:10.1103/PhysRevB.83.195116
  17. Diffractive optical elements based on plasmonic metamaterials.
    Walther, B.; Helgert, C.; Rockstuhl, C.; Pertsch, T.
    2011. Applied Physics Letters, 98 (19), 191101. doi:10.1063/1.3587622
  18. Engineering photonic Nanojets.
    Kim, M.-S.; Scharf, T.; Mühlig, S.; Rockstuhl, C.; Herzig, H. P.
    2011. Optics Express, 19 (11), 10206-10220. doi:10.1364/OE.19.010206
  19. Optical properties of a fabricated self-assembled bottom-up bulk metamaterial.
    Mühlig, S.; Rockstuhl, C.; Yannopapas, V.; Bürgi, T.; Shalkevich, N.; Lederer, F.
    2011. Optics Express, 19 (10), 9607-9616. doi:10.1364/OE.19.009607
  20. Towards the origin of the nonlinear response in hybrid plasmonic systems.
    Utikal, T.; Zentgraf, T.; Paul, T.; Rockstuhl, C.; Lederer, F.; Lippitz, M.; Giessen, H.
    2011. Physical Review Letters, 106 (13), 133901. doi:10.1103/PhysRevLett.106.133901
  21. Integrating cold plasma equations into the Fourier modal method to analyze second harmonic generation at metallic nanostructures.
    Paul, T.; Rockstuhl, C.; Lederer, F.
    2011. Journal of Modern Optics, 58 (5-6), 438-448. doi:10.1080/09500340.2010.511291
  22. Closed-form expression for the scattering coefficients at an interface between two periodic media.
    Smigaj, W.; Lalanne, P.; Yang, J.; Paul, T.; Rockstuhl, C.; Lederer, F.
    2011. Applied Physics Letters, 98 (11), 111107. doi:10.1063/1.3565970
  23. Light absorption in textured thin film silicon solar cells: A simple scalar scattering approach versus rigorous simulation.
    Rockstuhl, C.; Fahr, S.; Lederer, F.; Haug, F.-J.; Söderström, T.; Nicolay, S.; Despeisse, M.; Ballif, C.
    2011. Applied Physics Letters, 98 (5), 051102. doi:10.1063/1.3549175
2010
Book Chapters
  1. Computational Photonics – Grid Computing in der Nanooptik.
    Rockstuhl, C.; Paul, T.; Pertsch, T.; Lederer, F.
    2010. Grid-Computing : Eine Basistechnologie für Computational Science, 367-384, Springer, Berlin. doi:10.1007/978-3-540-79747-0_17
Journal Articles
  1. Double Resonant Optical Nanoantenna Arrays for Polarization Resolved Measurements of Surface-Enhanced Raman Scattering.
    Petschulat, J.; Cialla, D.; Huebner, U.; Schneidewind, H.; Moeller, R.; Mattheis, R.; Janunts, N.; Rockstuhl, C.; Lederer, F.; Tünnermann, A.; Popp, J.; Pertsch, T.
    2010. Optics express, 18 (5), 4184-4197. doi:10.1364/OE.18.004184
  2. Validity of effective material parameters for optical fishnet metamaterials.
    Menzel, C.; Paul, T.; Rockstuhl, C.; Pertsch, T.; Tretyakov, S.; Lederer, F.
    2010. Physical Review B - Condensed Matter and Materials Physics, 81 (3), 035320. doi:10.1103/PhysRevB.81.035320
  3. Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry.
    Setzpfandt, F.; Helgert, C.; Hübner, U.; Menzel, C.; Chipouline, A.; Rockstuhl, C.; Tünnermann, A.; Lederer, F.; Pertsch, T.; Pshenay-Severin, E.
    2010. Journal of the Optical Society of America B: Optical Physics, 27 (4), 660-666. doi:10.1364/JOSAB.27.000660
  4. Cryogenic temperatures as a path towards high-Q terahertz metamaterials.
    Singh, R.; Tian, Z.; Han, J.; Rockstuhl, C.; Gu, J.; Zhang, W.
    2010. Applied physics letters, 96, 071114. doi:10.1063/1.3313941
  5. Three-dimensional metamaterial nanotips.
    Mühlig, S.; Rockstuhl, C.; Pniewski, J.; Simovski, C. R.; Tretyakov, S. A.; Lederer, F.
    2010. Physical Review B - Condensed Matter and Materials Physics, 81 (7), 075317. doi:10.1103/PhysRevB.81.075317
  6. Designing optical elements from isotropic materials by using transformation optics.
    Schmiele, M.; Varma, V. S.; Rockstuhl, C.; Lederer, F.
    2010. Physical Review A - Atomic, Molecular, and Optical Physics, 81 (3), 033837. doi:10.1103/PhysRevA.81.033837
  7. A numerical approach for analyzing higher harmonic generation in multilayer nanostructures.
    Paul, T.; Rockstuhl, C.; Lederer, F.
    2010. Journal of the Optical Society of America B, 27 (5), 1118-1130. doi:10.1364/JOSAB.27.001118
  8. High symmetry versus optical isotropy of a negative-index metamaterial.
    Menzel, C.; Rockstuhl, C.; Iliew, R.; Lederer, F.; Andryieuski, A.; Malureanu, R.; Lavrinenko, A. V.
    2010. Physical Review B - Condensed Matter and Materials Physics, 81 (19), 195123. doi:10.1103/PhysRevB.81.195123
  9. Advanced optical metamaterials.
    Paul, T.; Menzel, C.; Rockstuhl, C.; Lederer, F.
    2010. Advanced Materials, 22 (21), 2354-2357. doi:10.1002/adma.200903865
  10. Tailoring the properties of optical metamaterials.
    Helgert, C.; Pertsch, T.; Rockstuhl, C.; Pshenay-Severin, E.; Menzel, C.; Kley, E.-B.; Chipouline, A.; Etrich, C.; Huebner, U.; Tuennermann, A.; Lederer, F.
    2010. Chinese Optics, 3 (1), 1-10
  11. Asymmetric transmission of linearly polarized light at optical metamaterials.
    Menzel, C.; Helgert, C.; Rockstuhl, C.; Kley, E.-B.; Tünnermann, A.; Pertsch, T.; Lederer, F.
    2010. Physical Review Letters, 104 (25), 253902. doi:10.1103/PhysRevLett.104.253902
  12. Simple and versatile analytical approach for planar metamaterials.
    Petschulat, J.; Chipouline, A.; Tünnermann, A.; Pertsch, T.; Menzel, C.; Rockstuhl, C.; Paul, T.; Lederer, F.
    2010. Physical Review B - Condensed Matter and Materials Physics, 82 (7), 075102. doi:10.1103/PhysRevB.82.075102
  13. Comparison and optimization of randomly textured surfaces in thin-film solar cells.
    Rockstuhl, C.; Fahr, S.; Bittkau, K.; Beckers, T.; Carius, R.; Haug, F.-J.; Söderström, T.; Ballif, C.; Lederer, F.
    2010. Optics Express, 18 (19), A335-A342
  14. Plasmonic modes of extreme subwavelength nanocavities.
    Petschulat, J.; Helgert, C.; Steinert, M.; Bergner, N.; Rockstuhl, C.; Lederer, F.; Pertsch, T.; Tünnermann, A.; Kley, E.-B.
    2010. Optics Letters, 35 (16), 2693-2695. doi:10.1364/OL.35.002693
  15. Retrieving the effective parameters of metamaterials from the single interface scattering problem.
    Yang, J.; Sauvan, C.; Paul, T.; Rockstuhl, C.; Lederer, F.; Lalanne, P.
    2010. Applied Physics Letters, 97 (6), 061102. doi:10.1063/1.3478241
  16. Improving the efficiency of thin film tandem solar cells by plasmonic intermediate reflectors.
    Fahr, S.; Rockstuhl, C.; Lederer, F.
    2010. Photonics and Nanostructures - Fundamentals and Applications, 8 (4), 291-296. doi:10.1016/j.photonics.2010.03.003
  17. Plasmonic nanowire antennas: Experiment, simulation, and theory.
    Dorfmüller, J.; Vogelgesang, R.; Khunsin, W.; Rockstuhl, C.; Etrich, C.; Kern, K.
    2010. Nano Letters, 10 (9), 3596-3603. doi:10.1021/nl101921y
  18. The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells.
    Fahr, S.; Rockstuhl, C.; Lederer, F.
    2010. Applied Physics Letters, 97 (17), 173510. doi:10.1063/1.3509414
  19. Advanced Jones calculus for the classification of periodic metamaterials.
    Menzel, C.; Rockstuhl, C.; Lederer, F.
    2010. Physical Review A - Atomic, Molecular, and Optical Physics, 82 (5), 053811. doi:10.1103/PhysRevA.82.053811
  20. Homogenization of resonant chiral metamaterials.
    Andryieuski, A.; Menzel, C.; Rockstuhl, C.; Malureanu, R.; Lederer, F.; Lavrinenko, A.
    2010. Physical Review B - Condensed Matter and Materials Physics, 82 (23), 235107. doi:10.1103/PhysRevB.82.235107
  21. Strong influence of packing density in terahertz metamaterials.
    Singh, R.; Rockstuhl, C.; Zhang, W.
    2010. Applied Physics Letters, 97 (24), 241108. doi:10.1063/1.3525169
2009
Journal Articles
  1. The impact of nearest neighbor interaction on the resonances in terahertz metamaterials.
    Singh, R.; Rockstuhl, C.; Lederer, F.; Zhang, W.
    2009. Applied Physics Letters, 94 (2), 021116. doi:10.1063/1.3063051
  2. Optical activity in chiral media composed of three-dimensional metallic meta-atoms.
    Rockstuhl, C.; Menzel, C.; Paul, T.; Lederer, F.
    2009. Physical Review B - Condensed Matter and Materials Physics, 79 (3), 035321. doi:10.1103/PhysRevB.79.035321
  3. Coupling between a dark and a bright eigenmode in a terahertz metamaterial.
    Singh, R.; Rockstuhl, C.; Lederer, F.; Zhang, W.
    2009. Physical Review B - Condensed Matter and Materials Physics, 79 (8), 085111. doi:10.1103/PhysRevB.79.085111
  4. Polarization-independent negative-index metamaterial in the near infrared.
    Helgert, C.; Menzel, C.; Rockstuhl, C.; Pshenay-Severin, E.; Kley, E.-B.; Chipouline, A.; Tünnermann, A.; Lederer, F.; Pertsch, T.
    2009. Optics Letters, 34 (5), 704-706. doi:10.1364/OL.34.000704
  5. Terahertz phase modulator.
    Rockstuhl, C.; Zhang, W.
    2009. Nature Photonics, 3 (3), 130-131. doi:10.1038/nphoton.2009.14
  6. Metamaterial nanotips.
    Rockstuhl, C.; Simovski, C. R.; Tretyakov, S. A.; Lederer, F.
    2009. Applied Physics Letters, 94 (11), 113110. doi:10.1063/1.3103208
  7. Anomalous refraction, diffraction, and imaging in metamaterials.
    Paul, T.; Rockstuhl, C.; Menzel, C.; Lederer, F.
    2009. Physical Review B - Condensed Matter and Materials Physics, 79 (11), 115430. doi:10.1103/PhysRevB.79.115430
  8. Suppression of the local density of states in a medium made of randomly arranged dielectric spheres.
    Rockstuhl, C.; Lederer, F.
    2009. Physical Review B - Condensed Matter and Materials Physics, 79 (13), 132202. doi:10.1103/PhysRevB.79.132202
  9. Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells.
    Bielawny, A.; Rockstuhl, C.; Lederer, F.; Wehrspohn, R. B.
    2009. Optics express, 17 (10), 8439-8446. doi:10.1364/OE.17.008439
  10. Negative-index materials: Two approaches for nanofabricated metamaterials.
    Huebner, U.; Petschulat, J.; Pshenay-Severin, E.; Chipouline, A.; Pertsch, T.; Rockstuhl, C.; Lederer, F.
    2009. Microelectronic Engineering, 86 (4-6), 1138-1141. doi:10.1016/j.mee.2009.01.064
  11. Double-element metamaterial with negative index at near-infrared wavelengths.
    Pshenay-Severin, E.; Hübner, U.; Menzel, C.; Helgert, C.; Chipouline, A.; Rockstuhl, C.; Tünnermann, A.; Lederer, F.; Pertsch, T.
    2009. Optics Letters, 34 (11), 1678-1680. doi:10.1364/OL.34.001678
  12. Photon management by metallic nanodiscs in thin film solar cells.
    Rockstuhl, C.; Lederer, F.
    2009. Applied Physics Letters, 94 (21), 213102. doi:10.1063/1.3141402
  13. The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces.
    Rockstuhl, C.; Lederer, F.; Bittkau, K.; Beckers, T.; Carius, R.
    2009. Applied Physics Letters, 94 (21), 211101. doi:10.1063/1.3142421
  14. Fabry-Pérot resonances in one-dimensional plasmonic nanostructures.
    Dorfmüller, J.; Vogelgesang, R.; Weitz, R. T.; Rockstuhl, C.; Etrich, C.; Pertsch, T.; Lederer, F.; Kern, K.
    2009. Nano Letters, 9 (6), 2372-2377. doi:10.1021/nl900900r
  15. Effective properties of amorphous metamaterials.
    Helgert, C.; Rockstuhl, C.; Etrich, C.; Menzel, C.; Kley, E.-B.; Tünnermann, A.; F. Lederer; T. Pertsch.
    2009. Physical Review B, 79 (23), 233107. doi:10.1103/PhysRevB.79.233107
  16. The split cube in a cage: Bulk negative-index material for infrared applications.
    Andryieuski, A.; Menzel, C.; Rockstuhl, C.; Malureanu, R.; Lavrinenko, A. V.
    2009. Journal of Optics A: Pure and Applied Optics, 11 (11), 114010. doi:10.1088/1464-4258/11/11/114010
  17. Metallic nanoparticles as intermediate reflectors in tandem solar cells.
    Fahr, S.; Rockstuhl, C.; Lederer, F.
    2009. Applied Physics Letters, 95 (12), 121105. doi:10.1063/1.3232230
  18. Angular resolved effective optical properties of a Swiss cross metamaterial.
    Menzel, C.; Helgert, C.; Üpping, J.; Rockstuhl, C.; Kley, E.-B.; Wehrspohn, R. B.; Pertsch, T.; Lederer, F.
    2009. Applied Physics Letters, 95 (13), 131104. doi:10.1063/1.3238554
  19. Terahertz metamaterial with asymmetric transmission.
    Singh, R.; Plum, E.; Menzel, C.; Rockstuhl, C.; Azad, A. K.; Cheville, R. A.; Lederer, F.; Zhang, W.; Zheludev, N. I.
    2009. Physical Review B - Condensed Matter and Materials Physics, 80 (15), 153104. doi:10.1103/PhysRevB.80.153104
  20. Analogue of electromagnetically induced transparency in a terahertz metamaterial.
    Chiam, S.-Y.; Singh, R.; Rockstuhl, C.; Lederer, F.; Zhang, W.; Bettiol, A. A.
    2009. Physical Review B - Condensed Matter and Materials Physics, 80 (15), e153103. doi:10.1103/PhysRevB.80.153103
  21. Effective properties of terahertz double split-ring resonators at oblique incidence.
    Menzel, C.; Singh, R.; Rockstuhl, C.; Zhang, W.; Lederer, F.
    2009. Journal of the Optical Society of America B: Optical Physics, 26 (12), B143-B147. doi:10.1364/JOSAB.26.00B143
  22. Multipole nonlinearity of metamaterials.
    Petschulat, J.; Chipouline, A.; Tünnermann, A.; Pertsch, T.; Menzel, C.; Rockstuhl, C.; Lederer, F.
    2009. Physical Review A - Atomic, Molecular, and Optical Physics, 80 (6), 063828. doi:10.1103/PhysRevA.80.063828
2008
Journal Articles
  1. Imbert-Fedorov shift at metamaterial interfaces.
    Menzel, C.; Rockstuhl, C.; Paul, T.; Fahr, S.; Lederer, F.
    2008. Physical Review A - Atomic, Molecular, and Optical Physics, 77 (1), 013810. doi:10.1103/PhysRevA.77.013810
  2. Transition from thin-film to bulk properties of metamaterials.
    Rockstuhl, C.; Paul, T.; Lederer, F.; Pertsch, T.; Zentgraf, T.; Meyrath, T. P.; Giessen, H.
    2008. Physical Review B - Condensed Matter and Materials Physics, 77 (3), 035126. doi:10.1103/PhysRevB.77.035126
  3. Resonances in complementary metamaterials and nanoapertures.
    Rockstuhl, C.; Zentgraf, T.; Meyrath, T. P.; Giessen, H.; Lederer, F.
    2008. Optics Express, 16 (3), 2080-2090. doi:10.1364/OE.16.002080
  4. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide.
    Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T.
    2008. Journal of the American Chemical Society, 130 (5), 1676-1680. doi:10.1021/ja076503n
  5. A metamaterial based on coupled metallic nanoparticles and its band-gap property.
    Rockstuhl, C.; Scharf, T.
    2008. Journal of Microscopy, 229 (2), 281-286. doi:10.1111/j.1365-2818.2008.01901.x
  6. Biomolecular sensors utilizing waveguide modes excited by evanescent fields.
    Fujimaki, M.; Rockstuhl, C.; Wang, X.; Awazu, K.; Tominaga, J.; Ikeda, T.; Koganezawa, Y.; Ohki, Y.
    2008. Journal of Microscopy, 229 (2), 320-326. doi:10.1111/j.1365-2818.2008.01907.x
  7. Plasmonic devices with controllable resonances - An avenue towards high-speed and mass fabrication of optical meta-materials.
    Kurihara, K.; Rockstuhl, C.; Petit, S.; Yamakawa, Y.; Tominaga, J.
    2008. Journal of Microscopy, 229 (3), 396-401. doi:10.1111/j.1365-2818.2008.01918.x
  8. The design of evanescent-field-coupled waveguide-mode sensors.
    Fujimaki, M.; Rockstuhl, C.; Wang, X.; Awazu, K.; Tominaga, J.; Fukuda, N.; Koganezawa, Y.; Ohki, Y.
    2008. Nanotechnology, 19 (9), 095503. doi:10.1088/0957-4484/19/9/095503
  9. Amplitude- and phase-resolved optical near fields of split-ring-resonator- based metamaterials.
    Zentgraf, T.; Dorfmüller, J.; Rockstuhl, C.; Etrich, C.; Vogelgesang, R.; Kern, K.; Pertsch, T.; Lederer, F.; Giessen, H.
    2008. Optics Letters, 33 (8), 848-850. doi:10.1364/OL.33.000848
  10. Silica-based monolithic sensing plates for waveguide-mode sensors.
    Fujimaki, M.; Rockstuhl, C.; Wang, X.; Awazu, K.; Tominaga, J.; Koganezawa, Y.; Ohki, Y.; Komatsubara, T.
    2008. Optics Express, 16 (9), 6408-6416. doi:10.1364/OE.16.006408
  11. Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs.
    Paul, T.; Rockstuhl, C.; Menzel, C.; Lederer, F.
    2008. Physical Review A - Atomic, Molecular, and Optical Physics, 77 (5), 053802. doi:10.1103/PhysRevA.77.053802
  12. Engineering the randomness for enhanced absorption in solar cells.
    Fahr, S.; Rockstuhl, C.; Lederer, F.
    2008. Applied Physics Letters, 92 (17), 171114. doi:10.1063/1.2919094
  13. Retrieving effective parameters for metamaterials at oblique incidence.
    Menzel, C.; Rockstuhl, C.; Paul, T.; Lederer, F.; Pertsch, T.
    2008. Physical Review B - Condensed Matter and Materials Physics, 77 (19), 195328. doi:10.1103/PhysRevB.77.195328
  14. Rugate filter for light-trapping in solar cells.
    Fahr, S.; Ulbrich, C.; Kirchartz, T.; Rau, U.; Rockstuhl, C.; Lederer, F.
    2008. Optics Express, 16 (13), 9332-9343. doi:10.1364/OE.16.009332
  15. Local versus global absorption in thin-film solar cells with randomly textured surfaces.
    Rockstuhl, C.; Fahr, S.; Lederer, F.; Bittkau, K.; Beckers, T.; Carius, R.
    2008. Applied Physics Letters, 93 (6), 061105. doi:10.1063/1.2965117
  16. Electromagnetic induction in metamaterials.
    Meyrath, T. P.; Zentgraf, T.; Rockstuhl, C.; Giessen, H.
    2008. Applied Physics B: Lasers and Optics, 93 (1), 107-110. doi:10.1007/s00340-008-3207-z
  17. Light propagation in a fishnet metamaterial.
    Rockstuhl, C.; Menzel, C.; Paul, T.; Pertsch, T.; Lederer, F.
    2008. Physical Review B - Condensed Matter and Materials Physics, 78 (15), 155102. doi:10.1103/PhysRevB.78.155102
  18. Direct near-field optical imaging of higher order plasmonic resonances.
    Esteban, R.; Vogelgesang, R.; Dorfmüller, J.; Dmitriev, A.; Rockstuhl, C.; Etrich, C.; Kern, K.
    2008. Nano Letters, 8 (10), 3155-3159. doi:10.1021/nl801396r
  19. Multipole approach to metamaterials.
    Petschulat, J.; Menzel, C.; Chipouline, A.; Rockstuhl, C.; Tünnermann, A.; Lederer, F.; Pertsch, T.
    2008. Physical Review A - Atomic, Molecular, and Optical Physics, 78 (4), 043811. doi:10.1103/PhysRevA.78.043811
  20. Fabrication of inert silver nanoparticles with a thin silica coating.
    Nomura, K.-I.; Fujii, S.; Ohki, Y.; Awazu, K.; Fujimaki, M.; Tominaga, J.; Fukuda, N.; Hirakawa, T.; Rockstuhl, C.
    2008. Japanese Journal of Applied Physics, 47 (11), 8641-8643. doi:10.1143/JJAP.47.8641
  21. Nanoscale investigation of light-trapping in a-Si:H solar cell structures with randomly textured interfaces.
    Bittkau, K.; Beckers, T.; Fahr, S.; Rockstuhl, C.; Lederer, F.; Carius, R.
    2008. Physica Status Solidi (A) Applications and Materials Science, 205 (12), 2766-2776. doi:10.1002/pssa.200880454
  22. On the use of localized plasmon polaritons in solar cells.
    Hallermann, F.; Rockstuhl, C.; Fahr, S.; Seifert, G.; Wackerow, S.; Graener, H.; V Plessen, G.; Lederer, F.
    2008. Physica Status Solidi (A) Applications and Materials Science, 205 (12), 2844-2861. doi:10.1002/pssa.200880451
  23. Directional selectivity and ultra-light-trapping in solar cells.
    Ulbrich, C.; Fahr, S.; Üpping, J.; Peters, M.; Kirchartz, T.; Rockstuhl, C.; Wehrspohn, R.; Gombert, A.; Lederer, F.; Rau, U.
    2008. Physica Status Solidi (A) Applications and Materials Science, 205 (12), 2831-2843. doi:10.1002/pssa.200880457
  24. Employing dielectric diffractive structures in solar cells - A numerical study.
    Kroll, M.; Fahr, S.; Helgert, C.; Rockstuhl, C.; Lederer, F.; Pertsch, T.
    2008. Physica Status Solidi (A) Applications and Materials Science, 205 (12), 2777-2795. doi:10.1002/pssa.200880453
  25. 3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell.
    Bielawny, A.; Üpping, J.; Miclea, P. T.; Wehrspohn, R. B.; Rockstuhl, C.; Lederer, F.; Peters, M.; Steidl, L.; Zentel, R.; Lee, S.-M.; Knez, M.; Lambertz, A.; Carius, R.
    2008. Physica Status Solidi (A) Applications and Materials Science, 205 (12), 2796-2810. doi:10.1002/pssa.200880455
  26. Retrieving effective parameters for quasiplanar chiral metamaterials.
    Menzel, C.; Rockstuhl, C.; Paul, T.; Lederer, F.
    2008. Applied Physics Letters, 93 (23), 233106. doi:10.1063/1.3046127
  27. Absorption enhancement in solar cells by localized plasmon polaritons.
    Rockstuhl, C.; Fahr, S.; Lederer, F.
    2008. Journal of Applied Physics, 104 (12), 123102. doi:10.1063/1.3037239
  28. Aufbruch ins Volumenland.
    Rockstuhl, C.
    2008. Physik Journal, 7 (2), 18-19
2007
Journal Articles
  1. High Sensitivity Sensors Made of Perforated Waveguides.
    Awazu, K.; Rockstuhl, C.; Fujimaki, M.; Fukuda, N.; Tominaga, J.; Komatsubara, T.; Ikeda, T.; Ohki, Y.
    2007. Optics express, 15 (5), 2592-2597. doi:10.1364/OE.15.002592
  2. Nanoscale Pore Fabrication for High Sensitivity Waveguide-Mode Biosensors.
    Fujimaki, M.; Rockstuhl, C.; Wang, X.; Awazu, K.; Tominaga, J.; Ikeda, T.; Ohki, Y.; Komatsubara, T.
    2007. Microelectronic engineering, 84 (5-8), 1685-1689. doi:10.1016/j.mee.2007.01.264
  3. An Optical Biosensor Based on Localized Surface Plasmon Resonance of Silver Nanostructured Films.
    Arai, T.; Kumar, P. K. R.; Rockstuhl, C.; Awazu, K.; Tominaga, J.
    2007. Journal of optics, 9 (7), 699-703. doi:10.1088/1464-4258/9/7/022
  4. Toward Biological Diagnosis System Based on Digital Versatile Disc Technology.
    Arai, T.; Gopinath, S. C. B.; Mizuno, H.; Kumar, P. K. R.; Rockstuhl, C.; Awazu, K.; Tominaga, J.
    2007. Japanese journal of applied physics, 46 (6B), 4003-4006. doi:10.1143/JJAP.46.4003
  5. The Origin of Magnetic Polarizability in Metamaterials at Optical Frequencies : An Electrodynamic Approach.
    Rockstuhl, C.; Zentgraf, T.; Pshenay-Severin, E.; Petschulat, J.; Chipouline, A.; Kuhl, J.; Pertsch, T.; Giessen, H.; Lederer, F.
    2007. Optics express, 15 (14), 8871-8883. doi:10.1364/OE.15.008871
  6. Design of an Artificial Three-Dimensional Composite Metamaterial with Magnetic Resonances in the Visible Range of the Electromagnetic Spectrum.
    Rockstuhl, C.; Lederer, F.; Etrich, C.; Pertsch, T.; Scharf, T.
    2007. Physical review letters, 99 (1), Art.Nr. 017401. doi:10.1103/PhysRevLett.99.017401
  7. Babinet’s principle for optical frequency metamaterials and nanoantennas.
    Zentgraf, T.; Meyrath, T. P.; Seidel, A.; Kaiser, S.; Giessen, H.; Rockstuhl, C.; Lederer, F.
    2007. Physical review / B, 76 (3), Art.Nr. 033407. doi:10.1103/PhysRevB.76.033407
  8. Intrinsic Surface and Bulk Defect Modes in Quasi-Periodic Photonic Crystals.
    Rockstuhl, C.; Lederer, F.
    2007. Journal of lightwave technology, 25 (9), 2299-2305. doi:10.1109/JLT.2007.901439
  9. A periodic structure mimics a metamaterial.
    Rockstuhl, C.; Peschel, U.; Lederer, F.
    2007. Journal of the Optical Society of America / A, 24 (10), A60-A65. doi:10.1364/JOSAA.24.000A60
  10. Negative-index metamaterials from nanoapertures.
    Rockstuhl, C.; Lederer, F.
    2007. Physical review / B, 76 (12), Art.Nr. 125426. doi:10.1103/PhysRevB.76.125426
  11. Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays.
    Rockstuhl, C.; Lederer, F.; Zentgraf, T.; Giessen, H.
    2007. Applied physics letters, 91 (15), Art.Nr. 151109. doi:10.1063/1.2799240
  12. Light localization at randomly textured surfaces for solar-cell applications.
    Rockstuhl, C.; Lederer, F.; Bittkau, K.; Carius, R.
    2007. Applied physics letters, 91 (17), Art.Nr. 171104. doi:10.1063/1.2800374
  13. Surface-Enhanced Raman Scattering by Hemi-Ellipsoidal Ag Nanoparticles Generated from Silver-Oxide Thin Films.
    Fujimaki, M.; Iwanabe, Y.; Rockstuhl, C.; Wang, X.; Awazu, K.; Tominaga, J.
    2007. Japanese journal of applied physics, 46 (44), L1080-L1082. doi:10.1143/JJAP.46.L1080
2006
Journal Articles
  1. On the reinterpretation of resonances in split-ring-resonators at normal incidence.
    Rockstuhl, C.; Lederer, F.; Etrich, C.; Zentgraf, T.; Kuhl, J.; Giessen, H.
    2006. Optics express, 14 (19), 8827-8836. doi:10.1364/OE.14.008827
  2. Calculation of the torque exerted by light fields on silver elliptical nanocylinders.
    Rockstuhl, C.; Tominaga, J.
    2006. epl, 73 (2), 313-319. doi:10.1209/epl/i2005-10385-6
  3. Carrier-to-noise ratio enhancement of super-resolution near-field structure disks by Ag nanostructure.
    Arai, T.; Kurihara, K.; Nakano, T.; Tominaga, J.; Rockstuhl, C.
    2006. Applied physics letters, 88 (5), Art.Nr. 051104. doi:10.1063/1.2172017
  4. Micromachining of Novel SiC on Si Structures for Device and Sensor Applications.
    Förster, C.; Cimalla, V.; Stubenrauch, M.; Rockstuhl, C.; Brückner, K.; Hein, M. A.; Pezoldt, J.; Ambacher, O.
    2006. Materials science forum, 527-529, 1111-1114. doi:10.4028/www.scientific.net/MSF.527-529.1111
  5. Correlation Between Single-Cylinder Properties and Bandgap Formation in Photonic Structures.
    Rockstuhl, C.; Peschel, U.; Lederer, F.
    2006. Optics letters, 31 (11), 1741-1743. doi:10.1364/OL.31.001741
  6. Resonances of Split-Ring Resonator Metamaterials in the Near Infrared.
    Rockstuhl, C.; Zentgraf, T.; Guo, H.; Liu, N.; Etrich, C.; Loa, I.; Syassen, K.; Kuhl, J.; Lederer, F.; Giessen, H.
    2006. Applied physics / B, 84 (1-2), 219-227. doi:10.1007/s00340-006-2205-2
  7. Evaluation of Gold Nanowire Pairs as a Potential Negative Index Material.
    Garwe, F.; Rockstuhl, C.; Etrich, C.; Hübner, U.; Bauerschäfer, U.; Setzpfandt, F.; Augustin, M.; Pertsch, T.; Tünnermann, A.; Lederer, F.
    2006. Applied physics / B, 84 (1-2), 139-148. doi:10.1007/s00340-006-2255-5
  8. The Effect of Disorder on the Local Density of States in Two-Dimensional Quasi-Periodic Photonic Crystals.
    Rockstuhl, C.; Lederer, F.
    2006. New journal of physics, 8 (9), Art.Nr. 206. doi:10.1088/1367-2630/8/9/206
  9. High resolution interference microscopy: A tool for probing optical waves in the far-field on a nanometric length scale.
    Rockstuhl, C.; Märki, I.; Scharf, T.; Salt, M.; Herzig, H. P.; Dändliker, R.
    2006. Current Nanoscience, 2 (4), 337-350. doi:10.2174/157341306778699383
2005
Journal Articles
  1. Infrared Gratings Based on SiC/Si-Heterostructures.
    Rockstuhl, C.; Herzig, H. P.; Förster, C.; Leycuras, A.; Ambacher, O.; Pezoldt, J.
    2005. Materials science forum, 483-485, 433-436. doi:10.4028/www.scientific.net/MSF.483-485.433
  2. Analysis of the phonon-polariton response of silicon carbide microparticles and nanoparticles by use of the boundary element method.
    Rockstuhl, C.; Salt, M. G.; Herzig, H. P.
    2005. Journal of the Optical Society of America / B, 22 (2), 481-487. doi:10.1364/JOSAB.22.000481
  3. Calculation of the torque on dielectric elliptical cylinders.
    Rockstuhl, C.; Herzig, H. P.
    2005. Journal of the Optical Society of America / A, 22 (1), 109-116. doi:10.1364/JOSAA.22.000109
  4. The size control of silver nano-particles in SiO₂ matrix film.
    Kurihara, K.; Rockstuhl, C.; Nakano, T.; Arai, T.; Tominaga, J.
    2005. Nanotechnology, 16 (9), 1565-1568. doi:10.1088/0957-4484/16/9/026
  5. Characteristics of nanostructured Ag films by the reduction of sputtered AgOₓ thin films.
    Arai, T.; Rockstuhl, C.; Fons, P.; Kurihara, K.; Nakano, T.; Awazu, K.; Tominaga, J.
    2005. Nanotechnology, 17 (1), 79-82. doi:10.1088/0957-4484/17/1/013
2004
Journal Articles
  1. Wavelength-dependent optical force on elliptical silver cylinders at plasmon resonance.
    Rockstuhl, C.; Herzig, H. P.
    2004. Optics letters, 29 (18), 2181-2183. doi:10.1364/OL.29.002181
  2. Analyzing the scattering properties of coupled metallic nanoparticles.
    Rockstuhl, C.; Salt, M. G.; Herzig, H. P.
    2004. Journal of the Optical Society of America / A, 21 (9), 1761-1768. doi:10.1364/JOSAA.21.001761
  3. High-resolution measurement of phase singularities produced by computer-generated holograms.
    Rockstuhl, C.; Ivanovskyy, A. A.; Soskin, M. S.; Salt, M. G.; Herzig, H. P.; Dändliker, R.
    2004. Optics communications, 242 (1-3), 163-169. doi:10.1016/j.optcom.2004.08.013
  4. Investigation of the basic properties of phase singularities generated by a phase bar or trench.
    Rockstuhl, C.; Guy Salt, M.; Peter Herzig, H.
    2004. Optics communications, 235 (1-3), 11-21. doi:10.1016/j.optcom.2004.02.075
  5. Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures.
    Rockstuhl, C.; Salt, M.; Herzig, H. P.
    2004. Journal of optics, 6 (5), S271-S276. doi:10.1088/1464-4258/6/5/026
  6. Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders.
    Rockstuhl, C.; Herzig, H. P.
    2004. Journal of optics, 6 (10), 921-931. doi:10.1088/1464-4258/6/10/001
  7. Dimensionnement par FDTD d'éléments optiques diffractifs utilisant le principe du milieu effectif.
    Aubry, S.; Gérard, P.; Flury, M.; Rockstuhl, C.; H.P Herzig; Fontaine, J.
    2004. Journal de physique / 4, 119, 117-118. doi:10.1051/jp4:2004119018
2003
Journal Articles
  1. Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles.
    Rockstuhl, C.; Salt, M. G.; Herzig, H. P.
    2003. Journal of the Optical Society of America / A, 20 (10), 1969-1973. doi:10.1364/JOSAA.20.001969
2001
Journal Articles
  1. Laser printing of active optical microstructures.
    Koundourakis, G.; Rockstuhl, C.; Papazoglou, D.; Klini, A.; Zergioti, I.; Vainos, N. A.; Fotakis, C.
    2001. Applied physics letters, 78 (7), 868-870. doi:10.1063/1.1348321