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Photonic crystals represent a novel platform for the realization of integrated photonic circuits with numerous
applications. This article reviews the present status of a computational approach dedicated to these systems that
is based on photonic Wannier functions. The workings of the Wannier function approach are illustrated by way
of selected examples. In addition, we discuss the advantages and limitations of this approach and sketch potential
future developments.

Keywords: photonic Wannier functions; photonic crystals; numerical simulation

1. Introduction

Over the past two decades, photonic crystals (PhCs),
i.e. periodic arrays of dielectric materials, have devel-
oped from a theoretical concept [1,2] to a mainstream
research activity that spans from fundamental research

[3,4] all the way to applied areas such as telecommu-
nication [5] and sensing [6]. With this increased
maturity and importance comes a corresponding
increased demand for accurate PhC computations,
both regarding the design of PhC structures (or entire
functional elements, devices, or systems) and the

interpretation of measurements. Here, the very nature
of PhCs implies numerically large problems, even for
simple PhC systems. The defining feature of a PhC is
its photonic band structure, i.e. a multi-branch disper-
sion relation with frequency regions of extremely slow
group velocities, forbidden frequency ranges for cer-

tain directions (the so-called stop bands), and even
frequency ranges where propagation is forbidden
irrespective of direction (the so-called photonic band
gaps [PBGs]). In particular, PBGs may be exploited by
deliberately introducing deviations from periodicity in
order to realize cavities, waveguiding structures, and

entire integrated optical circuits. In such circuitry,
radiation of certain frequencies remains localized in the
vicinity of the ‘intentional defects’ and is protected
against leakage by the PBG effect [3]. This band
structure is the result of the interplay of strong
scattering from the individual units (Mie scattering)

that make up the PhC array and the Bragg scattering

associated with the array itself. As the lowest Bragg

order corresponds to a periodicity of about half a

wavelength, any reasonable PhC functional element

comprises several unit cells, each of which features an

internal (sub-wavelength) structure that needs to be

resolved by the simulation tool. As a rule of thumb,

all-purpose solvers such as those based on finite-

difference of finite-element approaches require at least

20 degrees of freedom per wavelength and spatial

dimension in order to arrive at a satisfactory spatial

resolution. As a result, computations of two-dimen-

sional (2D) and three-dimensional (3D) PhC structures

and functional elements quickly require considerable

computational resources.
On the other hand, ‘just’ computing the photonic

band structure (along with the corresponding eigen-

modes, commonly referred to as Bloch functions) is –

by virtue of the Bloch–Floquet theorem – a relatively

straightforward task [3]. In view of the fact that most

of the above-mentioned functional elements (or ‘inten-

tional defects’) in some sense represent a perturbation

of an otherwise ideal PhC structure, one is tempted

to construct a dedicated Bloch-function-based com-

putational tool. Unfortunately, Bloch functions are

modulated plane waves and are, therefore, ill-suited for

representing localized optical fields. At this point,

concepts originally developed in electronic structure

theory come to the rescue. More precisely, Wannier
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functions (WFs) can be constructed from Bloch
functions by virtue of certain unitary transformations
that, essentially, correspond to lattice Fourier trans-
forms. As a consequence, the set of WFs represents a
complete set of basis functions that contains the full
information about the photonic band structure of the
underlying PhC. That WFs could be utilized for
computing PhC structures has been recognized early
on [7] but the actual generation of WFs remained
problematic. This is partly related to the fact that the
well known semi-analytical tight-binding method of
solid-state theory has had only limited success in the
case of PhCs – even to date only the simplest case of
E-polarized light in 2D PhCs that consist of high-index
posts could be addressed within such an approach
[8,9]. Constructing WFs directly from numerically
obtained Bloch functions is a much harder task and,
again, advances in electronic structure theory [10]
have opened the door for progress in the construction
[11–13] and the usage [11,13–19] of WFs in PhC
simulations.

With this work, we aim at providing a (necessarily
somewhat biased) review regarding the present state
of WF-based computation techniques for PhC struc-
tures along with a discussion of promising avenues
for future developments. In Section 2, we provide a
basic introduction into the properties and usage
of Wannier functions in the framework of simple
one-dimensional (1D) systems. This is followed by
an exposition in Section 3 of the current state-of-
the-art of Wannier-function based simulation tech-
niques for 2D PhCs structures both regarding E-
and H-polarized radiation. Finally, in Section 4
we describe recent developments regarding the simu-
lation of 3D PhCs and the construction of Green’s
function approaches via WFs. This naturally leads to a
discussion of future directions of WF-based PhC
simulations.

2. 1D systems: basic properties and usage of Wannier

functions

One-dimensional PhCs, i.e. periodically layered dielec-
tric media, were well studied long before the notion of
photonic crystals had been coined. They represent
interesting physical systems in their own right with
numerous applications [20]. For these systems, WFs
have not been used extensively but a recent work [21]
indicates that the multi-resolution properties of WFs
will also be useful for the analysis of 1D PhC
structures. On the other hand, 1D systems allow for
analytical statements regarding the localization prop-
erties of WFs [22,23] and certain intentional defect

structures [24]. In turn, this allows for extensive
performance studies of the WF method in general
and specific implementations of the method in
particular.

We start our analysis by noting that in a linear
system and for propagation normal to the stacking
direction of the layers, the system can be described by
two equivalent (but not identical) approaches that are
based on either the transverse electric or the transverse
magnetic field, E(x) and H(x),

@2x EðxÞ þ
!2

c2
�ðxÞEðxÞ ¼ SðE ÞðxÞ or

@x
1

�ðxÞ
@x HðxÞ

� �
þ
!2

c2
HðxÞ ¼ S ðH ÞðxÞ: ð1Þ

Here, @x denotes the derivative with respect to x and we
have assumed linearly polarized fields. The distribution
of the dielectric material is described by a spatially
varying dielectric constant �(x) such that the x-axis
represents the stacking direction. In the optical regime
we can safely assume that the magnetic permeability �
equals one. As usual, the wave equations (1) above
have been derived from Maxwell’s curl-equations and
we would like to note that in both cases Maxwell’s
divergence-equations are automatically satisfied, too.
Furthermore, S ðE=H ÞðxÞ represents a source term for
the electric (superscript (E )) or magnetic (superscript
(H )) field.

The seemingly innocuous statement about the
equivalence of the two approaches acquires more
weight once we note that at material interfaces the
boundary conditions for E(x) and H(x) are quite
different: while E(x) exhibits a continuous first deriv-
ative across a material interface located at x0, the
derivative of H(x) exhibits a discontinuity that is given
by the dielectric contrast, i.e. @xHðx0 þ 0þÞ=�
ðx0 þ 0þÞ ¼ @xHðx0 � 0þÞ=�ðx0 � 0þÞ. Here, 0þ denotes
an infinitesimally small positive number. As we will
discuss below, these properties of the fields at material
interfaces strongly influence the convergence charac-
teristics of the different WF-approaches. For an ideal
1D PhC (lattice period a) with lattice-periodic dielec-
tric profile �pðxÞ ¼ �pðxþ aÞ, equations (1) admit
solutions in the form of Bloch functions,
EnkðxÞ ¼ expðikxÞ fnkðxÞ or HnkðxÞ ¼ exp ðikxÞ gnkðxÞ.
Here, n and k denote band index and 1D wave
‘vector’, respectively, where the latter lies in the first
Brillouin zone (BZ). In addition, fnkðxÞ ¼ fnkðxþ aÞ
and gnkðxÞ ¼ gnkðxþ aÞ represent lattice periodic
functions [3].

These spatially extended Bloch functions may
now be processed into spatially localized WFs for
the electric or magnetic field (superscript (E ) or
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(H )) by virtue of a generalized lattice Fourier
transform

W
ðE Þ
nR ðxÞ ¼

X
n 0

ð
BZ

dk e�ikR U
ðE Þ
nn 0 ðkÞEn 0kðxÞ,

W
ðH Þ
nR ðxÞ ¼

X
n 0

ð
BZ

dk e�ikR U
ðH Þ
nn 0 ðkÞHn 0kðxÞ: ð2Þ

Here, R 2 R � fla; l integerg denotes an arbitrary 1D
lattice ‘vector’ and U

ðE=H Þ
nn 0 ðkÞ represents a unitary-

matrix-valued function of the wave ‘vector’ k that, for
a given k-value, describes a unitary transformation
between the bands. In practice, the k-integration in
Equation (2) is carried out by discretizing the BZ with
a finite number of k-points. The resulting WFs are
labelled by the (generalized) band index n and the 1D
lattice ‘vector’ R associated with the unit cell around
which the WF is localized.

The set of all Wannier functions constitutes a
complete orthonormal set of localized basis functions,
which contains the full information about the photonic
band structure of the underlying PhC. The corre-
sponding orthonormality relations depend on the
choice of whether the electric or magnetic field
formulation is used. Explicitly, we have

hW
ðE Þ
nR j�pðxÞjW

ðE Þ
n 0R 0 i ¼ �nn0 �RR 0 ¼ hW

ðH Þ
nR jW

ðH Þ
n 0R 0 i ð3Þ

for all bands n, n 0 and all lattice ‘vectors’ R,R 0 2 R.
In the above expressions, we have introduced compact
notations h f j gi ¼

Ð
dx f �ðxÞ gðxÞ and h f j�pðxÞj gi ¼Ð

dx f�ðxÞ �pðxÞ gðxÞ for two arbitrary complex-valued
functions f(x) and g(x). In both cases, the integration is
over the entire space. Finally, �ij denotes the Kronecker
symbol for the (discrete) indices i and j.

In addition, the Wannier functions inherit certain
translational properties from the Bloch functions that
are particularly useful for numerical purposes

W
ðE=H Þ
nR ðxÞ ¼W

ðE=H Þ
n0 ðx� RÞ 8R 2 R: ð4Þ

As a result, only the Wannier functions that belong to
the PhC unit cell which contains the origin (labeled by
the lattice ‘vector’ 0) have to be constructed explicitly.
Furthermore, since the WFs are constructed as a
superposition of Bloch functions, which themselves are
solutions to the 1D wave equations (1), these 1D WFs
also inherit the corresponding properties of continuous
(electric field WF) or discontinuous (magnetic field
WF) first derivatives at material interfaces as discussed
above.

In general, the set fU
ðE=H Þ
nn 0 ðkÞ; k 2 BZg of all unitary

transformations between the bands has to be deter-
mined numerically – analytical results are available
only for special cases [10,22,23]. Perhaps the most

natural way to proceed is to consider the spread

functional

�ðE=H Þ
��

U
ðE=H Þ
nn 0 ðkÞ

��
¼
X
n

��
W
ðE=H Þ
n0 jx2jW

ðE=H Þ
n0

	

�

��
W
ðE=H Þ
n0 jxjW

ðE=H Þ
n0

	�2�
,

ð5Þ

as a measure of the localization of the WFs and to

minimize this functional with respect to the free

parameters associated with the unitary transforma-

tions. In practice, for a given number of k-points in the

numerical integration of Equation (2) and a finite

group of bands n for which the spread functional

should be minimized, this yields a large but finite

nonlinear minimization problem. In essence, these

unitary transformations address the fact that (i) the

Bloch functions are determined only up to a global

(but possibly band- and k-dependent) phase, (ii) band

degeneracies and (in 2D and 3D) band crossings may

occur, and (iii) avoided crossings occur where the

Bloch functions on either side of the crossing contin-

uously exchange their symmetry properties as the wave

vector varies through the avoided crossings. It is,

therefore, plausible that the minimization of the spread

functional, Equation (5), leads to a continuously vary-

ing global phase of the Bloch functions and allows for

a relabeling of the Bloch functions as well as a demix-

ing of the Bloch functions’ symmetries such that maxi-

mally localized WFs are obtained [10]. In the case of

1D systems, individual bands are energetically isolated

from each other so that the original algorithm of

Marzari and Vanderbilt [10] can be directly employed.

We find that when the Bloch functions at the center

of the BZ, i.e. at the �-point, are truncated to the

Wigner–Seitz cell centered at the origin, we obtain

excellent trial functions for projecting the raw Bloch

functions for all remaining wave ‘vectors’ as required in

the preprocessing step of the algorithm. For the actual

minimization of the spread function, Equation (5),

we use a standard conjugate gradient scheme.
In Figure 1, we display the maximally localized

electric and magnetic field WFs associated with bands

1, 2, 3, and 48 for a 1D PhC that consists of equally

sized layers of silicon ð�Si ¼ w12Þ and air ð�Air ¼ 1Þ.

These WFs have been constructed for each band

separately by using a total of 99 k-points. The

corresponding Bloch functions have been computed

via the MPB band structure package [25] with a spatial

resolution of 512 points within the PhC’s unit cell. The

different behaviour of the electric and magnetic WFs at

material interfaces is clearly visible. In addition, the
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WFs in Figure 1 exhibit excellent localization and
symmetry properties that reflect the symmetry of the
underlying lattice [22]. More precisely, we find that
within the limit set by the numerical discretization both
electric and magnetic WFs follow the analytically
predicted localization properties W

ðE=HÞ
n0 ðxÞ / x�3=4�

expð�hnxÞ, where the localization length hn for the WF

associated with band n is proportional to the distance
of the branch point of the photonic band structure’s
analytical continuation into the complex k-plane (see
[23]). In simple cases, the minimal energetic separation
of band n to bands n� 1 and nþ 1 for real values of k
provides an estimate of this distance hn. We illustrate
this in Figure 2, where we display the magnetic WFs
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Figure 1. Electric (a) and magnetic (b) Wannier functions for bands 1, 2, 3, and 48 of a 1D PhC that consists of equally sized
layers of silicon and air. The shaded areas correspond to the silicon layers. The underlying photonic band structure of this system
is depicted in Figure 2(b). Note the different behavior of electric and magnetic WFs at material interfaces. (The color version of
this figure is included in the online version of the journal.)

368 K. Busch et al.



for bands 9 and 10 as well as the corresponding
photonic band structure for our model system. From
Figure 2(b), we derive that the energetic separation
between bands 9 and 10 is extremely small. As a result,
if we construct the WFs for bands 9 and 10 by
separately minimizing the spread, Equation (5), we

obtain poorly localized WFs as shown in the upper row
of Figure 2(a). There, the levelling-off of the WFs for
large values of jxj is the result of the finite number of
k-points used in the WF-construction according to
Equation (2). However, if we, instead, treat bands 9
and 10 as a band complex and allow for their
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Figure 2. Magnetic Wannier functions (a) for bands 9 and 10 and corresponding photonic band structure for the 1D model PhC.
The first row depicts the WFs that result from minimizing the spread functional for the individual bands and the second row
corresponds to the case where the bands are allowed to hybridize, i.e. when the spread functional is minimized for the group
consisting of bands 9 and 10. In the latter case the band index label loses its association with the physical band structure depicted
in panel (b). This photonic band structure has been computed with the MPB package (solid lines; see [25]) and has also been
reconstructed from the set of magnetic-field WFs (crosses) via Equation (6).

Journal of Modern Optics 369



hybridization, we obtain significantly improved local-
ization properties as depicted in the second row of
Figure 2(a). In this case, the levelling-off of the WFs
for large values of jxj is most probably the result of the
finite accuracy with which the Bloch functions have
been computed.

At this point, we would like to emphasize two
important issues. First, while the information content
of the WFs in the first and second row of Figure 2(a) is
identical, the usefulness of these two sets of WFs in
numerical computations is quite different as discussed
below. Second, the above behavior represents a generic
behavior of WFs that persists to 2D and 3D systems.
The localization and symmetry properties of WFs
sensitively depend on an appropriate grouping of
bands and the accuracy of the Bloch functions from
which they are constructed.

After having constructed the WFs for our 1D
model PhC, we can now move to the description of
deviations from the perfect periodicity of the ideal
PhC. To this end, we decompose the dielectric constant
of the PhC with defects �ðxÞ ¼ �perðxÞ þ ��ðxÞ into the
dielectric constant of the perfectly periodic PhC �perðxÞ
and the part ��ðxÞ that describes the deviations from
perfect periodicity. Upon expanding the electric and
magnetic field as well as the source terms into the
corresponding WF basis, inserting these expansions
into the wave equations (1), and projecting the
resulting equations onto the set of WFs (Galerkin
approach), we arrive at the central equation of the WF
approachX
n 0R 0

C
ðE=H Þ
nn 0,RR 0 þD

ðE=H Þ
nn 0,RR 0 � �

ðE=H ÞA
ðE=H Þ
nn 0,RR 0


 �
c
ðE=H Þ
n 0R 0 ¼ s

ðE=H Þ
nR :

ð6Þ

In this equation, the sets of coefficients c
ðE=H Þ
nR and

s
ðE=H Þ
nR denote the vector of expansion coefficients of the
electric or magnetic field, E(x) or H(x) and the vector
of expansion coefficients of the source term S ðE=H ÞðxÞ,
respectively. The matrices entering Equation (6) are

� ðE Þ ¼
c2

!2
or � ðH Þ ¼

!2

c2
, ð7Þ

A
ðEÞ
nn 0,RR 0 ¼ W

ðEÞ
nR j@

2
x

��WðEÞn 0R 0

D E
or A

ðH Þ
nn 0,RR 0 ¼ W

ðH Þ
nR

��W ðHÞn 0R 0

D E
,

ð8Þ

C
ðE Þ
nn 0,RR 0 ¼ W

ðE Þ
nR

�� �perðxÞ ��W ðE Þ
n 0R 0

D E
or

C
ðH Þ
nn 0,RR 0 ¼ W

ðH Þ
nR

�� @x 1

�perðxÞ
@x
��W ðH Þ

n 0R 0

� 	
, ð9Þ

D
ðE Þ
nn 0,RR 0 ¼ W

ðE Þ
nR

�� ��ðxÞ ��W ðE Þ
n 0R 0

D E
or

D
ðH Þ
nn 0,RR 0 ¼ W

ðH Þ

n ~R

�� @x ���ðxÞ
�ðxÞ�perðxÞ

@x
��W ðH Þ

n0 ~R0

� 	
: ð10Þ

The matrix D
ðE=H Þ
nn 0,RR 0 is – for both wave equations – a

sum of terms over those unit cells of the PhC structure

that contain a deviation from perfect periodicity. These

unit cells are uniquely identified through the corre-
sponding set of lattice ‘vectors’ Rdef, so that this matrix

can be expressed in terms of individual defects as

D
ðE=H Þ
nn 0,RR 0 ¼

X
Rdef

B
ðE=H Þ
nn 0,ðR�RdefÞ ðR 0�RdefÞ

: ð11Þ

Here, the matrix elements B
ðE=H Þ
nn 0,ðR�RdefÞ ðR 0�RdefÞ

can be

precomputed for certain prototypical defects as

described in [11].
The central equation of the WF approach,

Equation (6), may be utilized for a number of different

computations of PhC structures. For instance, we may

specify a source and solve the resulting system of linear
equations for the Wannier coefficients c

ðE=H Þ
n 0R 0 of the

electric or magnetic field distributions. These field

distributions completely characterize the state of the
electromagnetic field and may then be processed to

yield further physical quantities such as the energy

density, the energy flux (Poynting vector), and trans-
mission and reflection coefficients. These types of

computations will be discussed in Section 3. In the

absence of sources, Equation (6) represents an eigen-

value problem for the eigenfrequency ! and the
associated eigenvectors yield the eigenmodes in the

WF representation.
The localized nature of the WFs leads to matrix

elements that quickly decay with increasing distance
jR� R 0j between the unit cells R and R 0 associated

with the different WFs. As a result, we may set to zero

all matrix elements for which the separation jR� R 0j
exceeds a certain maximum range Rmax. Together with

the usage of a maximum number Nmax of bands, this

implies that the matrices in Equation (6) become sparse
such that advanced numerical methods for sparse

systems can be employed. For our computations,

we typically solve the system of linear equations,

Equation (6), using a sparse-matrix LU-decomposition
as available in the PARDISO package [26].

In addition, the matrix elements themselves (see

Equations (8)–(11)) have to be determined numerically
and this is the reason why we have refrained from

writing �nn 0 �RR 0 instead of C
ðE Þ
nn 0,RR 0 and A

ðH Þ
nn 0,RR 0 .

Specifically, we can compute (and store) the WFs
only on a finite spatial domain. This domain is

determined by the inverse of the k-point spacing used

in the numerical integration of Equation (2) as the

finite number of k-values inevitably induces recurrence
effects as a function of the spatial coordinate x. Thus, a

comparison of C
ðE Þ
nn 0,RR 0 and A

ðH Þ
nn 0,RR 0 with �nn 0 �RR 0

provides a first idea of the quality of the WFs.
Consequently, the total accuracy (and efficiency) of
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WF computations depends on the accuracy of the
integration schemes of Equations (8)–(10), the maxi-
mum number of bandsNmax, the value of Rmax, and the
accuracy with which the WFs are determined (k-space
integration scheme and spatial resolution of the numer-
ically determined Bloch functions in Equation (2)).

We find that the reconstruction of the photonic
band structure of the ideal PhC via Equation (6)
provides an excellent first test for the accuracy of WF
computations – specifically in the case of 2D and 3D
WF computations. In Figure 2(b), we display a
comparison of the reconstructed band structure for
our model system with the results obtained from
ordinary photonic band stucture computations. Here,
we obviously use ��ðxÞ � 0 and we employ the frame-
work described in [27] for determining the band
structure via WFs. A more stringent second test that
also involves ��ðxÞ is the computation of simple cavity
structures in ideal PhCs. In Figure 3, we display the
convergence characteristics of WF computations for a
simple cavity structure that is obtained by replacing a
single silicon layer in our 1D model PhC with an air
layer. This defect creates localized cavity modes with
frequencies in the photonic band gaps and we have
computed the frequency of the cavity mode in the third
band gap – the analytically obtained reference value is
a=� ¼ 0:6830.

We observe that the electric-field based WF
computations exhibit a much better performance
than the magnetic-field based WF computations. This
is a direct consequence of the before-mentioned
behaviour of the electric and magnetic field at material
interfaces. In fact, replacing the silicon layer with an
air layer changes the original boundary conditions at
the two silicon–air interfaces to continuously differen-
tiable fields at the new (actually non-existent) air–air
interfaces – both for the electric and the magnetic field.
However, while the electric-field WFs exhibit contin-
uous first derivatives across these interfaces, the
magnetic-field WFs do not (see discussion above). As
a consequence, representing continuously differentia-
ble fields is comparatively more difficult in the
magnetic-field formulation and this leads to a slower
convergence rate relative to the electric-field
formulation.

In the next section, we proceed to a discussion of
the WF approach for 2D PhC structures where the
basic features discussed above will reappear.

3. Wannier function computations of 2D photonic

crystal structures

Two-dimensional PhC structures are defined by a strict
homogeneity of the system in z-direction, i.e. light

propagates in the xy-plane and the dielectric constant

�ð~r Þ, ~r � ðx, yÞ, too, varies only in the xy-plane. In this

case, the two (linear) polarizations of the electromag-

netic field decouple and instead of a vectorial wave

equation, we can consider two separate scalar prob-

lems. Nevertheless, the basic notations introduced in

Section 1 can be directly transferred and/or straight-

forwardly generalized to 2D (and 3D) problems. For

the case when the polarization of the electric field is

parallel to the z-axis, i.e. when ~Eð~r Þ ¼ ð0, 0,Eð~r ÞÞ and
the magnetic field components lie in the xy-plane, we

obtain the wave equation for E-polarized radiation as

h
@2x þ @

2
y

i
Eð~r Þ þ

!2

c2
�ð~r ÞEð~r Þ ¼ S ðE Þð~r Þ: ð12Þ

Similarly, in the case when the polarization of the

magnetic field is parallel to the z-axis, i.e. when
~Hð~r Þ ¼ ð0, 0,Hð~r ÞÞ and the electric field components

lie in the xy-plane, we obtain the wave equation for

H-polarized radiation as

@x
1

�ð~r Þ
@xHð~rÞ

� �
þ@y

1

�ð~r Þ
@yHð~r Þ

� �� �
þ
!2

c2
Hð~r Þ¼SðHÞð~r Þ:

ð13Þ

In these expressions, S ðE Þð~r Þ and S ðH Þð~r Þ denote

corresponding source terms. In addition, we would

like to note that the Equations (12) and (13) have

been derived from the Maxwell curl equations alone.
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Figure 3. Convergence characteristics of WF computations
for a simple cavity structure for different maximum numbers
of bands. The structure consists of the replacement of a single
silicon layer with an air layer in the otherwise ideal 1D model
PhC. The computations have been carried out within the
magnetic field formulation (crosses; the solid line represents a
guide to the eye) and the electric field formulation (pluses; the
dashed line represents a guide to the eye) of the WF approach
(Rmax ¼ 10) for the cavity mode within the third band gap
with frequency a=� ¼ 0:683. (The color version of this figure
is included in the online version of the journal.)
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Owing to our assumption of the homogeneity along the
z-axis, the solutions to these equations automatically
also satisfy the Maxwell divergence equations.

The apparent mathematical similarity of
Equations (12) and (13) with their 1D counterparts
(see Equation (1)), leads to similar behavior of the
respective solutions. For instance, while for E-polar-
ized fields the continuity conditions across a
material interface are that both the field and its first
derivative are continuous, for H-polarized fields the
continuity conditions are that the field is continuous
with a discontinuity in the first derivative, which
depends on the dielectric contrast (see Section 1).
Therefore, at this point we can already anticipate that
the WF approach for E-polarized radiation exhibits
rather different convergence characteristics when com-
pared with the WF approach for H-polarized
radiation.

Putting this aside, in 2D there exist substantial
physical differences between the different polariza-
tions. In particular, for E-polarized fields, the existence
of a 2D photonic band gap is favored in systems where
scatterers with a high value of the dielectric constant
are embedded in a matrix with a low value of the
dielectric constant, notably in the square lattice (lattice
constant a). For H-polarized radiation, the situation is
reversed and hexagonal lattices with low-dielectric
inclusions in a connected high-dielectric network
exhibit the largest photonic band gaps. In Figure 4,
we display the photonic band structures of two model
2D PhC systems that will provide the basis for our
subsequent discussions. In particular, the square array
of silicon posts exhibits a large photonic band gap
for E-polarized radiation that extends from
a=� ¼ 0:297 to a=� ¼ 0:442. Similarly, the hexagonal
array of air pores in silicon exhibits a large photonic
band gap for H-polarized radiation that covers the
range form a=� ¼ 0:301 to a=� ¼ 0:492.

The construction of WFs for higher-dimensional
PhCs is considerably more involved than that for 1D
PhCs for two interrelated reasons. First, higher-
dimensional PhCs fail to provide energetically isolated
groups of bands especially for higher frequencies. For
our model PhC structures this is the case for all bands
above the third band gap. There, all the bands become
entangled so that the original algorithm [10] has to be
extended in order to account for this band entangle-
ment. Fortunately, such an extension has been devel-
oped within electronic structure theory [28] and can be
adapted to PhC-related problems. Perhaps the most
important ingredient of this extension is the appropri-
ate grouping of bands that has been mentioned in
Section 1. However, this ties into the second aspect
related to higher-dimensional PhCs. These PhCs
exhibit much richer symmetry properties and this

directly leads to a much richer behavior regarding the

allowed WF symmetries and localization centers

(see Figure 5).
Specifically, the symmetries of exponentially local-

ized WFs are determined by the symmetries of Bloch

modes at the high-symmetry points of the BZ, from

which the WFs are constructed. Exponential localiza-

tion may be achieved, when the generalized

Bloch functions (through the unitary transformations

Unn 0 ð
~kÞ – see Equation (2)) can be chosen such that they

are analytic for complex valued wave vectors ~k
[22,29,30]. Clearly, for this to work, it is a necessary

prerequisite to have continuously varying Bloch func-

tions for real wave vectors ~k everywhere inside the BZ

and across the edges into neighboring (i.e. higher) BZs.

In turn, this can be accomplished by a proper choice of

symmetric WFs for closed groups of bands [31,32].
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Figure 4. Photonic bandstructures for different 2D PhC
systems that exhibit particularly large photonic band gaps
(shaded areas). (a) E-polarized radiation in a square lattice of
silicon posts (r=a ¼ 0:18) in air; (b) H-polarized radiation in a
hexagonal lattice of air pores (r=a ¼ 0:45) in a silicon matrix.
(The color version of this figure is included in the online
version of the journal.)
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Then, the WFs form representations of the site
symmetry groups associated with their respective
center of localization. This site symmetry group
consists of all symmetry operations of the space
group that leave the center of localization invariant
in space, modulo a translation by a lattice vector.
Hence, the Wannier functions can be classified with
respect to the particular representations they form for
their respective site symmetry group. Based on this, the
possible localization centers within one Wigner–Seitz
cell can be labeled by the Wyckoff letters [33], where
each site symmetry group is isomorphous to a point
subgroup of the point group of the underlying PhC.
This subgroup’s irreducible representations are used
to classify the WFs. For the hexagonal lattice, the
respective pointgroups are C6vða,�Þ,C4vðc,M Þ, and
C3vðb,K Þ, where we have used the notation described
in Ref. [34].

In Figure 5, we depict some of the WFs for
H-polarized radiation in the 2D hexagonal model PhC
whose band structure is shown in Figure 4. All these
WFs correspond to the Wigner–Seitz cell centered
at the origin, i.e. they carry the lattice-vector label ~0.
They have been constructed along the lines of the
(preprocessing) arguments outlined above and with the
help of the algorithm of [28]. Their symmetry and
localization properties are clearly visible. In order to
achieve these excellent localization properties, different
localization centers (or in the language of [10,28]

different Wannier centers) have been employed. These
WFs have been obtained from Bloch functions with a
spatial resolution of 96�96 points within the primitive
unit cell (via the MPB package [25]) that have been
computed for an 11�11 Monkhorst-Pack mesh [35] of
k-points within the BZ.

With these WFs in hand, we now proceed to a
discussion of the accuracy of the WF approach
regarding the description of cavity modes associated
with simple defect structures in 2D PhCs. As a matter
of fact, for E-polarized radiation excellent convergence
characteristics have already been obtained and typi-
cally only a few (up to 10) WFs are required [11].
However, and as discussed above, for H-polarized
radiation the situation is quite different due to different
boundary conditions for the tangential magnetic field
across material interfaces. In Figure 6, we display our
results for the eigenfrequencies of cavity modes lying in
the first band gap of our hexagonal model 2D PhC
when a single pore is filled with a material with
dielectric constant �def (for a discussion of how to
extend Equation (6) to the 2D case, we refer to the
discussion around Equations (14) and (15) below).

For low values of �def, doubly degenerate dipole
modes separate from the upper band (‘donor modes’)
and move deeper into the photonic band gap as �def
is increased. For still higher values of �def, doubly
degenerate quadrupole modes, a second-order
monopole mode, and finally a hexapole mode emerge.

1 2 3

16 17 24 25

26 35 36

37

38

4-9

10-15

18-23

Figure 5. Photonic WFs for H-polarized radiation in the 2D model PhC whose band structure is displayed in Figure 4(b). The
legend denotes the generalized band index. The WFs associated with bands 4–9, 10–15, and 18–23, respectively, can be obtained
from the three representative functions displayed in the upper right box of the figure through five successive 60� rotations. For
instance, the set of WFs 4–9 forms a sixfold star, where each spike of the star is identical to the (suitably rotated) WF shown. All
these WFs exhibit certain symmetries and the corresponding irreducible representations are indicated (see text for further details).
(The color version of this figure is included in the online version of the journal.)

Journal of Modern Optics 373



They, too, move deeper into the photonic band gap as

�def is increased. In Figure 6, we show as a reference

solution (solid line) the results of supercell computa-

tions using the MPB package [25]. Owing to the limited

size of the supercell that can be handled, we do not

expect to obtain good reference values for cavity

frequencies in close proximity to the photonic band

edge. The corresponding WF computations have been

carried out usingRmax ¼ 5awith 38WFs (triangles) and

101 WFs (circles), respectively. For cavity frequencies

away from the band edge, we observe very good

agreement between the different computations. More

precisely, for the dipole and quadrupole modes, we find

excellent agreement for low and moderate values of �def
already for the 38-band WF computations. However,

for large values of �def, notably for the second-order

monopole and the hexapole modes, the accuracy of the

38-band WF computation is less satisfactory. This

deficiency is largely removed by increasing the number

of WFs used in the computations; when using 101WFs,

we find very good agreement for all values of �def
(averaged over the different modes, less than 3% error

relative to theMPB results for �def¼ 12). This improved

convergence can be traced back to the fact that the set of

WFs for bands 39–101 features additional WFs with

higher-order multipole-like profiles that are compatible

with the symmetries of the cavity modes and lead to an

improved representation of the associated cavity mode
profiles, in particular in the thin veins between the air
pores and at the material interfaces.

Therefore, we arrive at the following intermediate
conclusion regarding the state of WF computations
in 2D PhCs. The treatment of E-polarized radiation
is very efficient and a few WFs suffice to achieve
excellent accuracy. As a result, such computations have
been used to develop novel device concepts [14–16] to
advance computation and analysis methodologies such
as small-rank update procedures [16] and WF-based
sensitivity analysis tools [17], and to explore alternative
construction methods for localized Wannier-like basis
functions [36] that are easier to compute and would
still fit into the overall WF framework for computing
PhC structures. On the other hand, the treatment of H-
polarized radiation is considerably more challenging.
Nevertheless, and despite different suggestions earlier
[18], accurate results can be achieved with the help of
maximally localized WFs. Admittedly, the construc-
tion of these maximally localized WFs requires
considerable effort as described above. In view of the
increased number of bands that have to be used for
H-polarized radiation, these maximally localized WFs
represent a sine qua non for realizing an efficient
computational scheme because only they guarantee the
required symmetries and sparsity properties of the
corresponding matrices. Consequently, further work
has to be aimed at reducing the number of WFs that is
required for obtaining accurate results with predictive
power for experiments. For instance, this could be
accomplished by determining which of the higher-band
WFs contribute the most to the above-mentioned
simple cavity modes. This can be accomplished
through the V-parameter introduced in [11]. Then,
retaining only the relevant WFs could considerably
reduce the numerical effort, while still providing
accuracies comparable to the 101-band WF computa-
tions depicted in Figure 6. Finally, we want to note
that our model system for H-polarized radiation, with
its thin veins and large dielectric contrast, represents a
fairly demanding problem not only for the WF
approach but also for most other numerical methods
and, therefore, provides a benchmark problem for PhC
computations.

The WF approach is particularly useful for the
efficient description of waveguiding structures embed-
ded in PhCs. These systems provide a novel platform
for realizing integrated optics [3]. Consequently, a
significant amount of conceptual and methodical work
[9,11,16,17,19] has been completed, which turns the
WF approach into an efficient forward solver for
optimization methodologies [16,17] and large-scale
circuit theory approaches [27]. We illustrate this by
considering the realization of integrated photonic
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Figure 6. Cavity mode frequencies in the first band gap
for H-polarized radiation in the hexagonal 2D model
PhC (see Figure 4(b) for the corresponding band structure).
The cavity is created by filling a single pore of the ideal PhC
with a material with dielectric constant �def. The reference
solution (solid line) has been obtained with the help of
supercell computations using the MPB package (see the text
for a discussion of the accuracy near the band edges). The
WF computations have been carried out with 38 WFs
(triangles) and 101 WFs (circles), respectively. (The color
version of this figure is included in the online version of
the journal.)
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circuits via infiltrating individual pores of our 2D
model PhC of a hexagonal lattice of air pores in silicon
with low-dielectric-constant materials. The resulting
circuits offer a number of advantages over more
traditional systems that involve missing pores or
pores with different diameters and/or at different
locations. First, such hybrid and multi-component
systems exhibit considerably more flexibility regarding
the design of functional elements. A single low-dielectic
infiltrated pore supports fewer cavity modes than a
missing pore. As a result, it is considerably easier to
realize a broad-band single mode waveguide by
infilling a row of pores (see Figure 7), which is the
primary basis for the rational design of more complex
functionalities. Secondly, many low-dielectric-constant
materials are organic materials, such as polymers and
liquid crystals, and are – in contrast to silicon – highly
susceptible to applied (external) electric and magnetic
fields. Therefore, the resulting photonic circuits may be
engineered to exhibit a considerable degree of electro-
and/or magneto-optical tunability. In addition, most
materials in this class also exhibit a strong nonlinear
optical response and this makes composite systems
very attractive for applications as active elements. As a
result, such hybrid PhC structures that combine an
inorganic PhC backbone with the infiltration of
tunable and/or optically active materials may substan-
tially enhance their technological utility, over and
above that of either material by itself [14,37,38]. In
addition, based on today’s micro-fabrication capabil-
ities regarding such hybrid systems, the concept of
rewritable PhCs and rewritable PhC-based optical
circuitry has been developed [39] and the last four
years has seen a tremendous increase in experimental
activities [39–47].

In order to account for optical anisotropy, we have
to extend our WF-formalism to tensorial dielectric
constants. In the simplest case of in-plane anisotropy,
i.e. when �xz ¼ �yz ¼ �zx ¼ �zy ¼ 0, the separation of
polarization discussed before remains intact and we
only have to modify the equation for the H-polariza-
tion to
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Even in this case, the central equation of the WF
approach, Equation (6) together with Equations
(8)–(11), may be utilized except for the minor replace-
ment of the scalar lattice ‘vectors’ R and R 0 by 2D
lattice vectors ~R and ~R 0. If we further assume that the
ideal PhC is made from isotropic materials only, the

D-matrix elements have to be significantly modified to

accommodate the optical anisotropy of the infiltrated

materials according to
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The remaining matrix elements of the A- and

C-matrices require only the minimal changes of

extending the integration domain to 2D (A- and

C-matrices) and replacing the 1D operator that only

features x-derivatives by the corresponding 2D
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Figure 7. Dispersion relation (a) of a broad-band single-
mode waveguide that is inscribed into a 2D PhC of air pores
in silicon. The waveguide is realized by infilling a row of
pores with a low-dielectric-constant material (�¼ 2.89) such
as a polymer. The results of the WF-based computations
(crosses) are in excellent agreement with MPB-based refer-
ence computations. If the pores are filled with a liquid crystal
(b), an external (quasi-static) electric field Eext (arrows) may
reorient the molecules (cigar-shaped objects) as described by
the angle � of the nematic director (cigar-shaped symbol with
cross-piece). This provides a tunable waveguide dispersion
that is based on the differences between the ordinary and
extraordinary dielectric constant (�or and �ex) along and
perpendicular to the orientation of the nematic director field,
respectively (see Figure 8(a)–(d )). (The color version of this
figure is included in the online version of the journal.)
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operator that features a sum of this 1D operator and an
analogous 1D operator where the x-derivatives are
replaced by y-derivatives (C-matrix only; cf. also
Equation (13) with the l.h.s. expression in Equation (1)).

In Figure 7(a), we display the dispersion relation of
such a broad-band single-mode waveguide that is
obtained when filling a row of pores of our 2D model
PhC with an isotropic material with dielectric constant
� ¼ 2:89 (polymer). A similar waveguide dispersion
relation, albeit with a shifted lower cut-off frequency,
may be obtained when infilling with an isotropic
material with dielectric constant � ¼ 2:25. Both wave-
guides exhibit a similar mode structure. In particular,
the two waveguide branches correspond to modes with
even (wide frequency range) and odd (narrow fre-
quency range) mode profiles with respect to the
waveguide’s symmetry axis. As a result, the electric
field distributions associated with these modes probe
different directions in space.

Hence, if the pores were filled with a liquid-
crystalline material, the response of these modes to
the orientation of the nematic director is quite different
[38]. For instance, if the nematic director is aligned
with the waveguide axis, the even and odd modes
effectively experience the dielectic constant associated
with the ordinary axis and extraordinary axes, �or and
�ex, respectively. The opposite statement applies if the
nematic director is aligned perpendicular to the wave-
guide axes. For oblique orientations, an interaction
between these waveguide modes develops and its
strength depends on the difference between ordinary
and extraordinary dielectric constants and the relative
orientation of the nematic director relative to the
waveguide axis. As a result, mode mixing occurs and
the waveguide dispersion relation may be tuned. In
Figure 8, we display the results of this dispersion
relation tuning for realistic values �or ¼ 2:25 and
�ex ¼ 2:89 of the liquid crystalline material properties,
e.g. the liquid crystal E7. In particular, upon reorient-
ing the nematic director from � ¼ 0� to � ¼ 90�, we
observe (i) a tunable cut-off frequency of the predom-
inantly even mode [38] and a corresponding tunability
of the slow-light regime as well as (ii) the opening and
closing of a mini gap as a result of an avoided crossing
between the hitherto non-interacting waveguide
modes. In addition, we observe the aforementioned
differences between the two highly-symmetric orienta-
tions of the nematic director – in both cases the
interaction between the even and odd modes is
switched off but they effectively interchange the roles
regarding the ordinary and extra-ordinary dielectric
constants.

This concept of tunable waveguide dispersion
relations has been further developed into designs for
simple tunable beam-splitters [38,46]. In Figure 9, we

depict the schematic set-up of a more sophisticated
tunable beam-splitter design based on several isotropic
low-dielectric-constant materials and a segment of a
liquid-crystal based tunable waveguide. This design has
been carefully engineered and optimized with the help
of a WF-based circuit theory for large-scale PhC
structures [27] that utilizes a guided-mode scattering
matrix formalism [48]. In Figure 10, we display the
corresponding device characteristics regarding the
tuning of the transmittance between bar and cross
port. By changing the orientation of the nematic
director from � ¼ 48� to � ¼ 90�, the transmittance can
be switched from near-100% transmittance into the
bar port to a near-100% transmittance into the cross
port over a broad frequency range that lies within the
range of single-mode operation of the connecting
waveguides. In addition, we observe low values of the
reflectance (less than 1%) back into the input port over
this frequency range and for all angles � of the nematic
director’s orientation.

A detailed discussion of the operation principle of
this device is outside the scope of the present review
article. However, we would like to note that for a given
orientation � of the nematic director the computation
of a single transmittance spectrum (310 data points) as
displayed in Figure 10 takes about 300 minutes of CPU
time and requires about 8 GByte of RAM on an AMD
Opteron processor with a clock speed of 2.6 GHz using
4 threads. For this computations, we have used the
first 15 WFs which – for the above values of the
dielectric constants – ensures an accuracy better than
1% (see Figure 6).

4. Recent developments and future directions

To date, the search for the ‘Holy Grail’ of flexible and
inexpensive fabrication of large-scale, high-quality 3D
PhCs with complete photonic band gaps at visible or
near infrared frequencies, into which functional ele-
ments can be easily inscribed, has not yet produced
definite results. Nevertheless, recent progress in micro-
fabrication indicates that this ‘dark age’ may come to
an end in the not too distant future [49]. Then, the
specific advantages of the WF approach will come into
full effect. Owing to the multi-resolution properties of
the WFs [21], we expect a rather favorable scaling of
the WF approach with increasing spatial dimensional-
ity. More precisely, the transition from 1D to 2D
systems as described in Sections 2 and 3 has resulted in
about the same number of WFs that are required to
obtain converged results, both in the E-field and the
H-field formulations (cf. Figures 3 and 6), so that we
may expect a similar behavior in 3D. A full 3D
formulation requires vectorial WFs and the various
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vector components exhibit different boundary condi-

tions at material interfaces. As a result, we anticipate

that the performance characteristics of a 3D WF

approach will be a mediation of the 2D E-polarized

and the 2D H-polarized cases. However, the 3D case

features one additional subtlety in that we now can no

longer satisfy Maxwell’s divergence equations from the

outset. In other words, within a magnetic field formu-

lation, the relevant equations are

r �
1

�ð~r Þ
r � ~Hð~r Þ

� �
�
!2

c2
~Hð~r Þ ¼ ~Sð~r Þ and

r � ~Hð~r Þ ¼ 0: ð16Þ

Corresponding statements apply to formulations

based on the electric or the displacement field.

However, only in a magnetic or a displacement field

formulation do the WF functions and the

electromagnetic fields that are associated with defect
states obey the same divergence condition.
Furthermore, while the set of Bloch functions obtained
via the magnetic field formulation, Equation (16)
including the divergence conditions, comprises a com-
plete set of basis functions for the space of physical
solutions, the set of Bloch functions obtained via a
corresponding electric field formulation does not
possess this property [50]. As a result, a magnetic
field formulation is the preferred choice for 3D WF
computations.

In Figure 11, we display the 3D WFs for a silicon
woodpile PhC that exhibits a complete photonic band
gap between bands 2 and 3 (see also [49] for the
experimental realization of a closely related structure
with a photonic band gap at 1.55 mm.). These WFs
have been obtained with an extension to 3D of
the group-theoretical preprocessing scheme and
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Figure 8. Tunable waveguide dispersion for a broad-band single-mode waveguide that is realized by filling the pores of a
hexagonal silicon 2D PhC structure with liquid crystalline material (ordinary dielectric constant �or ¼ 2:25, extraordinary
dielectric constant �ex ¼ 2:89). Depending on an external (quasi-) static field (see Figure 7(b)), the orientation � of the nematic
director changes and the dispersion relation may be tuned between the limits provided by the dispersion relations for waveguides
made from isotropic materials with ordinary or extraordinary dielectric constants (dashed and dotted lines; see text for details).

Journal of Modern Optics 377



subsequent application of the algorithm of [28] as
described in Section 3 for the 2D H-polarized case. The
localization and symmetry properties of the WFs are
clearly visible. As compared with the higher bands, the
WF for the first band (and its partner for the second
band) is less localized. This is the result of the linear
dispersion relation in the long wavelength limit and
the topological polarization singularity at ~k ¼ ~0
associated with these bands.

These WFs have been constructed by using a
7� 7� 7 Monkhorst-Pack mesh in the BZ and the
corresponding Bloch functions have been obtained
from the MPB package with a spatial resolution of
32� 32� 32 within the unit cell. Using the 32 lowest
lying 3D WFs, we have reconstructed the photonic
band structure of the underlying PhC via Equation (6)
and we display the results in Figure 12. We observe
very good agreement between the WF-based
reconstructed band structure and the reference band
structure obtained via the MPB package. Based on
these encouraging results, we expect that WF-based
computations for 3D PhC structures will become
available in the not too distant future.

Another important aspect of current PhC research
is concerned with the role of disorder. Already in one
of the seminal papers it has been argued that disor-
dered PhCs provide an ideal system for the realization
of Anderson localization of light [2]. In view of recent
experiments on random lasing [51], it is highly attrac-
tive to extend these lines of thought on Anderson
localization in disordered PhC systems with passive

constituent materials to disordered PhC structures with
optically active constituents. More mundane but of
equal significance is the development of a detailed
understanding regarding the role of fabricational
disorder, notably in PhC waveguiding structures that
operate in the slow light regime [52]. For such type of
analyses, the natural approach is based on a Green’s
function formalism [53], which typically requires the
Green’s function (GF) of a reference system as an
input. For PhCs, the natural reference system is the
ideal PhC itself, so that we are faced with the task of
constructing the GF within a WF-representation.
Recalling our earlier statements (see Section 3) regard-
ing the relative ease of demonstrating (and developing)
novel methodologies for the case of 2D E-polarized
radiation, we now slightly rewrite the corresponding
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Figure 10. Performance characteristics for the tunable beam-
splitter design depicted in Figure 9. Reorienting the nematic
director between � ¼ 48� and � ¼ 90� allows us to completely
switch from a near 100%-transmittance into the bar port all
the way to a near 100%-transmittance into the cross port
over a broad frequency range (shaded area) while at the
same time maintaining low reflectance values back into the
input port. (The color version of this figure is included in the
online version of the journal.)

Figure 9. Schematic setup of a tunable beam-splitter based
on the infiltration of individual pores with low-dielectric-
constant materials of prescribed values. The input waveguide
(middle left), bar waveguide (upper right), and cross wave-
guide (lower right) consist of pores that are filled with a low-
dielectric material with isotropic dielectric constant (red;
� ¼ 2:89). The short waveguide segment that runs parallel to
the input waveguide is realized by pores that are infilled with
a liquid crystal (green; �or ¼ 2:25, �ex ¼ 2:89) whose nematic
director field can be reoriented within the xy-plane. The
pores in the coupling region are filled with low-dielectric-
constant materials with � ¼ 2:56 (orange) and � ¼ 2:40
(yellow). (The color version of this figure is included in the
online version of the journal.)
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Figure 11. Maximally localized WFs for a 3D silicon woodpile structure (square rods, fcc symmetry, �Si ¼ 12), within the H-field
formulation. The top row shows iso-contours for the absolute value of the magnetic field in a plane through the middle of one
rod and the bottom row shows iso-contours of the same WFs in a plane through the middle of a rod that is perpendicular to the
rod in the top row. As a guide to the eye, the silhouette of the silicon rods is displayed, too (black lines).
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wave equation (12) so that it more closely conforms
to the standard notation of electronic structure
theory [53]. Explicitly, we have

1

�ð~r Þ

h
@2x þ @

2
y

i
Eð~r Þ þ

!2

c2
Eð~r Þ ¼ S ðE Þð~r Þ, ð17Þ

and the GF fulfills this equation for a point-like source
term of the form S ðE Þð~r Þ ¼ �ð~r� ~rsÞ where ~rs denotes
the location of the source. For an ideal PhC, i.e. when
�ð~r Þ ¼ �perð~r Þ, we can utilize the completeness of either
the Bloch functions or the WFs and write down the GF
either in Bloch function or WF representation

Gð~r, ~rs;!Þ ¼ �perð~rsÞ
X
n

ð
BZ

d2k
E �
n ~k
ð~rsÞEn ~k

ð~r Þ

!2 � !2

n ~k

¼ �perð~rsÞ
X
�,�

W��ð~rsÞG��ð!ÞW�ð~r Þ: ð18Þ

Here, � ¼ ðn ~RÞ and � ¼ ðn 0 ~R 0Þ represent composite
indices that facilitate a compact notation and the ‘WF
structure constants’ G��ð!Þ are defined as

G��ð!Þ � G
n ~R; n 0 ~R 0

ð!Þ ¼
X
m

ð
BZ

d2k
Unmð

~kÞU�n 0mð
~kÞ

!2 � !2

m ~k

� exp i ~k � ð ~R 0 � ~RÞ

 �

: ð19Þ

In view of the fact that Bloch functions can, in general,
only be determined numerically, the WF representa-
tion of the GF (r.h.s. of Equation (18)) is clearly
advantageous relative to the Bloch representation
(middle of Equation (18)). In particular, in the WF
representation, the detailed information within a unit

cell is described via the WFs themselves so that the

structure constants only have to be computed for the

lattice sites. Furthermore, the Toeplitz-properties of

the structure constants allow for the usage of efficient

(sparse) storage schemes. If we were to work with the

Bloch functions representation instead, we would have

to store Bloch functions for many wave vectors ~k
within the BZ for the same number of bands. Clearly,

for well-localized WFs the storage requirements within

the WF representation will be considerably reduced

relative to the requirements within the Bloch function

representation.
The above WF representation of the ideal PhC’s

GF allows us to determine physical quantities such as

the density of states (DOS), N(!), and the local density

of states (LDOS), Nð~r,!Þ. The latter is particularly

useful when describing the radiation dynamics of active

materials embedded in PhCs [54]. Within the WF

representation, we obtain for the 2D LDOS of the

ideal PhC

Nð~r,!Þ ¼ �
2!

	c2
�perð~r Þ

X
�,�

W��ð~r ÞG��ð!ÞW�ð~r Þ: ð20Þ

Based on this we find a relatively simple expression for

the 2D DOS of the ideal PhC within the WF

representation

Nð!Þ ¼
1

V

ð
V

d2rNð~r,!Þ ¼ �
2!

	c2
1

V

ð
V

d2r Gð~r, ~r;!Þ

¼ �
2!

	c2
1

Vwsc

X
n

G
n~0; n~0
ð!Þ, ð21Þ

where the integration is over the entire space, Vwsc

denotes the volume of the Wigner–Seitz cell, and the

orthonormality properties of the WFs, Equation (3),

have been utilized.
In Figure 13, we display the WF-based results for

the DOS (solid line) for E-polarized radiation in our

model 2D PhC that consists of a square lattice of

silicon posts (r=a ¼ 0:18, �Si ¼ 12). In the long wave-

length limit, we observe the linear behavior that is

characteristic for an effectively homogeneous 2D

system (cf. the dashed line; also, see the appendix of

[55] for details on the determination of the effective

dielectric constant). For higher frequencies, we obtain

(logarithmic) van-Hove singularities and step disconti-

nuities at band edges that are characteristic for the

DOS of 2D PhCs [56]. Finally, in Figure 14 we display

the LDOS for several frequencies above and below the

first band gap along one of the crystallographic axes

and for a line through the unit cell that passes through

the centre of a silicon post. For frequencies below the

first band gap, we observe the characteristic concen-

tration of the modes of this so-called ‘dielectric band’
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Figure 12. Photonic band structure of a silicon woodpile
PhC (square rods, fcc symmetry, �Si ¼ 12). This band
structure has been obtained from the MPB package (solid
lines) and has been reconstructed using the 32 lowest lying
WFs (crosses), some of which are depicted in Figure 11. (The
color version of this figure is included in the online version of
the journal.)
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within the high-dielectric-constant posts [3]. Similarly,
for frequencies above the first band gap, we find the
characteristic behavior of modes that belong to a
so-called ‘air band’ (note the different scales of
Figure 14(a) and (b)).

The availability of the GF for ideal PhC structures
represents an excellent starting point for the analysis of
disordered systems by adopting the well-trodden paths
of electronic structure theory [53] to the case of PhCs.
Moreover, it is tempting to speculate whether more
sophisticated methods for full-fledged transport calcu-
lations such as the two-particle locator theory [57,58]
can be adapted to the WF representation in order
eventually to deliver quantitative statements about
transport quantities, such as diffusion coefficients and
localization lengths.

The above examples regarding 3D WFs and WF-
based GF techniques for PhCs represent but a few of
the ongoing developments and exciting future direc-
tions that this line of research may take. Additional
and no less exciting avenues could be the development
of a WF approach for membrane-type PhCs, where
one could carry out full 3D computations with not
much more than 2D effort – provided one finds an
efficient way of dealing with out-of-plane scattering
processes, i.e. the construction of guided and radiation
modes within a WF representation and a treatment of
their mutual coupling. Similarly, all the developments

that we have presented in this review, have been
worked out for linear systems and time-harmonic
fields. A time-domain version of the WF approach
would make an interesting addition to the rather
limited number of efficient tools for time-domain
computations.
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