

Moderne Supraleitende Qubits

Hauptseminar

Melanie Hauck | 10. Juli 2012

INSTITUT FÜR THEORETISCHE FESTKÖRPERPHYSIK - TFP

Inhalt

- Wiederholung: Single Cooper Pair Box
- Schaltkreis der SCB
- *H* der SCB in der Basis $|0\rangle$, $|1\rangle$

Transmon

- Einführung
- Transmonschaltkreis
- Transmonregime und Energien des Transmons
- Dekohärenzeffekte

Transmon
00000000000

aus: Wendin, Shumeiko, Superconducting Circuits, Qubits and Computing

Hamiltonoperator der SCB:

•
$$H = 4E_C(\hat{n} - n_g)^2 - E_J \cos \hat{\phi}$$

• $E_J = \frac{\hbar}{2e} I_C; \quad E_C = \frac{e^2}{2C_{\Sigma}}; \quad C_{\Sigma} = C + C_g$
• Charge Regime: $E_C \gg E_J$

Wiederholung: Single Cooper Pair Box O Melanie Hauck – Moderne Supraleitende Qubits

Transmon 00000000000 Fluxonium

H der SCB in der Basis $|0\rangle$, $|1\rangle$

Durch Projektion des Hamiltonoperators auf den Grundzustand und den ersten angeregten Zustand des Qubits erhält man:

aus: Wendin, Shumeiko, Superconducting Circuits, Qubits and

Computino

• $\epsilon = E_C(1-2n_q);$

•
$$\Delta = E_J$$

- Energielevelabstand: $\Delta E = \sqrt{\epsilon^2 + \Delta^2}$
- Sweet Spot: $n_a = \frac{1}{2}$, wobei $\epsilon(n_a = \frac{1}{2}) = 0$

Wiederholung: Single Cooper Pair Box Melanie Hauck - Moderne Supraleitende Qubits

10. Juli 2012

Eigenschaften der Cooper Pair Box

- Anharmonizität \rightarrow keine äquidistanten Energielevels
- Ladungsdispersion \rightarrow zeigt Abhängigkeit der Energielevelabstände von V_q

aus: Koch, Yu, Gambetta, Charge-insensitive qubit design derived from the Cooper pair box

$$H = 4E_C(\hat{n} - n_g)^2 - E_J\cos\hat{\phi}$$

Wiederholung: Single Cooper Pair Box o Melanie Hauck – Moderne Supraleitende Qubits Transmon •0000000000 Fluxonium

10. Juli 2012

Eigenschaften der CPB

Vorteile der CPB

- starke Anharmonizität der Energielevels
- gute Kopplung an elektromagnetische Felder

Nachteile der CPB

- \hfillig gegen Ladungsrauschen \rightarrow Wahl eines "Sweet Spots" notwendig
- schnelles Verlassen "Sweet Spots" aufgrund von Ladungsfluktuationen

ansmon

starke Dekohärenz

Wiederholung: Single Cooper Pair Box	Ti
0	С
Melanie Hauck – Moderne Supraleitende Qubits	

Fluxonium

Zielsetzung des Transmons

- Verringerung der Krümmung der Ladungsdispersion
- Empfindlichkeit gegenüber anderer Rauschquellen soll der der CPB entsprechen
- Erhaltung der Anharmonizität

Transmonschaltkreis

aus: Koch, Yu, Gambetta, Charge-insensitive qubit design derived from the Cooper pair box

Wiederholung:	Single Cooper Pair Box
0	
Melanie Hauck	- Moderne Supraleitende Qubit

Transmon

Fluxonium

Hamiltonoperator des Transmons

•
$$H = 4E_C(\hat{n} - n_g)^2 - E_J\cos\hat{\phi}$$

•
$$n_g = \frac{Q_r}{2e} + \frac{C_g U_g}{2e}$$

•
$$E_C = \frac{e^2}{2C_{\Sigma}};$$
 $C_{\Sigma} = C + C_B + C_g;$ $E_J = \frac{\hbar}{2e}I_C$

• Transmon Regime:
$$E_J \gg E_C$$

$$\rightarrow$$
Erinnerung an CPB: $E_C \gg E_J$

Wiederholung: Single Cooper Pair Box O Melanie Hauck – Moderne Supraleitende Qubits Transmon

Fluxonium

10. Juli 2012

Dephasierung

$$H=\frac{1}{2}(\Delta E_0+X)\sigma_z$$

X sei eine gaußverteilte Größe

$$\mathsf{P}(X) = rac{1}{\sqrt{\pi}W} e^{-\left(rac{X}{W}
ight)^2}$$

Zeitentwicklung bei konstantem X

$$ho_{\downarrow\uparrow}(t) = e^{-i(\Delta E_0 + X)t}
ho_{\downarrow\uparrow}(0)$$

Mittelung über alle Experimente

$$\langle \rho_{\downarrow\uparrow}(t) \rangle = \rho_{\downarrow\uparrow}(0) e^{-i\Delta E_0 t} e^{-\frac{W^2}{4}t^2}$$

Wiederholung: Single Cooper Pair Box o Melanie Hauck – Moderne Supraleitende Qubits Transmon

Fluxonium

10. Juli 2012

Transmonregime

aus: Koch, Yu, Gambetta, Charge-insensitive qubit design derived from the Cooper pair box

 \rightarrow Anharmonizität nimmt mit steigendem Verhältnis $\frac{E_J}{E_C}$ ab \rightarrow Für großes $\frac{E_J}{E_C}$ sind die Energien nahzu unabhängig von n_g .

Wiederholung: Single Cooper Pair Box	Transmon		Fluxonium
0	00000000000		
Melanie Hauck – Moderne Supraleitende Qubits		10. Juli 2012	11/17

Energien des Transmons

m-tes Energielevel des Transmons im Fall $E_J \gg E_C$ (Tramsmonregime)

$$E_m(n_g) pprox E_m(n_g = rac{1}{4}) - rac{\epsilon_m}{2} \cos 2\pi n_g$$

Dabei gilt:

aus: Koch, Yu, Gambetta, Charge-insensitive qubit design derived from the Cooper pair box

$$\epsilon_m \equiv E_m(n_g = \frac{1}{2}) - E_m(n_g = 0)$$

Wiederholung: Single Cooper Pair Box O Melanie Hauck – Moderne Supraleitende Qubits

Abhängigkeit der Anharmonizität und der Dispersionskurven von $\frac{E_J}{E_C}$

Bestimmung des Peak-to-Peak Wertes der Dispersionskurven mithilfe der WKB-Näherung:

$$\epsilon_m \approx (-1)^m E_C \frac{2^{4m+5}}{m!} \sqrt{\frac{2}{\pi}} \left(\frac{E_J}{2E_C}\right)^{\frac{m}{2}+\frac{3}{4}} e^{-\sqrt{8\frac{E_J}{E_C}}} \propto e^{-\sqrt{8\frac{E_J}{E_C}}}$$

2 Hamiltonoperator mit quartischer Störung:

$$E_m \approx -E_J + \sqrt{8E_JE_C} \left(m + \frac{1}{2}\right) - \frac{E_C}{4}(2m^2 + 2m + 1)$$

 \rightarrow Anharmonizität $\propto \sqrt{\frac{E_C}{E_J}}$

 \Rightarrow Bedingung für das Transmonregime:

$$20 \lesssim rac{E_J}{E_C} \ll 5 \cdot 10^4$$

Wiederholung: Single Cooper Pair Box o Melanie Hauck – Moderne Supraleitende Qubits Transmon

Fluxonium

10. Juli 2012

Dekohärenzeffekte

Noise source		transmon	CPB
		$E_J/E_C = 85$	$E_J/E_C = 1$
dephasing	1/f amplitude	T_2 [ns]	T_2 [ns]
charge	$A = 10^{-4} - 10^{-3}e$	400,000	$1,000^{*}$
flux	$A = 10^{-6} - 10^{-5} \Phi_0$	3,600,000*	$1,000,000^*$
crit. current	$A = 10^{-7} - 10^{-6} I_0$	35,000	17,000

* diese Werte wurden an einem "Sweet Spot" aufgenommen

aus: Koch, Yu, Gambetta, Charge-insensitive qubit design derived from the Cooper pair box

Wiederholung: Single Cooper Pair Box	Transmon
0	0000000000
Melanie Hauck – Moderne Supraleitende Qubits	10. J

Fluxonium

Experiment

qubit	f01	E_J	E_C	$g/2\pi$	$g^2/2\pi\delta$	f_c	Q_c	T_1	T_2	Techo
(cavity)	(GHz)	(GHz)	(GHz)	(MHz)	(MHz)	(GHz)	$(x10^{3})$	(μs)	(μs)	(µs)
J1 (D)	6.808	21.1	0.301	138	15.9	8.0035	340	60	18	25
J1a (D)	6.769	21.0	0.301	140	15.8	8.00375	340	50	20	24
J2 (C)	7.772	28.6	0.292	152	99.8	8.0020	360	25	15	21
J3 (B)	7.058	22.5	0.304	141	21.5	7.9835	320	42	12	12
S (D)	7.625	34.4	0.227	136	48.2	8.01065	340	35	7.3	11
Sa (A)	7.43	32.5	0.228	123	24.1	8.06169	100	20	6	8

aus: H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture

Wiederholung: Single Cooper Pair Box	Transmon		Fluxonium
0	0000000000		
Melanie Hauck – Moderne Supraleitende Qubits		10. Juli 2012	15/17

Fluxonium

$$H = E_C \hat{n}^2 - E_J \cos \hat{\phi} + E_L \frac{(\hat{\phi} - \phi_e)^2}{2}$$

aus: Wendin, Shumeiko, Superconducting Circuits, Qubits and

Computing

In der Basis $|L\rangle$, $|R\rangle$ ergibt sich

$$H=-\frac{1}{2}(\epsilon\sigma_z+\Delta\sigma_x)$$

• $E_J = \frac{\hbar}{2e} I_C$ $E_C = \frac{(2e)^2}{2C}$

•
$$E_L = \frac{\Phi_0}{4\pi^2 L}$$
 mit $\Phi_0 = \frac{h}{2e}$

•
$$\epsilon = E_R - E_L;$$

• $\Delta = 2H_RL$

Flux Regime: $E_J \gg E_C$

Wiederholung: Single Cooper Pair Box o Melanie Hauck – Moderne Supraleitende Qubits Transmon 00000000000 Fluxonium

Literatur

- Koch, Yu, Gambetta, Charge-insensitive qubit design derived from the Cooper pair box
- Manucharyan, Koch, Glazman, Devoret, Charging effects in the inductively shunted Josephson junction
- Manucharyan, Koch, Glazman, Devoret, Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets
- Wendin, Shumeiko, Superconducting Circuits, Qubits and Computing
- Koch, Yu, Gambetta, Charging effects in the inductively shunted Josephson junction