

Quantenelektrodynamik mit supraleitenden Schaltkreisen I

Hauptseminar: Physik des Quantencomputers Iris Conradi

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Gliederung

Cavity QED: Quantenoptik

Atom in einem Resonator Eigenzustände des Jaynes-Cummings Hamilton Operators kein Detuning ($\Delta = 0$) dispersiv ($g/\Delta \ll 1$)

Circuit QED

Experiment Vorteile

1 Qubit Gatter Bit-flip Gatter Phase Gatter

2 Qubit Gatter

Hamiltonoperator Experiment

Zusammenfassung

1 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

<

Motivation: Ein Qubit als Zweizustandssystem ähnelt einem Atom. Atom im Resonator: Wechselwirkung Frage: Was passiert mit einem Qubit in einem Resonator?

Cavity QED: Quantenoptik

Atom in einem Resonator

$$H = \hbar\omega_r \left(a^{\dagger}a + \frac{1}{2}\right) + \frac{\hbar\omega_a}{2}\sigma_z + \hbar g \left(a^{\dagger}\sigma_- + \sigma_+ a\right) + H_{\kappa} + H_{\gamma}$$
(1)

ohne Dämpfung: Jaynes-Cummings-Hamiltonoperator

2 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

Resonator Resonanzfrequenz ω_r (nur eine Mode!)

Atom Zweizustandssystem , ω_a

- Kopplung Stärke g (∝ Dipolmoment des Atoms und elektrischem Feld der Photonen), Atom anregen dafür Photon weg und andersrum
 - κ Resonator kann Photonen verlieren, Rate κ
 - $\gamma~$ angeregtes Atom fällt in GZ ohne Photon zu emmitieren oder andere Frequenz, Rate $\gamma~$

Starke Kopplung $g \gg \kappa, \gamma$

 \rightarrow ohne Dämpfung: Jaynes-Cummings

Cavity QED: Quantenoptik Eigenzustände des Jaynes-Cummings Hamilton Operators

$$|GZ\rangle = |g,0\rangle \tag{2}$$

$$|-,n+1\rangle = -\sin\theta_n |e,n\rangle + \cos\theta_n |g,n+1\rangle \quad (4)$$

$$E_{\pm,n+1} = (n+1)\hbar\omega_r \pm \frac{\hbar}{2}\sqrt{4g^2(n+1) + \Delta^2}$$
 (5)

$$E_{GZ} = -\frac{\hbar\Delta}{2} \tag{6}$$

$$\Delta = \omega_a - \omega_r$$
 $\theta_n = \frac{1}{2} \arctan\left(\frac{2g\sqrt{n+1}}{\Delta}\right)$ (7)

3 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

Eigenzustände Mischung aus Atom angeregt mit n Phontonen und Atom in GZ mit n+1 Photonen in Abbildung: Eigenenergien ohne Konstung (mit leichtem Detuning)

in Abbildung: Eigenenergien ohne Kopplung (mit leichtem Detuning) \rightarrow GZ bleibt GZ, aber angeregte auf (etwa) einer Ebene geben gemischt (symmetrisch und antisymmetrisch) die neuen angeregten Zustände

Eigenenergien Der Vollständigkeit halber...

- Δ Detuning
- θ_n Mischungswinkel

1

g

- 1

• 0

е

< □ > < 三 > りへ(~

Cavity QED: Quantenoptik

<

$$|\pm,1
angle = rac{1}{\sqrt{2}}\left(|g,1
angle \pm |e,0
angle
ight)$$
 (

$$\psi(t) = rac{1}{\sqrt{2}} \left(|+,1\rangle \cdot e^{-igt} - |-,1\rangle \cdot e^{igt}
ight)$$
 (10)

Anregung wechselt zwischen Atom und Resonator

9)

4 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

- kein Detuning: Resonator in Resonanz mit Atom
- · Energielevels des unegkoppelten entartet
- Mischungswinkel festgelegt
- Zustände: maximale Verschränkung
- nur eine Anregung betrachten
- wenn man ein angeregtes Atom hat $|e,0\rangle$: Zustand ist Kombination aus $|\pm,1\rangle$, Zeitentwicklung angegeben \rightarrow für $2gt = \pi$ hat man $|g,1\rangle$
 - \rightarrow Vakuum-Rabi-Oszillation (Frequenz $\propto g$)

(nur wenn Kopplung stark $g \gg \kappa, \gamma$)

ightarrow Anregung wechselt zwischen Atom und Resonator

5 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

- dispersiv: sehr großes Detuning
- in Abbidung: ungekoppelt plus gekoppelt (lang gestrichelte Linien)
- Eigenzustände sind die ungekoppelten Zustände plus kleine Korrekturen

ightarrow Anregung wechselt nicht zwischen Atom und Resonator

Cavity QED: Quantenoptik

dispersiv (g/ $\Delta \ll 1$)

Karlsruher Institut für Technologie

unitäre Transformation

$$U = \exp\left(\frac{g}{\Delta}(a\sigma_{+} - a^{\dagger}\sigma_{-})\right) \quad (15)$$
bis zur zweiten Ordnung in g ergibt

$$UHU^{\dagger} \approx \hbar\omega_{r}a^{\dagger}a + \left(\frac{\hbar\omega_{a}}{2} + \hbar\frac{g^{2}}{\Delta}\left(\frac{1}{2} + a^{\dagger}a\right)\right)\sigma_{z} \quad (16)$$

$$|B| = \frac{1}{2} + \frac{1}{2} +$$

6 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

- dispersiv: kein Austausch der Anregungen: durch unitäre Transformation bis zweiter Ordnung wird Hamilton genähert unter Ausnutzung von $(g/\Delta \ll 1)$ (nur UHU^{\dagger} weil die Transformation nicht von der Zeit abhängt)
- also ist die Kopplung durch Austausch nicht mehr drin aber
- Veränderung der Frequenz des Atoms

Lamb-Shift der Term $\hbar g^2/2\Delta$ Stark-Shift der Term $(\hbar g^2/\Delta)a^{\dagger}a$ \rightarrow hängt ab von der Population des Resonators (Anzahl Photonen) (\rightarrow Kopplung...)

Energien

Null Photonen	Verschiebung um \pm Lambshift
Photonen	Verschiebung um \pm Kombination aus Lambshift und
	entprechendem Starkshift

Circuit QED

[Schoelkopf and Girvin, 2008]

$$H_Q = -2E_C(1 - 2N_g)\bar{\sigma}_z - \frac{E_J}{2}\cos\left(\frac{\pi\Phi_{ext}}{\Phi_0}\right)\bar{\sigma}_x \quad \text{mit} \quad N_g = \frac{C_g}{2e}V_g \quad (17)$$

$$H_R = \hbar\omega_r \left(a^\dagger a + \frac{1}{2}\right) \tag{18}$$

Kopplung:
$$V_g = V_g^{dc} + \sqrt{\frac{\hbar\omega_r}{cL}}(a^{\dagger} + a)$$
 (19)

7 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

Neuer Abschnitt: Jetzt ersetzen wir Atom durch Qubit und verwenden einen 1D Wellenleiter

- innere Länge: Wellenlänge zu ω_r
- Eingang, Ausgang kapazitiv gekoppelt
- Ground Potential außen
- Qubits an Extrema der stehenden Welle
- Qubit: Cooper-Pair-Box mit einem Ring aus zwei Junctions an Stelle der einen Junction \rightarrow man kann dadurch den σ_x Term steuern, den anderen sowieso über die Gate-Spannung
- heute mit Transmons
- Resonator: harm. Oszi
- Kopplung: Potential auf Insel: angelegte Gatespannung und durch Feld im Resonator (L: Länge des Resonators, c: Kapazität pro Länge)

 $\begin{array}{l} \text{Rechnung...} \\ \rightarrow \text{Jaynes-Cummings Form} \end{array}$

Circuit QED

$$H = \hbar\omega_r \left(a^{\dagger}a + \frac{1}{2}\right) + \frac{\hbar\omega_a}{2}\sigma_z + \hbar g \left(a^{\dagger}\sigma_- + \sigma_+ a\right)$$
(20)

mit

$$g = e \frac{C_g}{C_{\Sigma}} \sqrt{\frac{\hbar\omega_r}{cL}} \sin\theta \frac{1}{\hbar}$$
(21)

$$\omega_a = \frac{1}{\hbar} \sqrt{\left(E_J \cos\frac{\pi \Phi_{ext}}{\Phi_0}\right)^2 + \left(4E_C (1 - 2N_g^{dc})\right)^2} \tag{22}$$

< ₽ > < ≣ > I < <

9 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

Jaynes-Cummings!

Circuit QED Experiment

- Links:
 - a: gesamtes System: Resonator, Anschlüsse, Cooper-Pair-box
 - b: kapazitive Kopplung zu Eingang und Ausgang
 - c: Cooper-Pair-box (blau) zwischen Ground und mittlerem Leiter (jeweils beige)
 - Länge des Resonators: 24mm
- Rechts: $\Delta = 0$ (rot gestrichelte Linie: berechnetes Ergebnis für g = 0) \rightarrow man kann also starke Kopplung erreichen (Linienbreite bei $\Delta = 0$ ist durch $\frac{\kappa + \gamma}{2}$ gegeben. Wenn starke Kopplung, dann kann man das Splitting auflösen)
- In den neueren Experimenten wird größeres Splitting erreicht (Fink 2008)
- in Fink 2008 auch das Splitting für höhere Photonen Zustände gemessen um \sqrt{n} Abhängigkeit nachzuweisen

Circuit QED Vorteile

- Starke Kopplung viel leichter erreichbar als im Fall des Atoms, wichtig für Quanteninformation weil Information mehrfach zwischen Resonator und Qubit ausgetauscht werden kann, bevor sie verloren geht.
- Atome bewegen sich im Resonator oder fallen nur durch. Qubit ist fest \rightarrow feste Feldstärke etc.
- Umgebungsrauschen koppelt nicht direkt an Qubit sondern nur über Resonator, andere Frequenzen als ω_r haben aber nur einen Effekt, wenn sie mit großen Feldstärken verbunden sind.

Dispersives Regime ($g/\Delta \ll 1$):

$$H = \hbar \omega_r a^{\dagger} a + \left(\frac{\hbar \omega_a}{2} + \hbar \frac{g^2}{\Delta} \left(\frac{1}{2} + a^{\dagger} a\right)\right) \sigma_z$$
(23)

definiere

$$\tilde{\omega}_a = \omega_a + \chi \quad \text{mit} \quad \chi = \frac{g^2}{\Delta}$$
 (24)

sodass

$$H = \hbar \omega_r a^{\dagger} a + \left(\frac{\hbar \tilde{\omega}_a}{2} + \hbar \frac{g^2}{\Delta} a^{\dagger} a\right) \sigma_z$$
(25)

12 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

- Arbeit in dispersivem Regime
- also großes Detuning zwischen Resonator und Atom
- Warum?:
 - kein Austausch der Anregungen, denn man will die Anregung im Qubit halten um daran Operationen durchzuführen
 - nur selten Photonen im Resonator: können auch nicht verloren gehen
- Lamb Shift: neue Frequenz $\tilde{\omega}_a$
- man kann ein treibendes Feld anlegen um Gatter zu realisieren
- · das dann weit weg von Resonatorfrequenz und daher mit hoher Feldstärke
- kann man daher als klassisches Feld betrachten
- mittlere Photonenzahl Null: a⁺a Term vernachlässigen

Bit-flip Gatter

treibendes Feld: $\omega_d \approx \omega_a$, Amplitude ε

$$H = \frac{\hbar \tilde{\Delta}_a}{2} \sigma_z + \frac{\hbar \Omega_R}{2} \sigma_x \tag{26}$$

wobei

$$\tilde{\Delta}_a = \tilde{\omega}_a - \omega_d \qquad \tilde{\omega}_a = \omega_a + \chi$$
 (27)

$$\chi = \frac{g^2}{\Delta} \qquad \Omega_R = 2\frac{\varepsilon g}{\Delta_r} \qquad \Delta_r = \omega_r - \omega_d \quad (28)$$

▲母▶▲≣▶め�?

13 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

- treibendes Feld über Eingang, dass in Resonanz mit dem Qubit ist
- Atom mit klassischem Feld in Resonanz treiben
 Rabi-Oszillation
- denn $\tilde{\Delta}_a$ ist fast Null (da χ sehr klein ist, weil dispersiv)
- man erhält den Hamilton durch Transformation in ein Bezugssytem, das mit ω_d rotiert

 \rightarrow Rotationen um die x-Achse der Blochkugel (Rate Ω_R)

Durch variieren von $\tilde{\Delta}_a$ und Ω_R können auch alle andere Rotationen erreicht werden.

Mehrere Qubits:

wenn die Qubits verschiedene Frequenzen ω_a haben, kann man sie einzeln über die Einstellung von ω_d ansteuern. Man kann sie sogar gleichzeitig rotieren lassen.

Phase Gatter

treibendes Feld: $\omega_d \neq \omega_a$, Amplitude ε

$$H = \frac{1}{2} \left(\tilde{\Delta}_a + \frac{1}{2} \frac{\Omega_R^2}{\Delta_a} \right) \sigma_z$$
 (29)

wobei

$$\tilde{\Delta}_a = \tilde{\omega}_a - \omega_d \qquad \tilde{\omega}_a = \omega_a + \chi$$
 (30)

$$\chi = \frac{g^2}{\Delta} \qquad \Omega_R = 2\frac{\varepsilon g}{\Delta_r} \qquad \Delta_r = \omega_r - \omega_d \quad (31)$$

▲ □ ▶ ▲ 三 ▶ りへで

14 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

- treibendes Feld über Eingang, dass nicht in Resonanz mit dem Qubit ist (keine Übergänge im Qubit, Δ̃_a und Δ_a sind groß gegen 1)
- letzter Term: Stark Shift
- \rightarrow Rotationen um die z-Achse der Blochkugel

Bemerkung:

Rate:
$$2g\sqrt{n}\frac{\Omega R_R}{2\Delta_a}$$
,

 $\frac{\Omega_R}{2\Delta_a}$ muss klein sein, damit es keine echten Übergänge gibt, mittlere Photonenzahl und Kopplung kann variiert werden

Mehrere Qubits:

wenn man bestimmte Qubits treibt (Bit-flip-Gatter), dann erhalten die anderen einen Stark-Shift

2 Qubit Gatter Hamiltonoperator

- auch in dispersivem Regime (keine Photonen vorhanden)
- Hamilton für disperisves Regime durch Transformation erhalten (Näherung weil nur bis zweite Ordnung in g), jetzt den Hamilton für zwei Qubits entsprechend Transformieren
- die Kopplung ist nur noch zwischen den Qubits (durch virtuelle Photonen) $\rightarrow \sqrt{i \rm SWAP}\text{-}\rm Gatter$
- mit den Rotationen: universelles Set von Quanten-Gattern
- Wie schaltet man das Gatter an?
 - wenn $\tilde{\omega}_{a_i}$ sehr verschieden: Energieerhaltung verbietet den SWAP
 - durch Fluss durch die Qubits kann man die Frequenzen separat steuern: bei Cooper-Pair-box schlecht wegen Dephasing, geht aber bei Transmons
- Problem: Rate: wie $\frac{g^2}{\Delta}$, also langsam. Man kann von dispersivem Regime weggehen, dann wird es schneller, aber dann kann es unerwünschte Verschränkungen mit den Photonen im Resonator geben
- *Mehrere Qubits*: man kann sie paarweise gleichzeitig verschränken oder auch mehr als 2 Qubits miteinander verschränken
- Abb: Simulation, zwei Qubits, nach 0.1: driving an, gestrichelt: mit Dämpfung

Experiment

- Links:
 - oben: Schaltung (Resonator mit zwei Transmons; pink: kapazitive Kopplungen)
 - mitte: Mikroskopaufnahme der Schaltung
 - unten links: Transmon
- Rechts:
 - dispersiv
 - Kopplung der Zustände mit jeweils einem angeregten und einem nichtangeregten Qubit über ein virtuelles Photon (letzter Term im Hamilton)
 - diese Wechselwirkung führt zu einer Aufspaltung der entarteten Energieniveaus

Experiment

17 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

Levelaufspaltung aufgrund der Kopplung der beiden Zustände links Messung, rechts Simulation

Zusammenfassung

- System in Quantenoptik schon sehr genau untersucht
- Herstellungs Technologien schon erprobt (IC-Herstellung)
- universelles Set von Quantengattern (Rotationen und Verschränkung durch SWAP)
- lässt sich experimentell realisieren

Literatur I

[Blais et al., 2007] Blais, A., Gambetta, J., Wallraff, A., Schuster, D., Girvin, S., Devoret, M., and Schoelkopf, R. (2007).

Quantum-information processing with circuit quantum electrodynamics. *Physical Review A*, 75(3):032329.

[Blais et al., 2004] Blais, A., Huang, R., Wallraff, A., Girvin, S., and Schoelkopf, R. (2004).

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation.

Physical Review A, 69(6):062320.

[Fink et al., 2008] Fink, J., Göppl, M., Baur, M., Bianchetti, R., Leek, P., Blais, A., and Wallraff, A. (2008).

Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system.

Nature, 454(7202):315-318.

19 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I

Literatur II

[Majer et al., 2007] Majer, J., Chow, J., Gambetta, J., Koch, J., Johnson, B., Schreier, J., Frunzio, L., Schuster, D., Houck, A., Wallraff, A., et al. (2007). Coupling superconducting qubits via a cavity bus. *Nature*, 449(7161):443–447.

[Schoelkopf and Girvin, 2008] Schoelkopf, R. and Girvin, S. (2008). Wiring up quantum systems. *Nature*, 451(7179):664–669.

[Wallraff et al., 2004] Wallraff, A., Schuster, D., Blais, A., Frunzio, L., Huang, R., Majer, J., Kumar, S., Girvin, S., and Schoelkopf, R. (2004).
Strong coupling of a single photon to a superconducting qubit using circuit quantum.

Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.

Nature, 431(7005):162-167.

[Wendin and Shumeiko, 2005] Wendin, G. and Shumeiko, V. S. (2005). Superconducting quantum circuits, qubits and computing. *eprint arXiv:cond-mat/0508729.*

▲□▶▲≣▶釣�♡

20 03.07.12 Iris Conradi - Quantenelektrodynamik mit supraleitenden Schaltkreisen I