Übungen zu Physik der Quanteninformation WS 15

Dr. M. Marthaler Blatt 4

C. Karlewski Besprechung, 11.12.2015

1. 7-Qubit Steane Code

(9 Punkte)

Wir nutzen den 7-Qubit Steane Code aus der Vorlesung um Bit-Flip Fehler in einem beliebigen initial Zustand $|\Psi\rangle_I^0=\alpha\,|0\rangle_L+\beta\,|1\rangle_L$ zu untersuchen. Die Stabiliser für diesen Code sind:

$$\begin{array}{lll} K^1 = 111XXXX; & K^2 = X1X1X1X; & K^3 = 1XX11XX \\ K^4 = 111ZZZZ; & K^5 = Z1Z1Z1Z; & K^6 = 1ZZ11ZZ \end{array} \tag{1}$$

In der Abbildung 1 ist der Steane Code zur Korrektur von Bit-Flip Fehlern dargestellt.

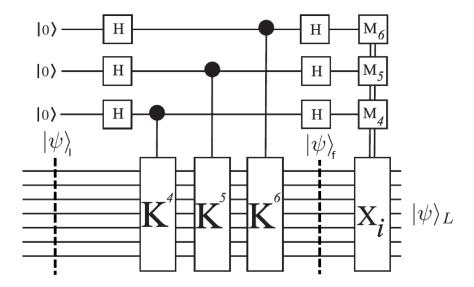


Abbildung 1: Schaltkreisabbildung des Steane Codes zur Korrektur von Bit-Flip Fehlern

- (a) (2 Pkt.) Berechnen sie $|\Psi\rangle_f$ für alle möglichen Messungen von M_4 , M_5 und M_6 in Abhängigkeit von allgemeinem Zustand $|\Psi\rangle_I$, der nicht ein Superpositionszustand von $|0\rangle_L$ und $|1\rangle_L$ sein muss.
- (b) (1 Pkt.) Zeigen sie, welche Korrektur zu den Messungen 001, 011, und 111 gemacht werden müssen, um 000 zu erhalten.
- (c) (2 Pkt.) Ein Bit-Flip Fehler im dritten Qubit kann geschrieben werden als $X_3 = 11X1111$, d.h. $|\Psi\rangle_I = X_3 |\Psi\rangle_I^0$. Berechnen sie $|\Psi\rangle_f$ sowie M_4 , M_5 und M_6 und zeigen sie, dass X_i mit $i = 1 \cdot M_5 + 2 \cdot M_6 + 4 \cdot M_4$ den richtigen Qubit korrigiert. Zeigen sie, dass das Ergebnis $|\Psi\rangle_L$ nach der Korrektur $|\Psi\rangle_I^0$ ist.
- (d) (2 Pkt.) Nehmen sie an, dass die Fehler X_1 und X_2 passiert sind. Was wird gemessen und ist $|\Psi\rangle_L$ (Zustand nach Korrektur wie in (c)) ein Eigenzustand zu K^4, K^5, K^6 mit positiven Eigenwerten?
- (e) (2 Pkt.) Nehmen sie an, dass die Fehler X_5 und Z_5 passiert sind. Betrachten sie den gesamten Steane Code mit Phase-Flip Fehlerkorrektur und berechnen sie M^i mit $i = 1, \ldots, 6$ und ist $|\Psi\rangle_L = |\Psi\rangle_I^0$?

2. Der Flux-Qubit

6 Punkte

Ein Josephson-Kontakt besteht aus 2 Supraleiltern getrennt von einer dünnen Isolatorschicht. Wir betrachten ein Josephson-Kontakt modeliert durch eine parallel geschaltete

Kapazität und einen Josephson-Strom. Für den Josephson-Kontakt gilt

$$U = \frac{\hbar}{2e} \dot{\phi}_J \tag{2}$$

$$I_J = I_C \sin \phi_J \tag{3}$$

wobei ϕ die Differenz der Phase der supraleitenden Wellenfunktion von einer zur anderen Seite des Kontakts und I_C den kritischen Strom, einer baulich bedingten Konstante, bezeichnen. Das ganze soll als Ring mit Induktivität L angeordnet werden (siehe Abbildung 2). Der Strom der Induktivität ist $I_L = \frac{\hbar \phi_L}{2eL}$. Φ_E bezeichnet den externen Fluss mit $\Phi_E = \frac{\hbar}{2e} \phi_E$. Die Phase einmal um die Schleife aufaddiert verschwindet, $\phi_E + \phi_J + \phi_L = 0$. Der Strom I_K der Kapazität ist gegeben als $I_K = C\dot{U}$.

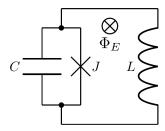


Abbildung 2: Ersatzschaltbild für reellen Josephson-Kontakt.

- (a) (1 Pkt.) Die relevanten Energieskalen sind die Induktive-Energie $E_L = \frac{\hbar^2}{(2e^2)L}$, die Josephson-Energie $E_J = \frac{\hbar}{2e} I_C$ und die Ladungsenergie $E_C = \frac{2e^2}{C}$. Benutzen sie die Kirchhoff'schen Regeln um die Bewegungsgleichung für ϕ in Abhängigkeit von den Energien zu bestimmen.
- (b) (2 Pkt.) Benutzen sie die Euler-Lagrange-Gleichung

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\phi}} - \frac{\partial \mathcal{L}}{\partial \phi} = 0, \tag{4}$$

um im Verlgeich mit der Bewegungsgleichung aus (a) die Lagrange-Funktion $\mathcal L$ zu bestimmen.

- (c) (1 Pkt.) Berechnen sie mit Hilfe der Lagrange-Funktion den Hamiltonian.
- (d) (2 Pkt.) Bestimmen sie die zu dem Potential V zugehörigen Terme und bestimmen sie die Parameter, für die das Potential ein Doppelmuldenpotential bildet.

3. Getriebenes 3-Zustandssystem

5 Punkte

Wir betrachten einen anharmonischen Oszillator, den wir auf die drei niedrigsten Energie-Eigenzustände $|0\rangle, |1\rangle$ und $|2\rangle$ reduzieren. Die Erzeuger- und Vernichteroperatoren a^{\dagger} und a haben die Eigenschaften $a|0\rangle=0, a^{\dagger}|2\rangle=0, a|n\rangle=\sqrt{n}|n-1\rangle$ und $a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$. Der Hamiltonian ist gegeben durch

$$H = \omega a^{\dagger} a + \lambda (a^{\dagger})^2 a^2 + g(a + a^{\dagger}) \cos(\omega_D t). \tag{5}$$

Hierbei ist ω das erste Energiesplitting, λ das Detuning des zweiten Energiesplittings, g die Kopplung des treibenden Feldes und ω_D die Frequenz des Feldes.

- (a) (1 Pkt.) Schreiben sie H als Matrix in der Basis $|0\rangle$, $|1\rangle$ und $|2\rangle$.
- (b) (2 Pkt.) Benutzen sie den unitären Operator $U = e^{-i\omega_D a^{\dagger} a t}$ um ins rotierende Bezugssystem zu wechseln und verwenden sie die RWA (siehe Blatt 1). Schreiben sie das Ergebnis wieder in Matrixform.
- (c) (2 Pkt.) Nehmen sie an, dass $\omega_D = \omega$. Wechseln sie in die Basis $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$, $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ und $|2\rangle$. Betrachten sie die nicht diagonal Terme als Störung und berechnen sie in erster Ordnung Störungstheorie die Korrektur zu $|2\rangle$. Was muss gelten damit der Überlapp der Wellenfunktionen möglichst klein ist?